Contribuições em modelos de regressão com erro de medida multiplicativo
| Ano de defesa: | 2016 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | |
| Tipo de documento: | Tese |
| Tipo de acesso: | Acesso aberto |
| Idioma: | por |
| Instituição de defesa: |
Universidade Federal de São Carlos
Câmpus São Carlos |
| Programa de Pós-Graduação: |
Programa Interinstitucional de Pós-Graduação em Estatística - PIPGEs
|
| Departamento: |
Não Informado pela instituição
|
| País: |
Não Informado pela instituição
|
| Palavras-chave em Português: | |
| Palavras-chave em Inglês: | |
| Área do conhecimento CNPq: | |
| Link de acesso: | https://repositorio.ufscar.br/handle/20.500.14289/7738 |
Resumo: | In regression models in which a covariate is measured with error, it is common to use structures that correlate the observed covariate with the true non-observed covariate. Such structures are usually additive or multiplicative. In the literature there are several interesting works that deal with regression models having an additive measurement error, many of which are linear models with covariate and measurement error normally distributed. For models having a multiplicative measurement error, one does not find in the literature the same theoretical amount of works as one finds for models in which the measurement error is additive. The same happens in situations where the supositions of normality for the covariates and the measurement errors do not apply. The present work proposes the construction, definition, estimation methods, and diagnostic analysis for the regression models with a multiplicative measurement error in one of the covariates. For these models it is considered that the response variable may belong either to the class of modified power series regression models or to the exponential family. The list of distributions belonging to the family modified power series is rather comprehensive; for this reason this work develops, firstly and in a general way, the models estimation and validation theory, and, as an example, presents the model of negative binomial regression with measurement error. In the case where the response variable belongs to the exponential family, the model of beta regression with multiplicative measurement error is presented. All proposed models were analysed through simulation studies and applied to real data sets. |
| id |
SCAR_359f389f7a54fe08c78c7a7eac3e2528 |
|---|---|
| oai_identifier_str |
oai:repositorio.ufscar.br:20.500.14289/7738 |
| network_acronym_str |
SCAR |
| network_name_str |
Repositório Institucional da UFSCAR |
| repository_id_str |
|
| spelling |
Silva, Eveliny Barroso daDiniz, Carlos Alberto Ribeirohttp://lattes.cnpq.br/3277371897783194http://lattes.cnpq.br/3911410872456214e3ad33a9-df5a-4546-a0ac-10b35bc4424e2016-10-10T14:48:50Z2016-10-10T14:48:50Z2016-02-04SILVA, Eveliny Barroso da. Contribuições em modelos de regressão com erro de medida multiplicativo. 2016. Tese (Doutorado em Estatística) – Universidade Federal de São Carlos, São Carlos, 2016. Disponível em: https://repositorio.ufscar.br/handle/20.500.14289/7738.https://repositorio.ufscar.br/handle/20.500.14289/7738In regression models in which a covariate is measured with error, it is common to use structures that correlate the observed covariate with the true non-observed covariate. Such structures are usually additive or multiplicative. In the literature there are several interesting works that deal with regression models having an additive measurement error, many of which are linear models with covariate and measurement error normally distributed. For models having a multiplicative measurement error, one does not find in the literature the same theoretical amount of works as one finds for models in which the measurement error is additive. The same happens in situations where the supositions of normality for the covariates and the measurement errors do not apply. The present work proposes the construction, definition, estimation methods, and diagnostic analysis for the regression models with a multiplicative measurement error in one of the covariates. For these models it is considered that the response variable may belong either to the class of modified power series regression models or to the exponential family. The list of distributions belonging to the family modified power series is rather comprehensive; for this reason this work develops, firstly and in a general way, the models estimation and validation theory, and, as an example, presents the model of negative binomial regression with measurement error. In the case where the response variable belongs to the exponential family, the model of beta regression with multiplicative measurement error is presented. All proposed models were analysed through simulation studies and applied to real data sets.Em modelos de regressão em que uma covariável é medida com erro, é comum o uso de estruturas que relacionam a covariável observada com a verdadeira covariável não observada. Essas estruturas são usualmente aditivas ou multiplicativas. Na literatura existem diversos trabalhos interessantes que tratam de modelos de regressão com erro de medida aditivo, muitos dos quais são modelos lineares com covariáveis e erro de medida normalmente distribuídos. Para modelos em que o erro de medida é multiplicativo, não se encontra na literatura o mesmo desenvolvimento teórico encontrado para modelos em que o erro de medida é aditivo. O mesmo vale para situações em que as suposições de normalidade para as covariáveis e erro de medida não se aplicam. Este trabalho propõe a construção, definição, métodos de estimação e análise de diagnóstico para modelos de regressão com erro de medida multiplicativo em uma das covariáveis. Para esses modelos, consideramos que a variável resposta possa pertencer ou à classe de modelos de regressão série de potências modificadas ou à família exponencial. O rol de distribuições pertencentes à família série de potências modificada é bem abrangente, portanto, neste trabalho, desenvolvemos a teoria de estimação e validação do modelo primeiramente de forma geral e, para exemplificar, apresentamos o modelo de regressão binomial negativa com erro de medida. Para o caso em que a variável resposta pertença à família exponencial, apresentamos o modelo de regressão beta com erro de medida multiplicativo. Todos os modelos propostos foram analisados através de estudos de simulação e aplicados a conjuntos de dados reais.Não recebi financiamentoporUniversidade Federal de São CarlosCâmpus São CarlosPrograma Interinstitucional de Pós-Graduação em Estatística - PIPGEsUFSCarErro de medida nas covariáveisErro de medida multiplicativoPseudo verossimilhançaAnálise de diagnósticoQuadratura de Gauss- HermiteRegression models with measurement errorMultiplicative measu- rement errorPseudo-likelihoodDiagnostic analysisGauss-hermite quadratureModified power series regression modelsCIENCIAS EXATAS E DA TERRA::PROBABILIDADE E ESTATISTICAContribuições em modelos de regressão com erro de medida multiplicativoContributions in regression models with multiplicative measurement errorinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisOnline60060084611362-11c0-4efd-b118-a7df9999df87info:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFSCARinstname:Universidade Federal de São Carlos (UFSCAR)instacron:UFSCARORIGINALTeseEBS.pdfTeseEBS.pdfapplication/pdf936379https://repositorio.ufscar.br/bitstreams/000ea3d3-e804-4e7a-902a-9b883a02aff3/downloada7cd0812b331249755b7a9df5447e035MD51trueAnonymousREADLICENSElicense.txtlicense.txttext/plain; charset=utf-81957https://repositorio.ufscar.br/bitstreams/2335b420-7cc8-498d-b26f-59e3cd9b057c/downloadae0398b6f8b235e40ad82cba6c50031dMD52falseAnonymousREADTEXTTeseEBS.pdf.txtTeseEBS.pdf.txtExtracted texttext/plain205033https://repositorio.ufscar.br/bitstreams/c4facfd4-4143-4611-a6f1-c0bb8dba6005/download7bd3dd2bede76ca02d80b83bdc61c6e5MD55falseAnonymousREADTHUMBNAILTeseEBS.pdf.jpgTeseEBS.pdf.jpgIM Thumbnailimage/jpeg2020https://repositorio.ufscar.br/bitstreams/97189156-d999-4cde-bf2f-6d5b5966b0ea/download6c31e144aaf202dc2d3b7bc4a0748354MD56falseAnonymousREAD20.500.14289/77382025-02-05 18:50:40.019Acesso abertoopen.accessoai:repositorio.ufscar.br:20.500.14289/7738https://repositorio.ufscar.brRepositório InstitucionalPUBhttps://repositorio.ufscar.br/oai/requestrepositorio.sibi@ufscar.bropendoar:43222025-02-05T21:50:40Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)falseTElDRU7Dh0EgREUgRElTVFJJQlVJw4fDg08gTsODTy1FWENMVVNJVkEKCkNvbSBhIGFwcmVzZW50YcOnw6NvIGRlc3RhIGxpY2Vuw6dhLCB2b2PDqiAobyBhdXRvciAoZXMpIG91IG8gdGl0dWxhciBkb3MgZGlyZWl0b3MgZGUgYXV0b3IpIGNvbmNlZGUgw6AgVW5pdmVyc2lkYWRlCkZlZGVyYWwgZGUgU8OjbyBDYXJsb3MgbyBkaXJlaXRvIG7Do28tZXhjbHVzaXZvIGRlIHJlcHJvZHV6aXIsICB0cmFkdXppciAoY29uZm9ybWUgZGVmaW5pZG8gYWJhaXhvKSwgZS9vdQpkaXN0cmlidWlyIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyAoaW5jbHVpbmRvIG8gcmVzdW1vKSBwb3IgdG9kbyBvIG11bmRvIG5vIGZvcm1hdG8gaW1wcmVzc28gZSBlbGV0csO0bmljbyBlCmVtIHF1YWxxdWVyIG1laW8sIGluY2x1aW5kbyBvcyBmb3JtYXRvcyDDoXVkaW8gb3UgdsOtZGVvLgoKVm9jw6ogY29uY29yZGEgcXVlIGEgVUZTQ2FyIHBvZGUsIHNlbSBhbHRlcmFyIG8gY29udGXDumRvLCB0cmFuc3BvciBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28KcGFyYSBxdWFscXVlciBtZWlvIG91IGZvcm1hdG8gcGFyYSBmaW5zIGRlIHByZXNlcnZhw6fDo28uCgpWb2PDqiB0YW1iw6ltIGNvbmNvcmRhIHF1ZSBhIFVGU0NhciBwb2RlIG1hbnRlciBtYWlzIGRlIHVtYSBjw7NwaWEgYSBzdWEgdGVzZSBvdQpkaXNzZXJ0YcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcwpuZXN0YSBsaWNlbsOnYS4gVm9jw6ogdGFtYsOpbSBkZWNsYXJhIHF1ZSBvIGRlcMOzc2l0byBkYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIG7Do28sIHF1ZSBzZWphIGRlIHNldQpjb25oZWNpbWVudG8sIGluZnJpbmdlIGRpcmVpdG9zIGF1dG9yYWlzIGRlIG5pbmd1w6ltLgoKQ2FzbyBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gY29udGVuaGEgbWF0ZXJpYWwgcXVlIHZvY8OqIG7Do28gcG9zc3VpIGEgdGl0dWxhcmlkYWRlIGRvcyBkaXJlaXRvcyBhdXRvcmFpcywgdm9jw6oKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIMOgIFVGU0NhcgpvcyBkaXJlaXRvcyBhcHJlc2VudGFkb3MgbmVzdGEgbGljZW7Dp2EsIGUgcXVlIGVzc2UgbWF0ZXJpYWwgZGUgcHJvcHJpZWRhZGUgZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUKaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3Ugbm8gY29udGXDumRvIGRhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBvcmEgZGVwb3NpdGFkYS4KCkNBU08gQSBURVNFIE9VIERJU1NFUlRBw4fDg08gT1JBIERFUE9TSVRBREEgVEVOSEEgU0lETyBSRVNVTFRBRE8gREUgVU0gUEFUUk9Dw41OSU8gT1UKQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBVRlNDYXIsClZPQ8OKIERFQ0xBUkEgUVVFIFJFU1BFSVRPVSBUT0RPUyBFIFFVQUlTUVVFUiBESVJFSVRPUyBERSBSRVZJU8ODTyBDT01PClRBTULDiU0gQVMgREVNQUlTIE9CUklHQcOHw5VFUyBFWElHSURBUyBQT1IgQ09OVFJBVE8gT1UgQUNPUkRPLgoKQSBVRlNDYXIgc2UgY29tcHJvbWV0ZSBhIGlkZW50aWZpY2FyIGNsYXJhbWVudGUgbyBzZXUgbm9tZSAocykgb3UgbyhzKSBub21lKHMpIGRvKHMpCmRldGVudG9yKGVzKSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzCmNvbmNlZGlkYXMgcG9yIGVzdGEgbGljZW7Dp2EuCg== |
| dc.title.por.fl_str_mv |
Contribuições em modelos de regressão com erro de medida multiplicativo |
| dc.title.alternative.none.fl_str_mv |
Contributions in regression models with multiplicative measurement error |
| title |
Contribuições em modelos de regressão com erro de medida multiplicativo |
| spellingShingle |
Contribuições em modelos de regressão com erro de medida multiplicativo Silva, Eveliny Barroso da Erro de medida nas covariáveis Erro de medida multiplicativo Pseudo verossimilhança Análise de diagnóstico Quadratura de Gauss- Hermite Regression models with measurement error Multiplicative measu- rement error Pseudo-likelihood Diagnostic analysis Gauss-hermite quadrature Modified power series regression models CIENCIAS EXATAS E DA TERRA::PROBABILIDADE E ESTATISTICA |
| title_short |
Contribuições em modelos de regressão com erro de medida multiplicativo |
| title_full |
Contribuições em modelos de regressão com erro de medida multiplicativo |
| title_fullStr |
Contribuições em modelos de regressão com erro de medida multiplicativo |
| title_full_unstemmed |
Contribuições em modelos de regressão com erro de medida multiplicativo |
| title_sort |
Contribuições em modelos de regressão com erro de medida multiplicativo |
| author |
Silva, Eveliny Barroso da |
| author_facet |
Silva, Eveliny Barroso da |
| author_role |
author |
| dc.contributor.authorlattes.por.fl_str_mv |
http://lattes.cnpq.br/3911410872456214 |
| dc.contributor.author.fl_str_mv |
Silva, Eveliny Barroso da |
| dc.contributor.advisor1.fl_str_mv |
Diniz, Carlos Alberto Ribeiro |
| dc.contributor.advisor1Lattes.fl_str_mv |
http://lattes.cnpq.br/3277371897783194 |
| dc.contributor.authorID.fl_str_mv |
e3ad33a9-df5a-4546-a0ac-10b35bc4424e |
| contributor_str_mv |
Diniz, Carlos Alberto Ribeiro |
| dc.subject.por.fl_str_mv |
Erro de medida nas covariáveis Erro de medida multiplicativo Pseudo verossimilhança Análise de diagnóstico Quadratura de Gauss- Hermite |
| topic |
Erro de medida nas covariáveis Erro de medida multiplicativo Pseudo verossimilhança Análise de diagnóstico Quadratura de Gauss- Hermite Regression models with measurement error Multiplicative measu- rement error Pseudo-likelihood Diagnostic analysis Gauss-hermite quadrature Modified power series regression models CIENCIAS EXATAS E DA TERRA::PROBABILIDADE E ESTATISTICA |
| dc.subject.eng.fl_str_mv |
Regression models with measurement error Multiplicative measu- rement error Pseudo-likelihood Diagnostic analysis Gauss-hermite quadrature Modified power series regression models |
| dc.subject.cnpq.fl_str_mv |
CIENCIAS EXATAS E DA TERRA::PROBABILIDADE E ESTATISTICA |
| description |
In regression models in which a covariate is measured with error, it is common to use structures that correlate the observed covariate with the true non-observed covariate. Such structures are usually additive or multiplicative. In the literature there are several interesting works that deal with regression models having an additive measurement error, many of which are linear models with covariate and measurement error normally distributed. For models having a multiplicative measurement error, one does not find in the literature the same theoretical amount of works as one finds for models in which the measurement error is additive. The same happens in situations where the supositions of normality for the covariates and the measurement errors do not apply. The present work proposes the construction, definition, estimation methods, and diagnostic analysis for the regression models with a multiplicative measurement error in one of the covariates. For these models it is considered that the response variable may belong either to the class of modified power series regression models or to the exponential family. The list of distributions belonging to the family modified power series is rather comprehensive; for this reason this work develops, firstly and in a general way, the models estimation and validation theory, and, as an example, presents the model of negative binomial regression with measurement error. In the case where the response variable belongs to the exponential family, the model of beta regression with multiplicative measurement error is presented. All proposed models were analysed through simulation studies and applied to real data sets. |
| publishDate |
2016 |
| dc.date.accessioned.fl_str_mv |
2016-10-10T14:48:50Z |
| dc.date.available.fl_str_mv |
2016-10-10T14:48:50Z |
| dc.date.issued.fl_str_mv |
2016-02-04 |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
| format |
doctoralThesis |
| status_str |
publishedVersion |
| dc.identifier.citation.fl_str_mv |
SILVA, Eveliny Barroso da. Contribuições em modelos de regressão com erro de medida multiplicativo. 2016. Tese (Doutorado em Estatística) – Universidade Federal de São Carlos, São Carlos, 2016. Disponível em: https://repositorio.ufscar.br/handle/20.500.14289/7738. |
| dc.identifier.uri.fl_str_mv |
https://repositorio.ufscar.br/handle/20.500.14289/7738 |
| identifier_str_mv |
SILVA, Eveliny Barroso da. Contribuições em modelos de regressão com erro de medida multiplicativo. 2016. Tese (Doutorado em Estatística) – Universidade Federal de São Carlos, São Carlos, 2016. Disponível em: https://repositorio.ufscar.br/handle/20.500.14289/7738. |
| url |
https://repositorio.ufscar.br/handle/20.500.14289/7738 |
| dc.language.iso.fl_str_mv |
por |
| language |
por |
| dc.relation.confidence.fl_str_mv |
600 600 |
| dc.relation.authority.fl_str_mv |
84611362-11c0-4efd-b118-a7df9999df87 |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.publisher.none.fl_str_mv |
Universidade Federal de São Carlos Câmpus São Carlos |
| dc.publisher.program.fl_str_mv |
Programa Interinstitucional de Pós-Graduação em Estatística - PIPGEs |
| dc.publisher.initials.fl_str_mv |
UFSCar |
| publisher.none.fl_str_mv |
Universidade Federal de São Carlos Câmpus São Carlos |
| dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFSCAR instname:Universidade Federal de São Carlos (UFSCAR) instacron:UFSCAR |
| instname_str |
Universidade Federal de São Carlos (UFSCAR) |
| instacron_str |
UFSCAR |
| institution |
UFSCAR |
| reponame_str |
Repositório Institucional da UFSCAR |
| collection |
Repositório Institucional da UFSCAR |
| bitstream.url.fl_str_mv |
https://repositorio.ufscar.br/bitstreams/000ea3d3-e804-4e7a-902a-9b883a02aff3/download https://repositorio.ufscar.br/bitstreams/2335b420-7cc8-498d-b26f-59e3cd9b057c/download https://repositorio.ufscar.br/bitstreams/c4facfd4-4143-4611-a6f1-c0bb8dba6005/download https://repositorio.ufscar.br/bitstreams/97189156-d999-4cde-bf2f-6d5b5966b0ea/download |
| bitstream.checksum.fl_str_mv |
a7cd0812b331249755b7a9df5447e035 ae0398b6f8b235e40ad82cba6c50031d 7bd3dd2bede76ca02d80b83bdc61c6e5 6c31e144aaf202dc2d3b7bc4a0748354 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR) |
| repository.mail.fl_str_mv |
repositorio.sibi@ufscar.br |
| _version_ |
1851688782976253952 |