Bayesian variable selection using data driven reversible jump: an application to schizophrenia data
| Ano de defesa: | 2021 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | |
| Tipo de documento: | Dissertação |
| Tipo de acesso: | Acesso aberto |
| Idioma: | eng |
| Instituição de defesa: |
Universidade Federal de São Carlos
Câmpus São Carlos |
| Programa de Pós-Graduação: |
Programa Interinstitucional de Pós-Graduação em Estatística - PIPGEs
|
| Departamento: |
Não Informado pela instituição
|
| País: |
Não Informado pela instituição
|
| Palavras-chave em Português: | |
| Palavras-chave em Inglês: | |
| Área do conhecimento CNPq: | |
| Link de acesso: | https://repositorio.ufscar.br/handle/20.500.14289/15526 |
Resumo: | Symptom based diagnosis are known to be limited specially concerning complex disorders such as schizophrenia. Modern attempts in providing predictive risk for such disease, to assist existing diagnosis tools, integrate genetic and brain information in what is known as imaging genetics. In this monography, our goal is both inferential and predictive. Regarding the inference, given the functional Magnetic Resonance Image and the Single Nucleotide Polymorphisms information of people diagnosed with schizophrenia and healthy people, we use a Bayesian probit model to select discriminating variables, while to estimate the predictive risk, the most promising models are combined using a Bayesian model averaging scheme. For these purposes, we propose an adaptive reversible jump markov chain monte carlo, named data driven reversible jump, for selecting the variables, estimating their effects and the predictive risk for future subjects. |
| id |
SCAR_3b3f81e2c6e0d0f2de63489dd0bbab43 |
|---|---|
| oai_identifier_str |
oai:repositorio.ufscar.br:20.500.14289/15526 |
| network_acronym_str |
SCAR |
| network_name_str |
Repositório Institucional da UFSCAR |
| repository_id_str |
|
| spelling |
Montcho, Djidenou Hans AmosMilan, Luis Aparecidohttp://lattes.cnpq.br/7435391829973844Zuanetti, Daiane Aparecidahttp://lattes.cnpq.br/8352484284929824http://lattes.cnpq.br/3071157876961214816dcf41-18a4-43fc-9a9e-847a5980ddcf2022-02-01T11:25:20Z2022-02-01T11:25:20Z2021-12-17MONTCHO, Djidenou Hans Amos. Bayesian variable selection using data driven reversible jump: an application to schizophrenia data. 2021. Dissertação (Mestrado em Estatística) – Universidade Federal de São Carlos, São Carlos, 2021. Disponível em: https://repositorio.ufscar.br/handle/20.500.14289/15526.https://repositorio.ufscar.br/handle/20.500.14289/15526Symptom based diagnosis are known to be limited specially concerning complex disorders such as schizophrenia. Modern attempts in providing predictive risk for such disease, to assist existing diagnosis tools, integrate genetic and brain information in what is known as imaging genetics. In this monography, our goal is both inferential and predictive. Regarding the inference, given the functional Magnetic Resonance Image and the Single Nucleotide Polymorphisms information of people diagnosed with schizophrenia and healthy people, we use a Bayesian probit model to select discriminating variables, while to estimate the predictive risk, the most promising models are combined using a Bayesian model averaging scheme. For these purposes, we propose an adaptive reversible jump markov chain monte carlo, named data driven reversible jump, for selecting the variables, estimating their effects and the predictive risk for future subjects.Diagnósticos médicos baseados em sintomas são conhecidos por suas limitações, especialmente no entendimento de distúrbios complexos como esquizofrenia. Abordagens modernas e complementares para predizer o risco de tais doenças integram dados genômicos e cerebrais. Nesta monografia, nosso objetivo é inferencial e preditivo. Na inferência, com base em dados de ressonância magnética funcional e de polimorfismo de nucleotídeo único obtidos de pessoas saudáveis e diagnosticadas com esquizofrenia, utilizamos um modelo probito Bayesiano para selecionar as variáveis mais importantes a fim de discriminar os pacientes. Para estimar o risco preditivo, os modelos mais promissores são combinados usando a ponderação bayesiana de modelos. Para estas finalidades, propomos o algoritmo de saltos reversíveis orientado pelos dados para realizar a seleção de variáveis, estimação de parâmetros dos modelos e predição para futuros pacientes.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Codigo de financiamento 001engUniversidade Federal de São CarlosCâmpus São CarlosPrograma Interinstitucional de Pós-Graduação em Estatística - PIPGEsUFSCarAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessSchizophreniaGeneticsInformed reversible jumpBayesian inferenceVariable selectionMCMCEsquizofreniaGenéticaInferência BayesianaSeleção de variáveisCIENCIAS EXATAS E DA TERRA::PROBABILIDADE E ESTATISTICABayesian variable selection using data driven reversible jump: an application to schizophrenia dataSeleção Bayesiana de variáveis usando o algoritmo de saltos reversíveis direcionado pelos dados: uma aplicação a dados de esquizofreniainfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesis60060001874dfd-bd1b-409c-81e8-3185c83eacf2reponame:Repositório Institucional da UFSCARinstname:Universidade Federal de São Carlos (UFSCAR)instacron:UFSCARCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8811https://repositorio.ufscar.br/bitstreams/63e9a0f2-0060-488c-ad88-2b35424e0cec/downloade39d27027a6cc9cb039ad269a5db8e34MD55falseAnonymousREADORIGINALdissertacao_djidenou_ufscar.pdfdissertacao_djidenou_ufscar.pdfDissertação de mestradoapplication/pdf464510https://repositorio.ufscar.br/bitstreams/587bdffe-b98b-440a-920e-a686ef70bb35/download9d70ab4d0f594572b08cf93692809bc2MD51trueAnonymousREADCarta-comprovante PIPGEs.pdfCarta-comprovante PIPGEs.pdfcarta comprovanteapplication/pdf151941https://repositorio.ufscar.br/bitstreams/839c7d2d-fa80-4c97-a3f0-d0705813007a/download6000af2fc4a3f1231f9d9bb2ab1ed4edMD53falseTEXTdissertacao_djidenou_ufscar.pdf.txtdissertacao_djidenou_ufscar.pdf.txtExtracted texttext/plain116511https://repositorio.ufscar.br/bitstreams/b2546b99-4b55-4b38-853f-139af39ad186/downloaddd00c17977d16c8f8f5db9acb9b8fee1MD510falseAnonymousREADCarta-comprovante PIPGEs.pdf.txtCarta-comprovante PIPGEs.pdf.txtExtracted texttext/plain1324https://repositorio.ufscar.br/bitstreams/7f83a4f1-67d6-4a5a-966b-213e2ef3815f/download0b289610c896b0e8637fdb1654940247MD512falseTHUMBNAILdissertacao_djidenou_ufscar.pdf.jpgdissertacao_djidenou_ufscar.pdf.jpgIM Thumbnailimage/jpeg15316https://repositorio.ufscar.br/bitstreams/a37508c4-602d-41fe-a1f9-75411d70d17e/downloadb5176894b9f8b8934ae0c3f5ea014883MD511falseAnonymousREADCarta-comprovante PIPGEs.pdf.jpgCarta-comprovante PIPGEs.pdf.jpgIM Thumbnailimage/jpeg8529https://repositorio.ufscar.br/bitstreams/9e1589d6-9b09-4746-a116-72eca727eb32/downloadec939416fed714c0ca4c9df34fe29de8MD513false20.500.14289/155262025-02-05 20:47:46.813http://creativecommons.org/licenses/by-nc-nd/3.0/br/Attribution-NonCommercial-NoDerivs 3.0 Brazilopen.accessoai:repositorio.ufscar.br:20.500.14289/15526https://repositorio.ufscar.brRepositório InstitucionalPUBhttps://repositorio.ufscar.br/oai/requestrepositorio.sibi@ufscar.bropendoar:43222025-02-05T23:47:46Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)false |
| dc.title.eng.fl_str_mv |
Bayesian variable selection using data driven reversible jump: an application to schizophrenia data |
| dc.title.alternative.por.fl_str_mv |
Seleção Bayesiana de variáveis usando o algoritmo de saltos reversíveis direcionado pelos dados: uma aplicação a dados de esquizofrenia |
| title |
Bayesian variable selection using data driven reversible jump: an application to schizophrenia data |
| spellingShingle |
Bayesian variable selection using data driven reversible jump: an application to schizophrenia data Montcho, Djidenou Hans Amos Schizophrenia Genetics Informed reversible jump Bayesian inference Variable selection MCMC Esquizofrenia Genética Inferência Bayesiana Seleção de variáveis CIENCIAS EXATAS E DA TERRA::PROBABILIDADE E ESTATISTICA |
| title_short |
Bayesian variable selection using data driven reversible jump: an application to schizophrenia data |
| title_full |
Bayesian variable selection using data driven reversible jump: an application to schizophrenia data |
| title_fullStr |
Bayesian variable selection using data driven reversible jump: an application to schizophrenia data |
| title_full_unstemmed |
Bayesian variable selection using data driven reversible jump: an application to schizophrenia data |
| title_sort |
Bayesian variable selection using data driven reversible jump: an application to schizophrenia data |
| author |
Montcho, Djidenou Hans Amos |
| author_facet |
Montcho, Djidenou Hans Amos |
| author_role |
author |
| dc.contributor.authorlattes.por.fl_str_mv |
http://lattes.cnpq.br/3071157876961214 |
| dc.contributor.author.fl_str_mv |
Montcho, Djidenou Hans Amos |
| dc.contributor.advisor1.fl_str_mv |
Milan, Luis Aparecido |
| dc.contributor.advisor1Lattes.fl_str_mv |
http://lattes.cnpq.br/7435391829973844 |
| dc.contributor.advisor-co1.fl_str_mv |
Zuanetti, Daiane Aparecida |
| dc.contributor.advisor-co1Lattes.fl_str_mv |
http://lattes.cnpq.br/8352484284929824 |
| dc.contributor.authorID.fl_str_mv |
816dcf41-18a4-43fc-9a9e-847a5980ddcf |
| contributor_str_mv |
Milan, Luis Aparecido Zuanetti, Daiane Aparecida |
| dc.subject.eng.fl_str_mv |
Schizophrenia Genetics Informed reversible jump Bayesian inference Variable selection |
| topic |
Schizophrenia Genetics Informed reversible jump Bayesian inference Variable selection MCMC Esquizofrenia Genética Inferência Bayesiana Seleção de variáveis CIENCIAS EXATAS E DA TERRA::PROBABILIDADE E ESTATISTICA |
| dc.subject.por.fl_str_mv |
MCMC Esquizofrenia Genética Inferência Bayesiana Seleção de variáveis |
| dc.subject.cnpq.fl_str_mv |
CIENCIAS EXATAS E DA TERRA::PROBABILIDADE E ESTATISTICA |
| description |
Symptom based diagnosis are known to be limited specially concerning complex disorders such as schizophrenia. Modern attempts in providing predictive risk for such disease, to assist existing diagnosis tools, integrate genetic and brain information in what is known as imaging genetics. In this monography, our goal is both inferential and predictive. Regarding the inference, given the functional Magnetic Resonance Image and the Single Nucleotide Polymorphisms information of people diagnosed with schizophrenia and healthy people, we use a Bayesian probit model to select discriminating variables, while to estimate the predictive risk, the most promising models are combined using a Bayesian model averaging scheme. For these purposes, we propose an adaptive reversible jump markov chain monte carlo, named data driven reversible jump, for selecting the variables, estimating their effects and the predictive risk for future subjects. |
| publishDate |
2021 |
| dc.date.issued.fl_str_mv |
2021-12-17 |
| dc.date.accessioned.fl_str_mv |
2022-02-01T11:25:20Z |
| dc.date.available.fl_str_mv |
2022-02-01T11:25:20Z |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
| format |
masterThesis |
| status_str |
publishedVersion |
| dc.identifier.citation.fl_str_mv |
MONTCHO, Djidenou Hans Amos. Bayesian variable selection using data driven reversible jump: an application to schizophrenia data. 2021. Dissertação (Mestrado em Estatística) – Universidade Federal de São Carlos, São Carlos, 2021. Disponível em: https://repositorio.ufscar.br/handle/20.500.14289/15526. |
| dc.identifier.uri.fl_str_mv |
https://repositorio.ufscar.br/handle/20.500.14289/15526 |
| identifier_str_mv |
MONTCHO, Djidenou Hans Amos. Bayesian variable selection using data driven reversible jump: an application to schizophrenia data. 2021. Dissertação (Mestrado em Estatística) – Universidade Federal de São Carlos, São Carlos, 2021. Disponível em: https://repositorio.ufscar.br/handle/20.500.14289/15526. |
| url |
https://repositorio.ufscar.br/handle/20.500.14289/15526 |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.relation.confidence.fl_str_mv |
600 600 |
| dc.relation.authority.fl_str_mv |
01874dfd-bd1b-409c-81e8-3185c83eacf2 |
| dc.rights.driver.fl_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ info:eu-repo/semantics/openAccess |
| rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ |
| eu_rights_str_mv |
openAccess |
| dc.publisher.none.fl_str_mv |
Universidade Federal de São Carlos Câmpus São Carlos |
| dc.publisher.program.fl_str_mv |
Programa Interinstitucional de Pós-Graduação em Estatística - PIPGEs |
| dc.publisher.initials.fl_str_mv |
UFSCar |
| publisher.none.fl_str_mv |
Universidade Federal de São Carlos Câmpus São Carlos |
| dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFSCAR instname:Universidade Federal de São Carlos (UFSCAR) instacron:UFSCAR |
| instname_str |
Universidade Federal de São Carlos (UFSCAR) |
| instacron_str |
UFSCAR |
| institution |
UFSCAR |
| reponame_str |
Repositório Institucional da UFSCAR |
| collection |
Repositório Institucional da UFSCAR |
| bitstream.url.fl_str_mv |
https://repositorio.ufscar.br/bitstreams/63e9a0f2-0060-488c-ad88-2b35424e0cec/download https://repositorio.ufscar.br/bitstreams/587bdffe-b98b-440a-920e-a686ef70bb35/download https://repositorio.ufscar.br/bitstreams/839c7d2d-fa80-4c97-a3f0-d0705813007a/download https://repositorio.ufscar.br/bitstreams/b2546b99-4b55-4b38-853f-139af39ad186/download https://repositorio.ufscar.br/bitstreams/7f83a4f1-67d6-4a5a-966b-213e2ef3815f/download https://repositorio.ufscar.br/bitstreams/a37508c4-602d-41fe-a1f9-75411d70d17e/download https://repositorio.ufscar.br/bitstreams/9e1589d6-9b09-4746-a116-72eca727eb32/download |
| bitstream.checksum.fl_str_mv |
e39d27027a6cc9cb039ad269a5db8e34 9d70ab4d0f594572b08cf93692809bc2 6000af2fc4a3f1231f9d9bb2ab1ed4ed dd00c17977d16c8f8f5db9acb9b8fee1 0b289610c896b0e8637fdb1654940247 b5176894b9f8b8934ae0c3f5ea014883 ec939416fed714c0ca4c9df34fe29de8 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR) |
| repository.mail.fl_str_mv |
repositorio.sibi@ufscar.br |
| _version_ |
1851688804937629696 |