Anderson localization of light in two dimensions
| Ano de defesa: | 2025 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | |
| Tipo de documento: | Dissertação |
| Tipo de acesso: | Acesso aberto |
| Idioma: | eng |
| Instituição de defesa: |
Universidade Federal de São Carlos
Câmpus São Carlos |
| Programa de Pós-Graduação: |
Programa de Pós-Graduação em Física - PPGF
|
| Departamento: |
Não Informado pela instituição
|
| País: |
Não Informado pela instituição
|
| Palavras-chave em Português: | |
| Palavras-chave em Inglês: | |
| Área do conhecimento CNPq: | |
| Link de acesso: | https://hdl.handle.net/20.500.14289/21840 |
Resumo: | Anderson localization is a physical phenomenon that occurs when waves propagate in disordered media. However, there is no conclusive observation of the existence of electromagnetic wave localization in three dimensions, most likely due to its vectorial nature. Interestingly, two-dimensional media possess both scalar and vector scattering channels for light, with localization in the former, and absence of localization in the latter where polarization effects must be taken into account. One characteristic of Anderson localization is the decay of the dimensionless conductance (also called Thouless number) with the system size ,according to the so-called scaling theory. For example, in a 2D dense system the vector channel has a conductance nearly constant with respect to the size of the system, whereas the scalar channel present an exponential decay. This work is devoted to studying the influence of the near-field and polarization coupling terms in the transport of 2D systems, in the limit of low density and large size. Indeed, the polarization-coupling term which prevent light localization in the vector channel is expected to be very weak, so localization may occur in this limit. We consider a two-dimensional circular cloud of point-like scatterers in a two-dimensional vacuum. Numerical simulations are realized to study the conductance as the system size increases, tuning the scatterers density.We present preliminary results on the scaling of the dimensionless conductance in the limit of decreasing densities, giving hints on the behaviour of localization in low-density 2D systems. |
| id |
SCAR_1b6157307b3df66d857bce7d7d716e9d |
|---|---|
| oai_identifier_str |
oai:repositorio.ufscar.br:20.500.14289/21840 |
| network_acronym_str |
SCAR |
| network_name_str |
Repositório Institucional da UFSCAR |
| repository_id_str |
|
| spelling |
Fuzita, Alexandre JitsuoBachelard, Romain Pierre Marcelhttp://lattes.cnpq.br/4344589799192534https://lattes.cnpq.br/0065437538015003https://orcid.org/0000-0001-7445-80472025-04-08T17:42:09Z2025-02-24FUZITA, Alexandre Jitsuo. Anderson localization of light in two dimensions. 2025. Dissertação (Mestrado em Física) – Universidade Federal de São Carlos, São Carlos, 2025. Disponível em: https://repositorio.ufscar.br/handle/20.500.14289/21840.https://hdl.handle.net/20.500.14289/21840Anderson localization is a physical phenomenon that occurs when waves propagate in disordered media. However, there is no conclusive observation of the existence of electromagnetic wave localization in three dimensions, most likely due to its vectorial nature. Interestingly, two-dimensional media possess both scalar and vector scattering channels for light, with localization in the former, and absence of localization in the latter where polarization effects must be taken into account. One characteristic of Anderson localization is the decay of the dimensionless conductance (also called Thouless number) with the system size ,according to the so-called scaling theory. For example, in a 2D dense system the vector channel has a conductance nearly constant with respect to the size of the system, whereas the scalar channel present an exponential decay. This work is devoted to studying the influence of the near-field and polarization coupling terms in the transport of 2D systems, in the limit of low density and large size. Indeed, the polarization-coupling term which prevent light localization in the vector channel is expected to be very weak, so localization may occur in this limit. We consider a two-dimensional circular cloud of point-like scatterers in a two-dimensional vacuum. Numerical simulations are realized to study the conductance as the system size increases, tuning the scatterers density.We present preliminary results on the scaling of the dimensionless conductance in the limit of decreasing densities, giving hints on the behaviour of localization in low-density 2D systems.A localização de Anderson é um fenómeno físico que ocorre quando as ondas se propagam em meios desordenados. No entanto, não existe uma observação conclusiva da existência de localização de ondas eletromagnéticas em três dimensões, muito provavelmente devido à sua natureza vetorial. Curiosamente, os meios bidimensionais possuem canais de espalhamento escalar e vetorial para a luz, com localização no primeiro e ausência de localização no último, onde os efeitos de polarização devem ser tidos em conta. Uma característica da localização de Anderson é o decaimento da condutância adimensional (também designada por número de Thouless) com o tamanho do sistema, de acordo com a chamada teoria da escala. Por exemplo, num sistema denso 2D o canal vectorial tem uma condutância quase constante em relação ao tamanho do sistema, enquanto o canal escalar apresenta um decaimento exponencial. Este trabalho dedica-se a estudar a influência dos termos de acoplamento de campo próximo e de polarização no transporte de sistemas 2D, no limite de baixa densidade e grande tamanho. De fato, espera-se que o termo de acoplamento de polarização que impede a localização da luz no canal vectorial seja muito fraco, pelo que a localização pode ocorrer neste limite. Consideramos uma nuvem circular bidimensional de dispersores pontuais num vácuo bidimensional. São realizadas simulações numéricas para estudar a condutância à medida que o tamanho do sistema aumenta, ajustando a densidade dos espalhadores. Apresentamos resultados preliminares sobre o escalonamento da condutância adimensional no limite de densidades decrescentes, dando pistas sobre o comportamento da localização em sistemas 2D de baixa densidade.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)engUniversidade Federal de São CarlosCâmpus São CarlosPrograma de Pós-Graduação em Física - PPGFUFSCarAttribution 3.0 Brazilhttp://creativecommons.org/licenses/by/3.0/br/info:eu-repo/semantics/openAccessAnderson localization of lightDimensionless conductancePolarization coupling termsCIENCIAS EXATAS E DA TERRA::FISICA::FISICA ATOMICA E MOLECULARAnderson localização da luzCondutância adimensionalTermos de acoplamento de polarizaçãoAnderson localization of light in two dimensionsLocalização de Anderson da luz em duas dimensõesinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisreponame:Repositório Institucional da UFSCARinstname:Universidade Federal de São Carlos (UFSCAR)instacron:UFSCARORIGINALDissertation_Fuzita___Anderson_localization_of_light_in_two_dimensions___VF.pdfDissertation_Fuzita___Anderson_localization_of_light_in_two_dimensions___VF.pdfapplication/pdf13872138https://repositorio.ufscar.br/bitstreams/8d770757-1d8b-41d7-9139-a0a6d3c27272/download1623c1d2fc9d84f29eb482e2aa06b577MD51trueAnonymousREADTEXTDissertation_Fuzita___Anderson_localization_of_light_in_two_dimensions___VF.pdf.txtDissertation_Fuzita___Anderson_localization_of_light_in_two_dimensions___VF.pdf.txtExtracted texttext/plain101073https://repositorio.ufscar.br/bitstreams/2fe6b3a0-e0e9-4634-98ed-6fcacfb7d913/download0cbdd1ee4d076cc8f946eee0309786f9MD53falseAnonymousREADTHUMBNAILDissertation_Fuzita___Anderson_localization_of_light_in_two_dimensions___VF.pdf.jpgDissertation_Fuzita___Anderson_localization_of_light_in_two_dimensions___VF.pdf.jpgGenerated Thumbnailimage/jpeg4052https://repositorio.ufscar.br/bitstreams/45f8b2e2-a797-4b9c-bb3e-a6f08ec84ec8/download1f3e674b46014f3973009ec25485fb4aMD54falseAnonymousREADCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81025https://repositorio.ufscar.br/bitstreams/946e69c3-ea88-4c46-b4b0-b7debf7169de/download5a033ee506f3a0a175bee8fc81f0bd66MD52falseAnonymousREAD20.500.14289/218402025-04-09 00:19:54.09http://creativecommons.org/licenses/by/3.0/br/Attribution 3.0 Brazilopen.accessoai:repositorio.ufscar.br:20.500.14289/21840https://repositorio.ufscar.brRepositório InstitucionalPUBhttps://repositorio.ufscar.br/oai/requestrepositorio.sibi@ufscar.bropendoar:43222025-04-09T03:19:54Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)false |
| dc.title.eng.fl_str_mv |
Anderson localization of light in two dimensions |
| dc.title.alternative.none.fl_str_mv |
Localização de Anderson da luz em duas dimensões |
| title |
Anderson localization of light in two dimensions |
| spellingShingle |
Anderson localization of light in two dimensions Fuzita, Alexandre Jitsuo Anderson localization of light Dimensionless conductance Polarization coupling terms CIENCIAS EXATAS E DA TERRA::FISICA::FISICA ATOMICA E MOLECULAR Anderson localização da luz Condutância adimensional Termos de acoplamento de polarização |
| title_short |
Anderson localization of light in two dimensions |
| title_full |
Anderson localization of light in two dimensions |
| title_fullStr |
Anderson localization of light in two dimensions |
| title_full_unstemmed |
Anderson localization of light in two dimensions |
| title_sort |
Anderson localization of light in two dimensions |
| author |
Fuzita, Alexandre Jitsuo |
| author_facet |
Fuzita, Alexandre Jitsuo |
| author_role |
author |
| dc.contributor.authorlattes.none.fl_str_mv |
https://lattes.cnpq.br/0065437538015003 |
| dc.contributor.authororcid.none.fl_str_mv |
https://orcid.org/0000-0001-7445-8047 |
| dc.contributor.author.fl_str_mv |
Fuzita, Alexandre Jitsuo |
| dc.contributor.advisor1.fl_str_mv |
Bachelard, Romain Pierre Marcel |
| dc.contributor.advisor1Lattes.fl_str_mv |
http://lattes.cnpq.br/4344589799192534 |
| contributor_str_mv |
Bachelard, Romain Pierre Marcel |
| dc.subject.eng.fl_str_mv |
Anderson localization of light Dimensionless conductance Polarization coupling terms |
| topic |
Anderson localization of light Dimensionless conductance Polarization coupling terms CIENCIAS EXATAS E DA TERRA::FISICA::FISICA ATOMICA E MOLECULAR Anderson localização da luz Condutância adimensional Termos de acoplamento de polarização |
| dc.subject.cnpq.fl_str_mv |
CIENCIAS EXATAS E DA TERRA::FISICA::FISICA ATOMICA E MOLECULAR |
| dc.subject.por.fl_str_mv |
Anderson localização da luz Condutância adimensional Termos de acoplamento de polarização |
| description |
Anderson localization is a physical phenomenon that occurs when waves propagate in disordered media. However, there is no conclusive observation of the existence of electromagnetic wave localization in three dimensions, most likely due to its vectorial nature. Interestingly, two-dimensional media possess both scalar and vector scattering channels for light, with localization in the former, and absence of localization in the latter where polarization effects must be taken into account. One characteristic of Anderson localization is the decay of the dimensionless conductance (also called Thouless number) with the system size ,according to the so-called scaling theory. For example, in a 2D dense system the vector channel has a conductance nearly constant with respect to the size of the system, whereas the scalar channel present an exponential decay. This work is devoted to studying the influence of the near-field and polarization coupling terms in the transport of 2D systems, in the limit of low density and large size. Indeed, the polarization-coupling term which prevent light localization in the vector channel is expected to be very weak, so localization may occur in this limit. We consider a two-dimensional circular cloud of point-like scatterers in a two-dimensional vacuum. Numerical simulations are realized to study the conductance as the system size increases, tuning the scatterers density.We present preliminary results on the scaling of the dimensionless conductance in the limit of decreasing densities, giving hints on the behaviour of localization in low-density 2D systems. |
| publishDate |
2025 |
| dc.date.accessioned.fl_str_mv |
2025-04-08T17:42:09Z |
| dc.date.issued.fl_str_mv |
2025-02-24 |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
| format |
masterThesis |
| status_str |
publishedVersion |
| dc.identifier.citation.fl_str_mv |
FUZITA, Alexandre Jitsuo. Anderson localization of light in two dimensions. 2025. Dissertação (Mestrado em Física) – Universidade Federal de São Carlos, São Carlos, 2025. Disponível em: https://repositorio.ufscar.br/handle/20.500.14289/21840. |
| dc.identifier.uri.fl_str_mv |
https://hdl.handle.net/20.500.14289/21840 |
| identifier_str_mv |
FUZITA, Alexandre Jitsuo. Anderson localization of light in two dimensions. 2025. Dissertação (Mestrado em Física) – Universidade Federal de São Carlos, São Carlos, 2025. Disponível em: https://repositorio.ufscar.br/handle/20.500.14289/21840. |
| url |
https://hdl.handle.net/20.500.14289/21840 |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.rights.driver.fl_str_mv |
Attribution 3.0 Brazil http://creativecommons.org/licenses/by/3.0/br/ info:eu-repo/semantics/openAccess |
| rights_invalid_str_mv |
Attribution 3.0 Brazil http://creativecommons.org/licenses/by/3.0/br/ |
| eu_rights_str_mv |
openAccess |
| dc.publisher.none.fl_str_mv |
Universidade Federal de São Carlos Câmpus São Carlos |
| dc.publisher.program.fl_str_mv |
Programa de Pós-Graduação em Física - PPGF |
| dc.publisher.initials.fl_str_mv |
UFSCar |
| publisher.none.fl_str_mv |
Universidade Federal de São Carlos Câmpus São Carlos |
| dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFSCAR instname:Universidade Federal de São Carlos (UFSCAR) instacron:UFSCAR |
| instname_str |
Universidade Federal de São Carlos (UFSCAR) |
| instacron_str |
UFSCAR |
| institution |
UFSCAR |
| reponame_str |
Repositório Institucional da UFSCAR |
| collection |
Repositório Institucional da UFSCAR |
| bitstream.url.fl_str_mv |
https://repositorio.ufscar.br/bitstreams/8d770757-1d8b-41d7-9139-a0a6d3c27272/download https://repositorio.ufscar.br/bitstreams/2fe6b3a0-e0e9-4634-98ed-6fcacfb7d913/download https://repositorio.ufscar.br/bitstreams/45f8b2e2-a797-4b9c-bb3e-a6f08ec84ec8/download https://repositorio.ufscar.br/bitstreams/946e69c3-ea88-4c46-b4b0-b7debf7169de/download |
| bitstream.checksum.fl_str_mv |
1623c1d2fc9d84f29eb482e2aa06b577 0cbdd1ee4d076cc8f946eee0309786f9 1f3e674b46014f3973009ec25485fb4a 5a033ee506f3a0a175bee8fc81f0bd66 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR) |
| repository.mail.fl_str_mv |
repositorio.sibi@ufscar.br |
| _version_ |
1851688916976926720 |