Restauração de imagens utilizando aprendizado de máquina
| Ano de defesa: | 2019 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | |
| Tipo de documento: | Tese |
| Tipo de acesso: | Acesso aberto |
| Idioma: | por |
| Instituição de defesa: |
Universidade Federal de São Carlos
Câmpus São Carlos |
| Programa de Pós-Graduação: |
Programa de Pós-Graduação em Ciência da Computação - PPGCC
|
| Departamento: |
Não Informado pela instituição
|
| País: |
Não Informado pela instituição
|
| Palavras-chave em Português: | |
| Palavras-chave em Inglês: | |
| Área do conhecimento CNPq: | |
| Link de acesso: | https://repositorio.ufscar.br/handle/20.500.14289/11451 |
Resumo: | Image processing is an area that has received considerable attention as a result of the evo- lution of digital computing technology. One of the main techniques of image processing concerns its restoration, which consists in smoothing noise and detail enhancement, which are altered due to problems in the process of forming and transmitting the image. Based on the efficacy of sparse techniques and machine learning found in literature in the context of image restoration, we propose the union of these techniques as well as their evaluation in grayscale images. We also propose a study of energy-based networks such as Restricted Boltzmann Machines for noise suppression in binary images and the application of newer classifiers in this context, such as Optimum-Path Forest. Experiments using a public data- base corrupted by different degradations such as noise and/or blurring show the ineffective application of sparsity to different neural network architectures, the effectiveness of the Restricted Boltzmann Machines and the Optimum-Path Forest classifier. |
| id |
SCAR_345843d2433ff5eb5a1f8ba623a90eea |
|---|---|
| oai_identifier_str |
oai:repositorio.ufscar.br:20.500.14289/11451 |
| network_acronym_str |
SCAR |
| network_name_str |
Repositório Institucional da UFSCAR |
| repository_id_str |
|
| spelling |
Pires, Rafael GonçalvesPapa, João Paulohttp://lattes.cnpq.br/9039182932747194Levada, Alexandre Luis Magalhãeshttp://lattes.cnpq.br/3341441596395463http://lattes.cnpq.br/8410467431339373417145d3-1734-432a-a758-04f54682a5852019-06-03T19:30:16Z2019-06-03T19:30:16Z2019-03-08PIRES, Rafael Gonçalves. Restauração de imagens utilizando aprendizado de máquina. 2019. Tese (Doutorado em Ciência da Computação) – Universidade Federal de São Carlos, São Carlos, 2019. Disponível em: https://repositorio.ufscar.br/handle/20.500.14289/11451.https://repositorio.ufscar.br/handle/20.500.14289/11451Image processing is an area that has received considerable attention as a result of the evo- lution of digital computing technology. One of the main techniques of image processing concerns its restoration, which consists in smoothing noise and detail enhancement, which are altered due to problems in the process of forming and transmitting the image. Based on the efficacy of sparse techniques and machine learning found in literature in the context of image restoration, we propose the union of these techniques as well as their evaluation in grayscale images. We also propose a study of energy-based networks such as Restricted Boltzmann Machines for noise suppression in binary images and the application of newer classifiers in this context, such as Optimum-Path Forest. Experiments using a public data- base corrupted by different degradations such as noise and/or blurring show the ineffective application of sparsity to different neural network architectures, the effectiveness of the Restricted Boltzmann Machines and the Optimum-Path Forest classifier.Processamento de imagens é uma área que tem recebido considerável atenção nos últimos anos como resultado da evolução da tecnologia de computação digital. Uma das princi- pais técnicas de processamento de imagens diz respeito à restauração, a qual consiste no processo de suavização do ruı́do e realce dos detalhes, os quais são alterados devido a pro- blemas no processo de formação e transmissão da imagem. Partindo da eficácia das técnicas esparsas e de aprendizado de máquina encontradas na literatura no contexto de restauração, propomos a união dessas abordagens bem como sua avaliação em imagens tons de cinza. Também propomos um estudo de redes baseadas em energia como Máquinas de Boltz- mann Restritas para remoção de ruı́dos em imagens binárias e aplicação de classificadores mais recentes nesse contexto, tais como Floresta de Caminhos Ótimos. Experimentos que utilizam base de dados públicas corrompidas por diferentes degradações como ruı́do e/ou, borramento, evidenciam, em geral, a ineficaz aplicação da esparsidade às diferentes arqui- teturas de redes neurais, a eficácia das Máquinas de Boltzmann Restritas e do classificador Floresta de Caminhos Ótimos.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)porUniversidade Federal de São CarlosCâmpus São CarlosPrograma de Pós-Graduação em Ciência da Computação - PPGCCUFSCarAprendizado de máquinaRestauração de ImagensAprendizado profundoMachine learningImage restorationDeep learningCIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAORestauração de imagens utilizando aprendizado de máquinaImage restoration using machine learninginfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisOnline600600a26a6b97-f6e5-4bd7-9c5a-876ad8cf02fdinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFSCARinstname:Universidade Federal de São Carlos (UFSCAR)instacron:UFSCARORIGINALrafael_doutorado.pdfrafael_doutorado.pdfapplication/pdf21211520https://repositorio.ufscar.br/bitstreams/6981b180-2fa3-4a81-a882-de87795bcf75/download4bb4cbb2d203a1d75a37849ebc9cbe57MD51trueAnonymousREADLICENSElicense.txtlicense.txttext/plain; charset=utf-81957https://repositorio.ufscar.br/bitstreams/4047641d-1391-4e5e-9989-446b1b3d3838/downloadae0398b6f8b235e40ad82cba6c50031dMD53falseAnonymousREADTEXTrafael_doutorado.pdf.txtrafael_doutorado.pdf.txtExtracted texttext/plain376751https://repositorio.ufscar.br/bitstreams/fc10c6a5-b05b-4050-a989-45233a2599d9/download9e68ee5f276e9496c722ab1b1ebd1cd3MD56falseAnonymousREADTHUMBNAILrafael_doutorado.pdf.jpgrafael_doutorado.pdf.jpgIM Thumbnailimage/jpeg7600https://repositorio.ufscar.br/bitstreams/dd5bfe28-2304-4cac-bca9-70e1dac1f6b2/downloadce8be1da1724a5b84a005ec913e305c5MD57falseAnonymousREAD20.500.14289/114512025-02-05 19:16:25.06Acesso abertoopen.accessoai:repositorio.ufscar.br:20.500.14289/11451https://repositorio.ufscar.brRepositório InstitucionalPUBhttps://repositorio.ufscar.br/oai/requestrepositorio.sibi@ufscar.bropendoar:43222025-02-05T22:16:25Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)falseTElDRU7Dh0EgREUgRElTVFJJQlVJw4fDg08gTsODTy1FWENMVVNJVkEKCkNvbSBhIGFwcmVzZW50YcOnw6NvIGRlc3RhIGxpY2Vuw6dhLCB2b2PDqiAobyBhdXRvciAoZXMpIG91IG8gdGl0dWxhciBkb3MgZGlyZWl0b3MgZGUgYXV0b3IpIGNvbmNlZGUgw6AgVW5pdmVyc2lkYWRlCkZlZGVyYWwgZGUgU8OjbyBDYXJsb3MgbyBkaXJlaXRvIG7Do28tZXhjbHVzaXZvIGRlIHJlcHJvZHV6aXIsICB0cmFkdXppciAoY29uZm9ybWUgZGVmaW5pZG8gYWJhaXhvKSwgZS9vdQpkaXN0cmlidWlyIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyAoaW5jbHVpbmRvIG8gcmVzdW1vKSBwb3IgdG9kbyBvIG11bmRvIG5vIGZvcm1hdG8gaW1wcmVzc28gZSBlbGV0csO0bmljbyBlCmVtIHF1YWxxdWVyIG1laW8sIGluY2x1aW5kbyBvcyBmb3JtYXRvcyDDoXVkaW8gb3UgdsOtZGVvLgoKVm9jw6ogY29uY29yZGEgcXVlIGEgVUZTQ2FyIHBvZGUsIHNlbSBhbHRlcmFyIG8gY29udGXDumRvLCB0cmFuc3BvciBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28KcGFyYSBxdWFscXVlciBtZWlvIG91IGZvcm1hdG8gcGFyYSBmaW5zIGRlIHByZXNlcnZhw6fDo28uCgpWb2PDqiB0YW1iw6ltIGNvbmNvcmRhIHF1ZSBhIFVGU0NhciBwb2RlIG1hbnRlciBtYWlzIGRlIHVtYSBjw7NwaWEgYSBzdWEgdGVzZSBvdQpkaXNzZXJ0YcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcwpuZXN0YSBsaWNlbsOnYS4gVm9jw6ogdGFtYsOpbSBkZWNsYXJhIHF1ZSBvIGRlcMOzc2l0byBkYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIG7Do28sIHF1ZSBzZWphIGRlIHNldQpjb25oZWNpbWVudG8sIGluZnJpbmdlIGRpcmVpdG9zIGF1dG9yYWlzIGRlIG5pbmd1w6ltLgoKQ2FzbyBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gY29udGVuaGEgbWF0ZXJpYWwgcXVlIHZvY8OqIG7Do28gcG9zc3VpIGEgdGl0dWxhcmlkYWRlIGRvcyBkaXJlaXRvcyBhdXRvcmFpcywgdm9jw6oKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIMOgIFVGU0NhcgpvcyBkaXJlaXRvcyBhcHJlc2VudGFkb3MgbmVzdGEgbGljZW7Dp2EsIGUgcXVlIGVzc2UgbWF0ZXJpYWwgZGUgcHJvcHJpZWRhZGUgZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUKaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3Ugbm8gY29udGXDumRvIGRhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBvcmEgZGVwb3NpdGFkYS4KCkNBU08gQSBURVNFIE9VIERJU1NFUlRBw4fDg08gT1JBIERFUE9TSVRBREEgVEVOSEEgU0lETyBSRVNVTFRBRE8gREUgVU0gUEFUUk9Dw41OSU8gT1UKQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBVRlNDYXIsClZPQ8OKIERFQ0xBUkEgUVVFIFJFU1BFSVRPVSBUT0RPUyBFIFFVQUlTUVVFUiBESVJFSVRPUyBERSBSRVZJU8ODTyBDT01PClRBTULDiU0gQVMgREVNQUlTIE9CUklHQcOHw5VFUyBFWElHSURBUyBQT1IgQ09OVFJBVE8gT1UgQUNPUkRPLgoKQSBVRlNDYXIgc2UgY29tcHJvbWV0ZSBhIGlkZW50aWZpY2FyIGNsYXJhbWVudGUgbyBzZXUgbm9tZSAocykgb3UgbyhzKSBub21lKHMpIGRvKHMpCmRldGVudG9yKGVzKSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzCmNvbmNlZGlkYXMgcG9yIGVzdGEgbGljZW7Dp2EuCg== |
| dc.title.por.fl_str_mv |
Restauração de imagens utilizando aprendizado de máquina |
| dc.title.alternative.eng.fl_str_mv |
Image restoration using machine learning |
| title |
Restauração de imagens utilizando aprendizado de máquina |
| spellingShingle |
Restauração de imagens utilizando aprendizado de máquina Pires, Rafael Gonçalves Aprendizado de máquina Restauração de Imagens Aprendizado profundo Machine learning Image restoration Deep learning CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO |
| title_short |
Restauração de imagens utilizando aprendizado de máquina |
| title_full |
Restauração de imagens utilizando aprendizado de máquina |
| title_fullStr |
Restauração de imagens utilizando aprendizado de máquina |
| title_full_unstemmed |
Restauração de imagens utilizando aprendizado de máquina |
| title_sort |
Restauração de imagens utilizando aprendizado de máquina |
| author |
Pires, Rafael Gonçalves |
| author_facet |
Pires, Rafael Gonçalves |
| author_role |
author |
| dc.contributor.authorlattes.por.fl_str_mv |
http://lattes.cnpq.br/8410467431339373 |
| dc.contributor.author.fl_str_mv |
Pires, Rafael Gonçalves |
| dc.contributor.advisor1.fl_str_mv |
Papa, João Paulo |
| dc.contributor.advisor1Lattes.fl_str_mv |
http://lattes.cnpq.br/9039182932747194 |
| dc.contributor.advisor-co1.fl_str_mv |
Levada, Alexandre Luis Magalhães |
| dc.contributor.advisor-co1Lattes.fl_str_mv |
http://lattes.cnpq.br/3341441596395463 |
| dc.contributor.authorID.fl_str_mv |
417145d3-1734-432a-a758-04f54682a585 |
| contributor_str_mv |
Papa, João Paulo Levada, Alexandre Luis Magalhães |
| dc.subject.por.fl_str_mv |
Aprendizado de máquina Restauração de Imagens Aprendizado profundo |
| topic |
Aprendizado de máquina Restauração de Imagens Aprendizado profundo Machine learning Image restoration Deep learning CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO |
| dc.subject.eng.fl_str_mv |
Machine learning Image restoration Deep learning |
| dc.subject.cnpq.fl_str_mv |
CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO |
| description |
Image processing is an area that has received considerable attention as a result of the evo- lution of digital computing technology. One of the main techniques of image processing concerns its restoration, which consists in smoothing noise and detail enhancement, which are altered due to problems in the process of forming and transmitting the image. Based on the efficacy of sparse techniques and machine learning found in literature in the context of image restoration, we propose the union of these techniques as well as their evaluation in grayscale images. We also propose a study of energy-based networks such as Restricted Boltzmann Machines for noise suppression in binary images and the application of newer classifiers in this context, such as Optimum-Path Forest. Experiments using a public data- base corrupted by different degradations such as noise and/or blurring show the ineffective application of sparsity to different neural network architectures, the effectiveness of the Restricted Boltzmann Machines and the Optimum-Path Forest classifier. |
| publishDate |
2019 |
| dc.date.accessioned.fl_str_mv |
2019-06-03T19:30:16Z |
| dc.date.available.fl_str_mv |
2019-06-03T19:30:16Z |
| dc.date.issued.fl_str_mv |
2019-03-08 |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
| format |
doctoralThesis |
| status_str |
publishedVersion |
| dc.identifier.citation.fl_str_mv |
PIRES, Rafael Gonçalves. Restauração de imagens utilizando aprendizado de máquina. 2019. Tese (Doutorado em Ciência da Computação) – Universidade Federal de São Carlos, São Carlos, 2019. Disponível em: https://repositorio.ufscar.br/handle/20.500.14289/11451. |
| dc.identifier.uri.fl_str_mv |
https://repositorio.ufscar.br/handle/20.500.14289/11451 |
| identifier_str_mv |
PIRES, Rafael Gonçalves. Restauração de imagens utilizando aprendizado de máquina. 2019. Tese (Doutorado em Ciência da Computação) – Universidade Federal de São Carlos, São Carlos, 2019. Disponível em: https://repositorio.ufscar.br/handle/20.500.14289/11451. |
| url |
https://repositorio.ufscar.br/handle/20.500.14289/11451 |
| dc.language.iso.fl_str_mv |
por |
| language |
por |
| dc.relation.confidence.fl_str_mv |
600 600 |
| dc.relation.authority.fl_str_mv |
a26a6b97-f6e5-4bd7-9c5a-876ad8cf02fd |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.publisher.none.fl_str_mv |
Universidade Federal de São Carlos Câmpus São Carlos |
| dc.publisher.program.fl_str_mv |
Programa de Pós-Graduação em Ciência da Computação - PPGCC |
| dc.publisher.initials.fl_str_mv |
UFSCar |
| publisher.none.fl_str_mv |
Universidade Federal de São Carlos Câmpus São Carlos |
| dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFSCAR instname:Universidade Federal de São Carlos (UFSCAR) instacron:UFSCAR |
| instname_str |
Universidade Federal de São Carlos (UFSCAR) |
| instacron_str |
UFSCAR |
| institution |
UFSCAR |
| reponame_str |
Repositório Institucional da UFSCAR |
| collection |
Repositório Institucional da UFSCAR |
| bitstream.url.fl_str_mv |
https://repositorio.ufscar.br/bitstreams/6981b180-2fa3-4a81-a882-de87795bcf75/download https://repositorio.ufscar.br/bitstreams/4047641d-1391-4e5e-9989-446b1b3d3838/download https://repositorio.ufscar.br/bitstreams/fc10c6a5-b05b-4050-a989-45233a2599d9/download https://repositorio.ufscar.br/bitstreams/dd5bfe28-2304-4cac-bca9-70e1dac1f6b2/download |
| bitstream.checksum.fl_str_mv |
4bb4cbb2d203a1d75a37849ebc9cbe57 ae0398b6f8b235e40ad82cba6c50031d 9e68ee5f276e9496c722ab1b1ebd1cd3 ce8be1da1724a5b84a005ec913e305c5 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR) |
| repository.mail.fl_str_mv |
repositorio.sibi@ufscar.br |
| _version_ |
1851688868846239744 |