Efeitos toxicológicos da nanopartícula de dióxido de titânio (TiO2) utilizando modelos experimentais in vitro e in vivo

Detalhes bibliográficos
Ano de defesa: 2023
Autor(a) principal: Fattori, Ana Carolina Maragno
Orientador(a): Anibal, Fernanda de Freitas lattes
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de São Carlos
Câmpus São Carlos
Programa de Pós-Graduação: Programa de Pós-Graduação em Genética Evolutiva e Biologia Molecular - PPGGEv
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Palavras-chave em Inglês:
Área do conhecimento CNPq:
Link de acesso: https://repositorio.ufscar.br/handle/20.500.14289/19561
Resumo: The advent of nanotechnology and its applications in diverse areas is due to the increase in the physical and chemical properties of nanoparticles because of their nanometric scale. However, these new characteristics can trigger biological effects that harm health and the environment, highlighting the need to assess the safety of using these nanomaterials. Therefore, this study analyzed the toxicological effects of titanium dioxide nanoparticles (TiO2 NP) functionalized with sodium carboxylate (-COO-Na+), of interest to the oil industry, using in vitro and in vivo models. The physicochemical characterization of the TiO2 NP was carried out using Dynamic Light Scattering (DLS), determining its hydrodynamic size, zeta potential and polydispersity index (PdI), Attenuated Total Reflection Fourier Transform Infrared Spectroscopy (ATR-FTIR) and High-Resolution Scanning Electron Microscopy (SEM-FEG). For the in vitro model, the LA-9 fibroblast lineage was used and cytotoxicity was evaluated for the concentrations of 250, 150 and 50 μg/mL using the cell viability assay (MTT) and cell morphology analysis after exposure to TiO2 NP for 24, 48 and 72 hours. After exposure to TiO2 NP for 24 hours, intracellular production of Reactive Oxygen Species (ROS), production of cytokines IL-6 and TNF in the cell supernatant by ELISA and cell death by flow cytometry were also evaluated, as well as clonogenic survival 7 days after exposure. In the in vivo model, Balb/c mice were exposed intranasally to TiO2 NP (500, 250, 100 and 50 μg/animal) in 4 doses over 14 days. Throughout the exposure period, the animals' feed and water intake and weight variation were assessed. Subsequently, leukocyte levels were analyzed in the blood, bronchoalveolar lavage (BAL) and peritoneal cavity lavage (PCL), quantification of cytokines (INF-ɤ, TNF, IL-6 and IL-10) in plasma and BAL and IgE antibody in BAL by ELISA, evaluation of liver function (TGO/TGP), weighing of the lungs and histological analysis of the organs (brain, lungs, heart, liver, spleen and kidneys). Our results showed that NP TiO2 is functionalized with sodium carboxylate ligands and suggests that it has an anatase crystalline form, as well as heterogeneous dispersion and a hydrodynamic size of around 3.5 nm in water and 2.96 nm in PBS, increasing to 7.62 nm in DMEM medium due to the agglomeration process. For the LA-9 fibroblast cell line, there was a reduction in cell viability (250 and 150 μg/mL) dose and time-dependent as well as oxidative stress and cell death by apoptosis (150 μg/mL). For the 150 μg/mL concentration there was a possible cell recovery after the NP was removed. In the in vivo model, NP generated histopathological changes in the brain, lungs, liver and kidneys of Balb/c mice after intranasal exposure with 4 doses over a period of 14 days. No changes were observed in the other parameters evaluated, with the exception of an increase in TGO at a concentration of 250 μg. The results of this study showed that NP TiO2 functionalized with sodium carboxylate has cytotoxicity for the LA-9 fibroblast line and toxicity with histopathological alterations for the brain, lung, liver and kidneys in Balb/c mice, contributing to knowledge about the effects of this NP TiO2 in in vitro and in vivo models. It is also interesting to analyze long-term exposure in order to determine the safety of using this nanomaterial.
id SCAR_126cb48ffa99348ee5a011ec8c4ccc02
oai_identifier_str oai:repositorio.ufscar.br:20.500.14289/19561
network_acronym_str SCAR
network_name_str Repositório Institucional da UFSCAR
repository_id_str
spelling Fattori, Ana Carolina MaragnoAnibal, Fernanda de Freitashttp://lattes.cnpq.br/4918261968772806Rossi, Karina Nogueira Zambone Pintohttp://lattes.cnpq.br/4705154788194140http://lattes.cnpq.br/9855158621715652https://orcid.org/0000-0002-4868-9148https://orcid.org/0000-0003-0571-8516https://orcid.org/0000-0002-7142-98892024-02-29T17:18:09Z2024-02-29T17:18:09Z2023-11-30FATTORI, Ana Carolina Maragno. Efeitos toxicológicos da nanopartícula de dióxido de titânio (TiO2) utilizando modelos experimentais in vitro e in vivo. 2023. Tese (Doutorado em Genética Evolutiva e Biologia Molecular) – Universidade Federal de São Carlos, São Carlos, 2023. Disponível em: https://repositorio.ufscar.br/handle/20.500.14289/19561.https://repositorio.ufscar.br/handle/20.500.14289/19561The advent of nanotechnology and its applications in diverse areas is due to the increase in the physical and chemical properties of nanoparticles because of their nanometric scale. However, these new characteristics can trigger biological effects that harm health and the environment, highlighting the need to assess the safety of using these nanomaterials. Therefore, this study analyzed the toxicological effects of titanium dioxide nanoparticles (TiO2 NP) functionalized with sodium carboxylate (-COO-Na+), of interest to the oil industry, using in vitro and in vivo models. The physicochemical characterization of the TiO2 NP was carried out using Dynamic Light Scattering (DLS), determining its hydrodynamic size, zeta potential and polydispersity index (PdI), Attenuated Total Reflection Fourier Transform Infrared Spectroscopy (ATR-FTIR) and High-Resolution Scanning Electron Microscopy (SEM-FEG). For the in vitro model, the LA-9 fibroblast lineage was used and cytotoxicity was evaluated for the concentrations of 250, 150 and 50 μg/mL using the cell viability assay (MTT) and cell morphology analysis after exposure to TiO2 NP for 24, 48 and 72 hours. After exposure to TiO2 NP for 24 hours, intracellular production of Reactive Oxygen Species (ROS), production of cytokines IL-6 and TNF in the cell supernatant by ELISA and cell death by flow cytometry were also evaluated, as well as clonogenic survival 7 days after exposure. In the in vivo model, Balb/c mice were exposed intranasally to TiO2 NP (500, 250, 100 and 50 μg/animal) in 4 doses over 14 days. Throughout the exposure period, the animals' feed and water intake and weight variation were assessed. Subsequently, leukocyte levels were analyzed in the blood, bronchoalveolar lavage (BAL) and peritoneal cavity lavage (PCL), quantification of cytokines (INF-ɤ, TNF, IL-6 and IL-10) in plasma and BAL and IgE antibody in BAL by ELISA, evaluation of liver function (TGO/TGP), weighing of the lungs and histological analysis of the organs (brain, lungs, heart, liver, spleen and kidneys). Our results showed that NP TiO2 is functionalized with sodium carboxylate ligands and suggests that it has an anatase crystalline form, as well as heterogeneous dispersion and a hydrodynamic size of around 3.5 nm in water and 2.96 nm in PBS, increasing to 7.62 nm in DMEM medium due to the agglomeration process. For the LA-9 fibroblast cell line, there was a reduction in cell viability (250 and 150 μg/mL) dose and time-dependent as well as oxidative stress and cell death by apoptosis (150 μg/mL). For the 150 μg/mL concentration there was a possible cell recovery after the NP was removed. In the in vivo model, NP generated histopathological changes in the brain, lungs, liver and kidneys of Balb/c mice after intranasal exposure with 4 doses over a period of 14 days. No changes were observed in the other parameters evaluated, with the exception of an increase in TGO at a concentration of 250 μg. The results of this study showed that NP TiO2 functionalized with sodium carboxylate has cytotoxicity for the LA-9 fibroblast line and toxicity with histopathological alterations for the brain, lung, liver and kidneys in Balb/c mice, contributing to knowledge about the effects of this NP TiO2 in in vitro and in vivo models. It is also interesting to analyze long-term exposure in order to determine the safety of using this nanomaterial.O advento da nanotecnologia e suas aplicações em diversas áreas decorre do incremento das propriedades físico-químicas que as nanopartículas apresentam devido à escala nanométrica. Entretanto essas novas características podem desencadear efeitos biológicos prejudiciais à saúde e ao meio ambiente destacando a necessidade da avaliação da segurança na utilização desses nanomateriais. Dessa forma, o presente trabalho analisou os efeitos toxicológicos da nanopartícula de dióxido de titânio (NP TiO2) funcionalizada com carboxilato de sódio (-COO-Na+), de interesse para a indústria petrolífera, utilizando modelos in vitro e in vivo. A caracterização físico-química da NP TiO2 foi realizada pelos métodos de Espalhamento Dinâmico de Luz (DLS), sendo determinado seu tamanho hidrodinâmico, potencial zeta e índice de polidispersividade (PdI), Espectroscopia de Infravermelho com Reflexão Total Atenuada por Transformada de Fourier (ATR-FTIR) e Microscopia Eletrônica de Varredura de alta resolução (MEV-FEG). Para o modelo in vitro foi utilizada a linhagem de fibroblastos LA-9 sendo a citotoxicidade avaliada para as concentrações de 250, 150 e 50 μg/mL através de ensaio de viabilidade celular (MTT) e análise de morfologia celular após exposição à NP TiO2 por 24, 48 e 72h. Também foram avaliados, após exposição à NP TiO2 por 24h, produção intracelular de Espécies Reativas de Oxigênio (EROs), produção de citocinas IL-6 e TNF no sobrenadante celular por ELISA e morte celular por citometria de fluxo, bem como a sobrevivência clonogênica após 7 dias da exposição. Já no modelo in vivo, camundongos Balb/c foram expostos por via intranasal à NP TiO2 (500, 250, 100 e 50 μg/animal) em 4 doses no período de 14 dias. Ao longo do período de exposição foram avaliados a ingestão de ração e água e a variação do peso dos animais. Posteriormente foi feita avaliação leucocitária no sangue, lavado broncoalveolar (LBA) e lavado da cavidade peritoneal (LCP), quantificação de citocinas (INF-ɤ, TNF, IL-6 e IL-10) no plasma e LBA e anticorpo IgE no LBA por ELISA, avaliação da função hepática (TGO/TGP), pesagem dos pulmões e análise histológica dos órgãos (encéfalo, pulmões, coração, fígado, baço e rins). Nossos resultados demonstraram que a NP TiO2 possui funcionalização com ligantes de carboxilato de sódio e sugere-se que apresenta forma cristalina anatase, além de dispersão heterogênea e tamanho hidrodinâmico em torno de 3,5 nm em água e 2,96 nm em PBS, apresentando aumento para 7,62 nm em meio DMEM devido ao processo de aglomeração. Para a linhagem de fibroblastos LA-9 houve redução de viabilidade celular (250 e 150 μg/mL) dose e tempo dependentes bem como estresse oxidativo e morte celular por apoptose (150 μg/mL). Para a concentração de 150 μg/mL houve uma possível recuperação celular após a retirada da NP. No modelo in vivo, a NP gerou alterações histopatológicas no encéfalo, pulmão, fígado e rins dos camundongos Balb/c após exposição intranasal com 4 doses em um período de 14 dias. Para os outros parâmetros avaliados não foram observadas alterações, com exceção do aumento de TGO para a concentração de 250 μg. Os resultados deste trabalho demonstraram que a NP TiO2 funcionalizada com carboxilato de sódio apresenta citotoxicidade para a linhagem de fibroblastos LA-9 e toxicidade com alterações histopatológicas para encéfalo, pulmão, fígado e rins em camundongos Balb/c, contribuindo para o conhecimento sobre os efeitos desta NP TiO2 em modelo in vitro e in vivo. Destaca-se ainda a importância de análises em períodos mais longos de exposição a fim de determinar a segurança na utilização deste nanomaterial.OutraCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Processo n° 2017/00010-7, Centro de Pesquisas, Desenvolvimento e Inovação Leopoldo Américo Miguez de Mello (CENPES – Petrobras – Petróleo Brasileiro S.A)porUniversidade Federal de São CarlosCâmpus São CarlosPrograma de Pós-Graduação em Genética Evolutiva e Biologia Molecular - PPGGEvUFSCarAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessNanotoxicologiaDióxido de titânioCitotoxicidadeLA-9InflamaçãoBalb/cNanotoxicologyTitanium dioxideCytotoxicityInflammationCIENCIAS BIOLOGICAS::IMUNOLOGIACIENCIAS BIOLOGICAS::FARMACOLOGIA::TOXICOLOGIAEfeitos toxicológicos da nanopartícula de dióxido de titânio (TiO2) utilizando modelos experimentais in vitro e in vivoToxicological effects of titanium dioxide (TiO2) nanoparticles using in vitro and in vivo experimental modelsinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisreponame:Repositório Institucional da UFSCARinstname:Universidade Federal de São Carlos (UFSCAR)instacron:UFSCARORIGINALTESE - Ana Carolina M. Fattori.pdfTESE - Ana Carolina M. Fattori.pdfTese - Ana Carolina Maragno Fattoriapplication/pdf3064887https://repositorio.ufscar.br/bitstreams/205e4e87-5954-4423-9885-7cda86b8002d/download1b36cff75e683ecf42f3372c2faab1b5MD51trueAnonymousREADCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8810https://repositorio.ufscar.br/bitstreams/e4040088-534c-4968-8fa4-b839aba9dc41/downloadf337d95da1fce0a22c77480e5e9a7aecMD53falseAnonymousREADTEXTTESE - Ana Carolina M. Fattori.pdf.txtTESE - Ana Carolina M. Fattori.pdf.txtExtracted texttext/plain189533https://repositorio.ufscar.br/bitstreams/51e3ac9c-6e1b-4bcd-b440-99e22285f9f6/download877984ad75a8322fd27d23fa1811d902MD54falseAnonymousREADTHUMBNAILTESE - Ana Carolina M. Fattori.pdf.jpgTESE - Ana Carolina M. Fattori.pdf.jpgIM Thumbnailimage/jpeg4363https://repositorio.ufscar.br/bitstreams/1cefdf71-340c-4c72-9700-e97b810c7952/downloadc29541cff214da1aebd71e60d9d4be1fMD55falseAnonymousREAD20.500.14289/195612025-02-06 01:46:08.844http://creativecommons.org/licenses/by-nc-nd/3.0/br/Attribution-NonCommercial-NoDerivs 3.0 Brazilopen.accessoai:repositorio.ufscar.br:20.500.14289/19561https://repositorio.ufscar.brRepositório InstitucionalPUBhttps://repositorio.ufscar.br/oai/requestrepositorio.sibi@ufscar.bropendoar:43222025-02-06T04:46:08Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)false
dc.title.por.fl_str_mv Efeitos toxicológicos da nanopartícula de dióxido de titânio (TiO2) utilizando modelos experimentais in vitro e in vivo
dc.title.alternative.eng.fl_str_mv Toxicological effects of titanium dioxide (TiO2) nanoparticles using in vitro and in vivo experimental models
title Efeitos toxicológicos da nanopartícula de dióxido de titânio (TiO2) utilizando modelos experimentais in vitro e in vivo
spellingShingle Efeitos toxicológicos da nanopartícula de dióxido de titânio (TiO2) utilizando modelos experimentais in vitro e in vivo
Fattori, Ana Carolina Maragno
Nanotoxicologia
Dióxido de titânio
Citotoxicidade
LA-9
Inflamação
Balb/c
Nanotoxicology
Titanium dioxide
Cytotoxicity
Inflammation
CIENCIAS BIOLOGICAS::IMUNOLOGIA
CIENCIAS BIOLOGICAS::FARMACOLOGIA::TOXICOLOGIA
title_short Efeitos toxicológicos da nanopartícula de dióxido de titânio (TiO2) utilizando modelos experimentais in vitro e in vivo
title_full Efeitos toxicológicos da nanopartícula de dióxido de titânio (TiO2) utilizando modelos experimentais in vitro e in vivo
title_fullStr Efeitos toxicológicos da nanopartícula de dióxido de titânio (TiO2) utilizando modelos experimentais in vitro e in vivo
title_full_unstemmed Efeitos toxicológicos da nanopartícula de dióxido de titânio (TiO2) utilizando modelos experimentais in vitro e in vivo
title_sort Efeitos toxicológicos da nanopartícula de dióxido de titânio (TiO2) utilizando modelos experimentais in vitro e in vivo
author Fattori, Ana Carolina Maragno
author_facet Fattori, Ana Carolina Maragno
author_role author
dc.contributor.authorlattes.por.fl_str_mv http://lattes.cnpq.br/9855158621715652
dc.contributor.authororcid.por.fl_str_mv https://orcid.org/0000-0002-4868-9148
dc.contributor.advisor1orcid.por.fl_str_mv https://orcid.org/0000-0003-0571-8516
dc.contributor.advisor-co1orcid.por.fl_str_mv https://orcid.org/0000-0002-7142-9889
dc.contributor.author.fl_str_mv Fattori, Ana Carolina Maragno
dc.contributor.advisor1.fl_str_mv Anibal, Fernanda de Freitas
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/4918261968772806
dc.contributor.advisor-co1.fl_str_mv Rossi, Karina Nogueira Zambone Pinto
dc.contributor.advisor-co1Lattes.fl_str_mv http://lattes.cnpq.br/4705154788194140
contributor_str_mv Anibal, Fernanda de Freitas
Rossi, Karina Nogueira Zambone Pinto
dc.subject.por.fl_str_mv Nanotoxicologia
Dióxido de titânio
Citotoxicidade
LA-9
Inflamação
Balb/c
topic Nanotoxicologia
Dióxido de titânio
Citotoxicidade
LA-9
Inflamação
Balb/c
Nanotoxicology
Titanium dioxide
Cytotoxicity
Inflammation
CIENCIAS BIOLOGICAS::IMUNOLOGIA
CIENCIAS BIOLOGICAS::FARMACOLOGIA::TOXICOLOGIA
dc.subject.eng.fl_str_mv Nanotoxicology
Titanium dioxide
Cytotoxicity
Inflammation
dc.subject.cnpq.fl_str_mv CIENCIAS BIOLOGICAS::IMUNOLOGIA
CIENCIAS BIOLOGICAS::FARMACOLOGIA::TOXICOLOGIA
description The advent of nanotechnology and its applications in diverse areas is due to the increase in the physical and chemical properties of nanoparticles because of their nanometric scale. However, these new characteristics can trigger biological effects that harm health and the environment, highlighting the need to assess the safety of using these nanomaterials. Therefore, this study analyzed the toxicological effects of titanium dioxide nanoparticles (TiO2 NP) functionalized with sodium carboxylate (-COO-Na+), of interest to the oil industry, using in vitro and in vivo models. The physicochemical characterization of the TiO2 NP was carried out using Dynamic Light Scattering (DLS), determining its hydrodynamic size, zeta potential and polydispersity index (PdI), Attenuated Total Reflection Fourier Transform Infrared Spectroscopy (ATR-FTIR) and High-Resolution Scanning Electron Microscopy (SEM-FEG). For the in vitro model, the LA-9 fibroblast lineage was used and cytotoxicity was evaluated for the concentrations of 250, 150 and 50 μg/mL using the cell viability assay (MTT) and cell morphology analysis after exposure to TiO2 NP for 24, 48 and 72 hours. After exposure to TiO2 NP for 24 hours, intracellular production of Reactive Oxygen Species (ROS), production of cytokines IL-6 and TNF in the cell supernatant by ELISA and cell death by flow cytometry were also evaluated, as well as clonogenic survival 7 days after exposure. In the in vivo model, Balb/c mice were exposed intranasally to TiO2 NP (500, 250, 100 and 50 μg/animal) in 4 doses over 14 days. Throughout the exposure period, the animals' feed and water intake and weight variation were assessed. Subsequently, leukocyte levels were analyzed in the blood, bronchoalveolar lavage (BAL) and peritoneal cavity lavage (PCL), quantification of cytokines (INF-ɤ, TNF, IL-6 and IL-10) in plasma and BAL and IgE antibody in BAL by ELISA, evaluation of liver function (TGO/TGP), weighing of the lungs and histological analysis of the organs (brain, lungs, heart, liver, spleen and kidneys). Our results showed that NP TiO2 is functionalized with sodium carboxylate ligands and suggests that it has an anatase crystalline form, as well as heterogeneous dispersion and a hydrodynamic size of around 3.5 nm in water and 2.96 nm in PBS, increasing to 7.62 nm in DMEM medium due to the agglomeration process. For the LA-9 fibroblast cell line, there was a reduction in cell viability (250 and 150 μg/mL) dose and time-dependent as well as oxidative stress and cell death by apoptosis (150 μg/mL). For the 150 μg/mL concentration there was a possible cell recovery after the NP was removed. In the in vivo model, NP generated histopathological changes in the brain, lungs, liver and kidneys of Balb/c mice after intranasal exposure with 4 doses over a period of 14 days. No changes were observed in the other parameters evaluated, with the exception of an increase in TGO at a concentration of 250 μg. The results of this study showed that NP TiO2 functionalized with sodium carboxylate has cytotoxicity for the LA-9 fibroblast line and toxicity with histopathological alterations for the brain, lung, liver and kidneys in Balb/c mice, contributing to knowledge about the effects of this NP TiO2 in in vitro and in vivo models. It is also interesting to analyze long-term exposure in order to determine the safety of using this nanomaterial.
publishDate 2023
dc.date.issued.fl_str_mv 2023-11-30
dc.date.accessioned.fl_str_mv 2024-02-29T17:18:09Z
dc.date.available.fl_str_mv 2024-02-29T17:18:09Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv FATTORI, Ana Carolina Maragno. Efeitos toxicológicos da nanopartícula de dióxido de titânio (TiO2) utilizando modelos experimentais in vitro e in vivo. 2023. Tese (Doutorado em Genética Evolutiva e Biologia Molecular) – Universidade Federal de São Carlos, São Carlos, 2023. Disponível em: https://repositorio.ufscar.br/handle/20.500.14289/19561.
dc.identifier.uri.fl_str_mv https://repositorio.ufscar.br/handle/20.500.14289/19561
identifier_str_mv FATTORI, Ana Carolina Maragno. Efeitos toxicológicos da nanopartícula de dióxido de titânio (TiO2) utilizando modelos experimentais in vitro e in vivo. 2023. Tese (Doutorado em Genética Evolutiva e Biologia Molecular) – Universidade Federal de São Carlos, São Carlos, 2023. Disponível em: https://repositorio.ufscar.br/handle/20.500.14289/19561.
url https://repositorio.ufscar.br/handle/20.500.14289/19561
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal de São Carlos
Câmpus São Carlos
dc.publisher.program.fl_str_mv Programa de Pós-Graduação em Genética Evolutiva e Biologia Molecular - PPGGEv
dc.publisher.initials.fl_str_mv UFSCar
publisher.none.fl_str_mv Universidade Federal de São Carlos
Câmpus São Carlos
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFSCAR
instname:Universidade Federal de São Carlos (UFSCAR)
instacron:UFSCAR
instname_str Universidade Federal de São Carlos (UFSCAR)
instacron_str UFSCAR
institution UFSCAR
reponame_str Repositório Institucional da UFSCAR
collection Repositório Institucional da UFSCAR
bitstream.url.fl_str_mv https://repositorio.ufscar.br/bitstreams/205e4e87-5954-4423-9885-7cda86b8002d/download
https://repositorio.ufscar.br/bitstreams/e4040088-534c-4968-8fa4-b839aba9dc41/download
https://repositorio.ufscar.br/bitstreams/51e3ac9c-6e1b-4bcd-b440-99e22285f9f6/download
https://repositorio.ufscar.br/bitstreams/1cefdf71-340c-4c72-9700-e97b810c7952/download
bitstream.checksum.fl_str_mv 1b36cff75e683ecf42f3372c2faab1b5
f337d95da1fce0a22c77480e5e9a7aec
877984ad75a8322fd27d23fa1811d902
c29541cff214da1aebd71e60d9d4be1f
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)
repository.mail.fl_str_mv repositorio.sibi@ufscar.br
_version_ 1851688893111336960