Automation of a reactor for enzymatic hydrolysis of sugar cane bagasse : Computational intelligencebased adaptive control

Detalhes bibliográficos
Ano de defesa: 2015
Autor(a) principal: Furlong, Vitor Badiale
Orientador(a): Giordano, Roberto de Campos lattes
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Universidade Federal de São Carlos
Câmpus São Carlos
Programa de Pós-Graduação: Programa de Pós-Graduação em Engenharia Química - PPGEQ
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Palavras-chave em Inglês:
Área do conhecimento CNPq:
Link de acesso: https://repositorio.ufscar.br/handle/20.500.14289/7394
Resumo: The continuous demand growth for liquid fuels, alongside with the decrease of fossil oil reserves, unavoidable in the long term, induces investigations for new energy sources. A possible alternative is the use of bioethanol, produced by renewable resources such as sugarcane bagasse. Two thirds of the cultivated sugarcane biomass are sugarcane bagasse and leaves, not fermentable when the current, first-generation (1G) process is used. A great interest has been given to techniques capable of utilizing the carbohydrates from this material. Among them, production of second generation (2G) ethanol is a possible alternative. 2G ethanol requires two additional operations: a pretreatment and a hydrolysis stage. Regarding the hydrolysis, the dominant technical solution has been based on the use of enzymatic complexes to hydrolyze the lignocellulosic substrate. To ensure the feasibility of the process, a high final concentration of glucose after the enzymatic hydrolysis is desirable. To achieve this objective, a high solid consistency in the reactor is necessary. However, a high load of solids generates a series of operational difficulties within the reactor. This is a crucial bottleneck of the 2G process. A possible solution is using a fed-batch process, with feeding profiles of enzymes and substrate that enhance in the process yield and productivity. The main objective of this work was to implement and test a system to infer online concentrations of fermentable carbohydrates in the reactive system, and to optimize the feeding strategy of substrate and/or enzymatic complex, according to a model-based control strategy. Batch and fed-batch experiments were conducted in order to test the adherence of four simplified kinetic models. The model with best adherence to the experimental data (a modified Michaelis-Mentem model with inhibition by the product) was used to train an Artificial Neural Network (ANN) as a softsensor to predict glucose concentrations. Further, this ANN may be used in a closedloop control strategy. A feeding profile optimizer was implemented, based on the optimal control approach. The ANN was capable of inferring the product concentration from the available data with good adherence (Determination Coefficient of 0.972). The optimization algorithm generated profiles that increased a process performance index while maintaining operational levels within the reactor, reaching glucose concentrations close to those utilized in current first generation technology a (ranging between 156.0 g.L⁻¹ and 168.3 g.L⁻¹). However rough estimates for scaling up the reactor to industrial dimensions indicate that this conventional reactor design must be replaced by a two-stage reactor, to minimize the volume of liquid to be stirred.
id SCAR_2b1f93049f3b7ab313e779b0aa93adcb
oai_identifier_str oai:repositorio.ufscar.br:20.500.14289/7394
network_acronym_str SCAR
network_name_str Repositório Institucional da UFSCAR
repository_id_str
spelling Furlong, Vitor BadialeGiordano, Roberto de Camposhttp://lattes.cnpq.br/0834668419587001Ribeiro, Marcelo Perencin de Arrudahttp://lattes.cnpq.br/0381402687491195http://lattes.cnpq.br/50131481901942354b40d84e-12ca-43ed-afac-3b2b7aa0b2f22016-09-23T18:24:10Z2016-09-23T18:24:10Z2015-03-20FURLONG, Vitor Badiale. Automation of a reactor for enzymatic hydrolysis of sugar cane bagasse : Computational intelligencebased adaptive control. 2015. Dissertação (Mestrado em Engenharia Química) – Universidade Federal de São Carlos, São Carlos, 2015. Disponível em: https://repositorio.ufscar.br/handle/20.500.14289/7394.https://repositorio.ufscar.br/handle/20.500.14289/7394The continuous demand growth for liquid fuels, alongside with the decrease of fossil oil reserves, unavoidable in the long term, induces investigations for new energy sources. A possible alternative is the use of bioethanol, produced by renewable resources such as sugarcane bagasse. Two thirds of the cultivated sugarcane biomass are sugarcane bagasse and leaves, not fermentable when the current, first-generation (1G) process is used. A great interest has been given to techniques capable of utilizing the carbohydrates from this material. Among them, production of second generation (2G) ethanol is a possible alternative. 2G ethanol requires two additional operations: a pretreatment and a hydrolysis stage. Regarding the hydrolysis, the dominant technical solution has been based on the use of enzymatic complexes to hydrolyze the lignocellulosic substrate. To ensure the feasibility of the process, a high final concentration of glucose after the enzymatic hydrolysis is desirable. To achieve this objective, a high solid consistency in the reactor is necessary. However, a high load of solids generates a series of operational difficulties within the reactor. This is a crucial bottleneck of the 2G process. A possible solution is using a fed-batch process, with feeding profiles of enzymes and substrate that enhance in the process yield and productivity. The main objective of this work was to implement and test a system to infer online concentrations of fermentable carbohydrates in the reactive system, and to optimize the feeding strategy of substrate and/or enzymatic complex, according to a model-based control strategy. Batch and fed-batch experiments were conducted in order to test the adherence of four simplified kinetic models. The model with best adherence to the experimental data (a modified Michaelis-Mentem model with inhibition by the product) was used to train an Artificial Neural Network (ANN) as a softsensor to predict glucose concentrations. Further, this ANN may be used in a closedloop control strategy. A feeding profile optimizer was implemented, based on the optimal control approach. The ANN was capable of inferring the product concentration from the available data with good adherence (Determination Coefficient of 0.972). The optimization algorithm generated profiles that increased a process performance index while maintaining operational levels within the reactor, reaching glucose concentrations close to those utilized in current first generation technology a (ranging between 156.0 g.L⁻¹ and 168.3 g.L⁻¹). However rough estimates for scaling up the reactor to industrial dimensions indicate that this conventional reactor design must be replaced by a two-stage reactor, to minimize the volume of liquid to be stirred.A crescente demanda por combustíveis líquidos, bem como a diminuição das reservas de petróleo, inevitáveis a longo prazo, induzem pesquisas por novas fontes de energia. Uma possível solução é o uso do bioetanol, produzido de resíduos, como o bagaço de cana-deaçúcar. Dois terços da biomassa cultivada são bagaço e folhas. Estas frações não são fermentescíveis quando se usa a tecnologia de primeira geração atual (1G). Um grande interesse vem sendo prestado a técnicas capazes de utilizar os carboidratos deste material. Dentre elas, a produção de etanol de segunda geração (2G) é uma possível alternativa. Etanol 2G requer duas operações adicionais: etapas de pré-tratamento e hidrólise. Considerando a hidrólise, a técnica dominante tem sido a utilização de complexos enzimáticos para hidrolisar o substrato lignocelulósico. Para assegurar a viabilidade do processo, uma alta concentração final de glicose é necessária ao final do processo. Para atingir esse objetivo, uma alta concentração de sólidos no reator é necessária. No entanto, uma carga grande de sólidos gera uma série de dificuldades operacionais para o processo. Este é um gargalo crucial do processo 2G. Uma possível solução é utilizar um processo de batelada alimentada, com perfis de alimentação de enzima e substrato para aumentar produtividade e rendimento. O principal objetivo deste trabalho é implementar e testar um sistema para inferir concentração de carboidratos fermentescíveis automaticamente e otimizar a política de substrato e/ou enzima em tempo real, de acordo com uma estratégia de controle baseada em modelo cinético. Experimentos de batelada e batelada alimentada foram realizados a fim de testar a aderência de 4 modelos cinéticos simplificados. O modelo com melhor aderência aos dados experimentais (um modelo de Michaelis-Mentem modificado com inibição por produto) foi utilizado para gerar dados a fim de treinar uma rede neural artificial para predizer concentrações de glicose automaticamente. Em estudos futuros, esta rede pode ser utilizada para compor o fechamento da malha de controle. Um otimizador de perfil de alimentação foi implementado, este foi baseado em uma abordagem de controle ótimo. A rede neural foi capaz de predizer a concentração de produto com os dados disponíveis de maneira satisfatória (Coeficiente de Determinação de 0.972). O algoritmo de otimização gerou perfis que aumentaram a performance do processo enquanto manteve as condições da hidrólise dentro de níveis operacionais, e gerou concentrações de glicose próximas as obtidas pelo caldo de cana-de-açúcar da primeira geração (valores entre 156.0 g.L ¹ e 168.3 g.L ¹). No entanto, estimativas iniciais de ⁻ ⁻ aumento de escala do processo demonstraram que para atingir dimensões industriais o projeto do reator utilizado deve ser analisado, substituindo o mesmo por um processo em dois estágios para diminuir o volume do reator e energia para agitação.Não recebi financiamentoengUniversidade Federal de São CarlosCâmpus São CarlosPrograma de Pós-Graduação em Engenharia Química - PPGEQUFSCarControle ÓtimoMonitoramento de Hidrólise Enzimática de Bagaço de Cana-de-açúcarPerfil de Alimentação Ótimos para Reator SemicontínuoBagasse Enzymatic Hydrolysis monitoringNeural Network InferenceOptimal ControlOptimal Feeding Policies for Semi-Continuous ReactorCIENCIAS EXATAS E DA TERRAAutomation of a reactor for enzymatic hydrolysis of sugar cane bagasse : Computational intelligencebased adaptive controlinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisOnline600600c1fcc5b7-744a-4626-b2a3-5032f38370e1info:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFSCARinstname:Universidade Federal de São Carlos (UFSCAR)instacron:UFSCARORIGINALDissVBF.pdfDissVBF.pdfapplication/pdf4418595https://repositorio.ufscar.br/bitstreams/776c724b-0a94-480d-8fdc-3ebee5bf2d3b/downloadaaae3efb173c8760a1039251a31ea973MD51trueAnonymousREADLICENSElicense.txtlicense.txttext/plain; charset=utf-81957https://repositorio.ufscar.br/bitstreams/0394c2ec-3a53-46ea-b450-f1373e9d99ca/downloadae0398b6f8b235e40ad82cba6c50031dMD52falseAnonymousREADTEXTDissVBF.pdf.txtDissVBF.pdf.txtExtracted texttext/plain120569https://repositorio.ufscar.br/bitstreams/103ca23f-368a-4415-aa5c-4d1877bb8873/downloadd461ae4897276b6ddf5f0ea4b94c6c74MD55falseAnonymousREADTHUMBNAILDissVBF.pdf.jpgDissVBF.pdf.jpgIM Thumbnailimage/jpeg6311https://repositorio.ufscar.br/bitstreams/b3b0745c-8894-46a6-b365-9e0d6a7a4381/downloadb60c6202e16db8ec95f8501b92796aceMD56falseAnonymousREAD20.500.14289/73942025-02-05 17:13:24.38Acesso abertoopen.accessoai:repositorio.ufscar.br:20.500.14289/7394https://repositorio.ufscar.brRepositório InstitucionalPUBhttps://repositorio.ufscar.br/oai/requestrepositorio.sibi@ufscar.bropendoar:43222025-02-05T20:13:24Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)falseTElDRU7Dh0EgREUgRElTVFJJQlVJw4fDg08gTsODTy1FWENMVVNJVkEKCkNvbSBhIGFwcmVzZW50YcOnw6NvIGRlc3RhIGxpY2Vuw6dhLCB2b2PDqiAobyBhdXRvciAoZXMpIG91IG8gdGl0dWxhciBkb3MgZGlyZWl0b3MgZGUgYXV0b3IpIGNvbmNlZGUgw6AgVW5pdmVyc2lkYWRlCkZlZGVyYWwgZGUgU8OjbyBDYXJsb3MgbyBkaXJlaXRvIG7Do28tZXhjbHVzaXZvIGRlIHJlcHJvZHV6aXIsICB0cmFkdXppciAoY29uZm9ybWUgZGVmaW5pZG8gYWJhaXhvKSwgZS9vdQpkaXN0cmlidWlyIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyAoaW5jbHVpbmRvIG8gcmVzdW1vKSBwb3IgdG9kbyBvIG11bmRvIG5vIGZvcm1hdG8gaW1wcmVzc28gZSBlbGV0csO0bmljbyBlCmVtIHF1YWxxdWVyIG1laW8sIGluY2x1aW5kbyBvcyBmb3JtYXRvcyDDoXVkaW8gb3UgdsOtZGVvLgoKVm9jw6ogY29uY29yZGEgcXVlIGEgVUZTQ2FyIHBvZGUsIHNlbSBhbHRlcmFyIG8gY29udGXDumRvLCB0cmFuc3BvciBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28KcGFyYSBxdWFscXVlciBtZWlvIG91IGZvcm1hdG8gcGFyYSBmaW5zIGRlIHByZXNlcnZhw6fDo28uCgpWb2PDqiB0YW1iw6ltIGNvbmNvcmRhIHF1ZSBhIFVGU0NhciBwb2RlIG1hbnRlciBtYWlzIGRlIHVtYSBjw7NwaWEgYSBzdWEgdGVzZSBvdQpkaXNzZXJ0YcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcwpuZXN0YSBsaWNlbsOnYS4gVm9jw6ogdGFtYsOpbSBkZWNsYXJhIHF1ZSBvIGRlcMOzc2l0byBkYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIG7Do28sIHF1ZSBzZWphIGRlIHNldQpjb25oZWNpbWVudG8sIGluZnJpbmdlIGRpcmVpdG9zIGF1dG9yYWlzIGRlIG5pbmd1w6ltLgoKQ2FzbyBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gY29udGVuaGEgbWF0ZXJpYWwgcXVlIHZvY8OqIG7Do28gcG9zc3VpIGEgdGl0dWxhcmlkYWRlIGRvcyBkaXJlaXRvcyBhdXRvcmFpcywgdm9jw6oKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIMOgIFVGU0NhcgpvcyBkaXJlaXRvcyBhcHJlc2VudGFkb3MgbmVzdGEgbGljZW7Dp2EsIGUgcXVlIGVzc2UgbWF0ZXJpYWwgZGUgcHJvcHJpZWRhZGUgZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUKaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3Ugbm8gY29udGXDumRvIGRhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBvcmEgZGVwb3NpdGFkYS4KCkNBU08gQSBURVNFIE9VIERJU1NFUlRBw4fDg08gT1JBIERFUE9TSVRBREEgVEVOSEEgU0lETyBSRVNVTFRBRE8gREUgVU0gUEFUUk9Dw41OSU8gT1UKQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBVRlNDYXIsClZPQ8OKIERFQ0xBUkEgUVVFIFJFU1BFSVRPVSBUT0RPUyBFIFFVQUlTUVVFUiBESVJFSVRPUyBERSBSRVZJU8ODTyBDT01PClRBTULDiU0gQVMgREVNQUlTIE9CUklHQcOHw5VFUyBFWElHSURBUyBQT1IgQ09OVFJBVE8gT1UgQUNPUkRPLgoKQSBVRlNDYXIgc2UgY29tcHJvbWV0ZSBhIGlkZW50aWZpY2FyIGNsYXJhbWVudGUgbyBzZXUgbm9tZSAocykgb3UgbyhzKSBub21lKHMpIGRvKHMpCmRldGVudG9yKGVzKSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzCmNvbmNlZGlkYXMgcG9yIGVzdGEgbGljZW7Dp2EuCg==
dc.title.eng.fl_str_mv Automation of a reactor for enzymatic hydrolysis of sugar cane bagasse : Computational intelligencebased adaptive control
title Automation of a reactor for enzymatic hydrolysis of sugar cane bagasse : Computational intelligencebased adaptive control
spellingShingle Automation of a reactor for enzymatic hydrolysis of sugar cane bagasse : Computational intelligencebased adaptive control
Furlong, Vitor Badiale
Controle Ótimo
Monitoramento de Hidrólise Enzimática de Bagaço de Cana-de-açúcar
Perfil de Alimentação Ótimos para Reator Semicontínuo
Bagasse Enzymatic Hydrolysis monitoring
Neural Network Inference
Optimal Control
Optimal Feeding Policies for Semi-Continuous Reactor
CIENCIAS EXATAS E DA TERRA
title_short Automation of a reactor for enzymatic hydrolysis of sugar cane bagasse : Computational intelligencebased adaptive control
title_full Automation of a reactor for enzymatic hydrolysis of sugar cane bagasse : Computational intelligencebased adaptive control
title_fullStr Automation of a reactor for enzymatic hydrolysis of sugar cane bagasse : Computational intelligencebased adaptive control
title_full_unstemmed Automation of a reactor for enzymatic hydrolysis of sugar cane bagasse : Computational intelligencebased adaptive control
title_sort Automation of a reactor for enzymatic hydrolysis of sugar cane bagasse : Computational intelligencebased adaptive control
author Furlong, Vitor Badiale
author_facet Furlong, Vitor Badiale
author_role author
dc.contributor.authorlattes.por.fl_str_mv http://lattes.cnpq.br/5013148190194235
dc.contributor.author.fl_str_mv Furlong, Vitor Badiale
dc.contributor.advisor1.fl_str_mv Giordano, Roberto de Campos
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/0834668419587001
dc.contributor.advisor-co1.fl_str_mv Ribeiro, Marcelo Perencin de Arruda
dc.contributor.advisor-co1Lattes.fl_str_mv http://lattes.cnpq.br/0381402687491195
dc.contributor.authorID.fl_str_mv 4b40d84e-12ca-43ed-afac-3b2b7aa0b2f2
contributor_str_mv Giordano, Roberto de Campos
Ribeiro, Marcelo Perencin de Arruda
dc.subject.por.fl_str_mv Controle Ótimo
Monitoramento de Hidrólise Enzimática de Bagaço de Cana-de-açúcar
Perfil de Alimentação Ótimos para Reator Semicontínuo
topic Controle Ótimo
Monitoramento de Hidrólise Enzimática de Bagaço de Cana-de-açúcar
Perfil de Alimentação Ótimos para Reator Semicontínuo
Bagasse Enzymatic Hydrolysis monitoring
Neural Network Inference
Optimal Control
Optimal Feeding Policies for Semi-Continuous Reactor
CIENCIAS EXATAS E DA TERRA
dc.subject.eng.fl_str_mv Bagasse Enzymatic Hydrolysis monitoring
Neural Network Inference
Optimal Control
Optimal Feeding Policies for Semi-Continuous Reactor
dc.subject.cnpq.fl_str_mv CIENCIAS EXATAS E DA TERRA
description The continuous demand growth for liquid fuels, alongside with the decrease of fossil oil reserves, unavoidable in the long term, induces investigations for new energy sources. A possible alternative is the use of bioethanol, produced by renewable resources such as sugarcane bagasse. Two thirds of the cultivated sugarcane biomass are sugarcane bagasse and leaves, not fermentable when the current, first-generation (1G) process is used. A great interest has been given to techniques capable of utilizing the carbohydrates from this material. Among them, production of second generation (2G) ethanol is a possible alternative. 2G ethanol requires two additional operations: a pretreatment and a hydrolysis stage. Regarding the hydrolysis, the dominant technical solution has been based on the use of enzymatic complexes to hydrolyze the lignocellulosic substrate. To ensure the feasibility of the process, a high final concentration of glucose after the enzymatic hydrolysis is desirable. To achieve this objective, a high solid consistency in the reactor is necessary. However, a high load of solids generates a series of operational difficulties within the reactor. This is a crucial bottleneck of the 2G process. A possible solution is using a fed-batch process, with feeding profiles of enzymes and substrate that enhance in the process yield and productivity. The main objective of this work was to implement and test a system to infer online concentrations of fermentable carbohydrates in the reactive system, and to optimize the feeding strategy of substrate and/or enzymatic complex, according to a model-based control strategy. Batch and fed-batch experiments were conducted in order to test the adherence of four simplified kinetic models. The model with best adherence to the experimental data (a modified Michaelis-Mentem model with inhibition by the product) was used to train an Artificial Neural Network (ANN) as a softsensor to predict glucose concentrations. Further, this ANN may be used in a closedloop control strategy. A feeding profile optimizer was implemented, based on the optimal control approach. The ANN was capable of inferring the product concentration from the available data with good adherence (Determination Coefficient of 0.972). The optimization algorithm generated profiles that increased a process performance index while maintaining operational levels within the reactor, reaching glucose concentrations close to those utilized in current first generation technology a (ranging between 156.0 g.L⁻¹ and 168.3 g.L⁻¹). However rough estimates for scaling up the reactor to industrial dimensions indicate that this conventional reactor design must be replaced by a two-stage reactor, to minimize the volume of liquid to be stirred.
publishDate 2015
dc.date.issued.fl_str_mv 2015-03-20
dc.date.accessioned.fl_str_mv 2016-09-23T18:24:10Z
dc.date.available.fl_str_mv 2016-09-23T18:24:10Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv FURLONG, Vitor Badiale. Automation of a reactor for enzymatic hydrolysis of sugar cane bagasse : Computational intelligencebased adaptive control. 2015. Dissertação (Mestrado em Engenharia Química) – Universidade Federal de São Carlos, São Carlos, 2015. Disponível em: https://repositorio.ufscar.br/handle/20.500.14289/7394.
dc.identifier.uri.fl_str_mv https://repositorio.ufscar.br/handle/20.500.14289/7394
identifier_str_mv FURLONG, Vitor Badiale. Automation of a reactor for enzymatic hydrolysis of sugar cane bagasse : Computational intelligencebased adaptive control. 2015. Dissertação (Mestrado em Engenharia Química) – Universidade Federal de São Carlos, São Carlos, 2015. Disponível em: https://repositorio.ufscar.br/handle/20.500.14289/7394.
url https://repositorio.ufscar.br/handle/20.500.14289/7394
dc.language.iso.fl_str_mv eng
language eng
dc.relation.confidence.fl_str_mv 600
600
dc.relation.authority.fl_str_mv c1fcc5b7-744a-4626-b2a3-5032f38370e1
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal de São Carlos
Câmpus São Carlos
dc.publisher.program.fl_str_mv Programa de Pós-Graduação em Engenharia Química - PPGEQ
dc.publisher.initials.fl_str_mv UFSCar
publisher.none.fl_str_mv Universidade Federal de São Carlos
Câmpus São Carlos
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFSCAR
instname:Universidade Federal de São Carlos (UFSCAR)
instacron:UFSCAR
instname_str Universidade Federal de São Carlos (UFSCAR)
instacron_str UFSCAR
institution UFSCAR
reponame_str Repositório Institucional da UFSCAR
collection Repositório Institucional da UFSCAR
bitstream.url.fl_str_mv https://repositorio.ufscar.br/bitstreams/776c724b-0a94-480d-8fdc-3ebee5bf2d3b/download
https://repositorio.ufscar.br/bitstreams/0394c2ec-3a53-46ea-b450-f1373e9d99ca/download
https://repositorio.ufscar.br/bitstreams/103ca23f-368a-4415-aa5c-4d1877bb8873/download
https://repositorio.ufscar.br/bitstreams/b3b0745c-8894-46a6-b365-9e0d6a7a4381/download
bitstream.checksum.fl_str_mv aaae3efb173c8760a1039251a31ea973
ae0398b6f8b235e40ad82cba6c50031d
d461ae4897276b6ddf5f0ea4b94c6c74
b60c6202e16db8ec95f8501b92796ace
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)
repository.mail.fl_str_mv repositorio.sibi@ufscar.br
_version_ 1851688833412759552