Estudo computacional da enzima gGAPDH do Trypanosoma cruzi

Detalhes bibliográficos
Ano de defesa: 2009
Autor(a) principal: Oliveira, Osmair Vital de
Orientador(a): Freitas, Luiz Carlos Gomide lattes
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de São Carlos
Programa de Pós-Graduação: Programa de Pós-Graduação em Química - PPGQ
Departamento: Não Informado pela instituição
País: BR
Palavras-chave em Português:
Área do conhecimento CNPq:
Link de acesso: https://repositorio.ufscar.br/handle/ufscar/6149
Resumo: Theoretical methods in computational chemistry were used to study the gGAPDH enzyme from Trypanosoma cruzi. This protozoan is responsible by the Chagas diseases. Molecular dynamics simulations were performed to obtain the time evolution of the gGAPDH enzyme in the holo (with the cofactor NAD+) and apo (without the cofactor) forms in aqueous solution. The calculations were performed in the NpT ensemble with T = 300K e p = 1bar. In these simulations little conformational changes were observed in both holo and apo forms of the enzyme along 20.0 ns simulation time. Docking calculations were carried out to fit some drugs in enzyme active site using the ensemble docking methodology. Therefore, multiple enzyme conformations of both holo and apo forms were obtained at time intervals of 2.0 ns along the molecular dynamics simulation. This procedure was used to take in into account the flexibility of the enzyme. The results from these calculations indicate that the best way to develop a drug molecule is to consider both enzyme forms (holo and apo forms). In this way, one drug will inhibit the apo form and other, the holo form. To characterize the enzymatic mechanism, the glyceraldehyde 3-phosphate (G3P) was placed in the active site (via docking calculations) of the holo form conformation obtained in the end of the 20.0 ns trajectory. A 1.0 ns molecular dynamic simulation was performed in the (gGAPDH-NAD+-G3P) system. Quantum chemical calculations were performed to study reactive process in the enzyme catalytic site. A convenient model was built using about 698 atoms carefully chosen to represent the active site and its surroundings. The calculations were performed using a combination of MOZYME and the usual SCF procedure implemented in the MOPAC2009 program. The calculations were performed at the PM6 level. One of the reaction mechanisms proposed in the literature was characterized xix calculating the energy profile along the reaction path to transfer a proton from Cys166 to His194. Using a second structure obtained from molecular dynamics, a new mechanism for the gGAPDH enzyme was proposed and characterized by a similar MOPAC2009 calculation. In this mechanism, the hydroxyl group of the G3P acts as a bridge to transfer the proton from the Cys166 to His194 residue.
id SCAR_2f787d09ff05b40a130322b12e848cca
oai_identifier_str oai:repositorio.ufscar.br:ufscar/6149
network_acronym_str SCAR
network_name_str Repositório Institucional da UFSCAR
repository_id_str
spelling Oliveira, Osmair Vital deFreitas, Luiz Carlos Gomidehttp://genos.cnpq.br:12010/dwlattes/owa/prc_imp_cv_int?f_cod=K4727638J3http://lattes.cnpq.br/30191379226912722016-06-02T20:34:17Z2009-12-112016-06-02T20:34:17Z2009-06-05OLIVEIRA, Osmair Vital de. Computational study of the gGAPDH enzyme from Trypanosoma cruzi. 2009. 118 f. Tese (Doutorado em Ciências Exatas e da Terra) - Universidade Federal de São Carlos, São Carlos, 2009.https://repositorio.ufscar.br/handle/ufscar/6149Theoretical methods in computational chemistry were used to study the gGAPDH enzyme from Trypanosoma cruzi. This protozoan is responsible by the Chagas diseases. Molecular dynamics simulations were performed to obtain the time evolution of the gGAPDH enzyme in the holo (with the cofactor NAD+) and apo (without the cofactor) forms in aqueous solution. The calculations were performed in the NpT ensemble with T = 300K e p = 1bar. In these simulations little conformational changes were observed in both holo and apo forms of the enzyme along 20.0 ns simulation time. Docking calculations were carried out to fit some drugs in enzyme active site using the ensemble docking methodology. Therefore, multiple enzyme conformations of both holo and apo forms were obtained at time intervals of 2.0 ns along the molecular dynamics simulation. This procedure was used to take in into account the flexibility of the enzyme. The results from these calculations indicate that the best way to develop a drug molecule is to consider both enzyme forms (holo and apo forms). In this way, one drug will inhibit the apo form and other, the holo form. To characterize the enzymatic mechanism, the glyceraldehyde 3-phosphate (G3P) was placed in the active site (via docking calculations) of the holo form conformation obtained in the end of the 20.0 ns trajectory. A 1.0 ns molecular dynamic simulation was performed in the (gGAPDH-NAD+-G3P) system. Quantum chemical calculations were performed to study reactive process in the enzyme catalytic site. A convenient model was built using about 698 atoms carefully chosen to represent the active site and its surroundings. The calculations were performed using a combination of MOZYME and the usual SCF procedure implemented in the MOPAC2009 program. The calculations were performed at the PM6 level. One of the reaction mechanisms proposed in the literature was characterized xix calculating the energy profile along the reaction path to transfer a proton from Cys166 to His194. Using a second structure obtained from molecular dynamics, a new mechanism for the gGAPDH enzyme was proposed and characterized by a similar MOPAC2009 calculation. In this mechanism, the hydroxyl group of the G3P acts as a bridge to transfer the proton from the Cys166 to His194 residue.Métodos de química computacional foram utilizados para estudar a enzima gGAPDH do Trypanosoma cruzi, protozoário responsável pela doença de Chagas. Simulações por dinâmica molecular foram realizados para obter a evolução temporal da enzima gGAPDH na forma holo (com o cofator NAD+) e apo (sem o cofator) em solução. Os cálculos foram efetuados no ensemble NpT a T = 300K e p = 1bar. Nessas simulações ficaram evidenciadas pequenas mudanças conformacionais entre as formas holo e apo no tempo de simulação de 20,0 ns. Para posicionar ou encaixar algumas moléculas candidatas a fármacos no sítio ativo da enzima, cálculos de docking foram realizados utilizando a metodologia de ensemble docking, utilizando múltiplas conformações obtidas a cada intervalo de 2,0 ns de simulação da enzima na forma holo e apo. Essa metodologia foi adotada para levar em consideração a flexibilidade da enzima. Os resultados desses cálculos mostraram que a melhor estratégia para elaborar compostos candidatos a fármacos é considerar as duas formas da enzima (holo e apo). Com esta estratégia, um composto inibiria a forma apo e outro, a forma holo. Para caracterizar o mecanismo enzimático, o gliceraldeído 3-fosfato (G3P) foi colocado no sítio ativo (via cálculos de docking) da enzima gGAPDH na forma holo, a qual foi obtida a 20,0 ns de simulação. Nesse sistema (gGAPDHNAD+- G3P), foi realizado 1,0 ns de simulação por dinâmica molecular para a relaxação e equilibração do sistema. Ao longo dessa simulação, duas estruturas foram escolhidas para a realização de cálculos de química quântica relacionados com a atividade enzimática. Em uma dessas estruturas, um dos mecanismos propostos na literatura foi caracterizado a partir da coordenada de reação de transferência do próton da Cys166 para a His194. Estes cálculos foram efetuados utilizando um procedimento que combina a utilização da metodologia xvii MOZYME com o cálculo SCF usual implementado no programa MOPAC2009. Nestes cálculos, a parametrização PM6 foi utilizada. A partir de uma segunda estrutura obtida da dinâmica molecular, um novo mecanismo para a enzima gGAPDH foi proposto e caracterizado via cálculos quânticos. Nesse mecanismo, o grupo hidroxila da G3P age como uma ponte para a transferência do próton da Cys166 para a His194.Universidade Federal de Sao Carlosapplication/pdfporUniversidade Federal de São CarlosPrograma de Pós-Graduação em Química - PPGQUFSCarBRQuímica quânticaDinâmica molecularDockingGAPDHTrypanosoma cruziCIENCIAS EXATAS E DA TERRA::QUIMICAEstudo computacional da enzima gGAPDH do Trypanosoma cruziComputational study of the gGAPDH enzyme from Trypanosoma cruziinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFSCARinstname:Universidade Federal de São Carlos (UFSCAR)instacron:UFSCARORIGINAL2694.pdfapplication/pdf3100677https://{{ getenv "DSPACE_HOST" "repositorio.ufscar.br" }}/bitstream/ufscar/6149/1/2694.pdfe539b70bd59d8ae168c5b5d00b544881MD51THUMBNAIL2694.pdf.jpg2694.pdf.jpgIM Thumbnailimage/jpeg8395https://{{ getenv "DSPACE_HOST" "repositorio.ufscar.br" }}/bitstream/ufscar/6149/2/2694.pdf.jpg625cc6881a094bac48df7c877ae82e6dMD52ufscar/61492019-09-11 02:53:40.317oai:repositorio.ufscar.br:ufscar/6149Repositório InstitucionalPUBhttps://repositorio.ufscar.br/oai/requestopendoar:43222023-05-25T12:50:54.355620Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)false
dc.title.por.fl_str_mv Estudo computacional da enzima gGAPDH do Trypanosoma cruzi
dc.title.alternative.eng.fl_str_mv Computational study of the gGAPDH enzyme from Trypanosoma cruzi
title Estudo computacional da enzima gGAPDH do Trypanosoma cruzi
spellingShingle Estudo computacional da enzima gGAPDH do Trypanosoma cruzi
Oliveira, Osmair Vital de
Química quântica
Dinâmica molecular
Docking
GAPDH
Trypanosoma cruzi
CIENCIAS EXATAS E DA TERRA::QUIMICA
title_short Estudo computacional da enzima gGAPDH do Trypanosoma cruzi
title_full Estudo computacional da enzima gGAPDH do Trypanosoma cruzi
title_fullStr Estudo computacional da enzima gGAPDH do Trypanosoma cruzi
title_full_unstemmed Estudo computacional da enzima gGAPDH do Trypanosoma cruzi
title_sort Estudo computacional da enzima gGAPDH do Trypanosoma cruzi
author Oliveira, Osmair Vital de
author_facet Oliveira, Osmair Vital de
author_role author
dc.contributor.authorlattes.por.fl_str_mv http://lattes.cnpq.br/3019137922691272
dc.contributor.author.fl_str_mv Oliveira, Osmair Vital de
dc.contributor.advisor1.fl_str_mv Freitas, Luiz Carlos Gomide
dc.contributor.advisor1Lattes.fl_str_mv http://genos.cnpq.br:12010/dwlattes/owa/prc_imp_cv_int?f_cod=K4727638J3
contributor_str_mv Freitas, Luiz Carlos Gomide
dc.subject.por.fl_str_mv Química quântica
Dinâmica molecular
Docking
GAPDH
Trypanosoma cruzi
topic Química quântica
Dinâmica molecular
Docking
GAPDH
Trypanosoma cruzi
CIENCIAS EXATAS E DA TERRA::QUIMICA
dc.subject.cnpq.fl_str_mv CIENCIAS EXATAS E DA TERRA::QUIMICA
description Theoretical methods in computational chemistry were used to study the gGAPDH enzyme from Trypanosoma cruzi. This protozoan is responsible by the Chagas diseases. Molecular dynamics simulations were performed to obtain the time evolution of the gGAPDH enzyme in the holo (with the cofactor NAD+) and apo (without the cofactor) forms in aqueous solution. The calculations were performed in the NpT ensemble with T = 300K e p = 1bar. In these simulations little conformational changes were observed in both holo and apo forms of the enzyme along 20.0 ns simulation time. Docking calculations were carried out to fit some drugs in enzyme active site using the ensemble docking methodology. Therefore, multiple enzyme conformations of both holo and apo forms were obtained at time intervals of 2.0 ns along the molecular dynamics simulation. This procedure was used to take in into account the flexibility of the enzyme. The results from these calculations indicate that the best way to develop a drug molecule is to consider both enzyme forms (holo and apo forms). In this way, one drug will inhibit the apo form and other, the holo form. To characterize the enzymatic mechanism, the glyceraldehyde 3-phosphate (G3P) was placed in the active site (via docking calculations) of the holo form conformation obtained in the end of the 20.0 ns trajectory. A 1.0 ns molecular dynamic simulation was performed in the (gGAPDH-NAD+-G3P) system. Quantum chemical calculations were performed to study reactive process in the enzyme catalytic site. A convenient model was built using about 698 atoms carefully chosen to represent the active site and its surroundings. The calculations were performed using a combination of MOZYME and the usual SCF procedure implemented in the MOPAC2009 program. The calculations were performed at the PM6 level. One of the reaction mechanisms proposed in the literature was characterized xix calculating the energy profile along the reaction path to transfer a proton from Cys166 to His194. Using a second structure obtained from molecular dynamics, a new mechanism for the gGAPDH enzyme was proposed and characterized by a similar MOPAC2009 calculation. In this mechanism, the hydroxyl group of the G3P acts as a bridge to transfer the proton from the Cys166 to His194 residue.
publishDate 2009
dc.date.available.fl_str_mv 2009-12-11
2016-06-02T20:34:17Z
dc.date.issued.fl_str_mv 2009-06-05
dc.date.accessioned.fl_str_mv 2016-06-02T20:34:17Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv OLIVEIRA, Osmair Vital de. Computational study of the gGAPDH enzyme from Trypanosoma cruzi. 2009. 118 f. Tese (Doutorado em Ciências Exatas e da Terra) - Universidade Federal de São Carlos, São Carlos, 2009.
dc.identifier.uri.fl_str_mv https://repositorio.ufscar.br/handle/ufscar/6149
identifier_str_mv OLIVEIRA, Osmair Vital de. Computational study of the gGAPDH enzyme from Trypanosoma cruzi. 2009. 118 f. Tese (Doutorado em Ciências Exatas e da Terra) - Universidade Federal de São Carlos, São Carlos, 2009.
url https://repositorio.ufscar.br/handle/ufscar/6149
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de São Carlos
dc.publisher.program.fl_str_mv Programa de Pós-Graduação em Química - PPGQ
dc.publisher.initials.fl_str_mv UFSCar
dc.publisher.country.fl_str_mv BR
publisher.none.fl_str_mv Universidade Federal de São Carlos
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFSCAR
instname:Universidade Federal de São Carlos (UFSCAR)
instacron:UFSCAR
instname_str Universidade Federal de São Carlos (UFSCAR)
instacron_str UFSCAR
institution UFSCAR
reponame_str Repositório Institucional da UFSCAR
collection Repositório Institucional da UFSCAR
bitstream.url.fl_str_mv https://{{ getenv "DSPACE_HOST" "repositorio.ufscar.br" }}/bitstream/ufscar/6149/1/2694.pdf
https://{{ getenv "DSPACE_HOST" "repositorio.ufscar.br" }}/bitstream/ufscar/6149/2/2694.pdf.jpg
bitstream.checksum.fl_str_mv e539b70bd59d8ae168c5b5d00b544881
625cc6881a094bac48df7c877ae82e6d
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)
repository.mail.fl_str_mv
_version_ 1767351096560320512