Mining ontologies to extract implicit knowledge
| Ano de defesa: | 2016 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | |
| Tipo de documento: | Dissertação |
| Tipo de acesso: | Acesso aberto |
| Idioma: | eng |
| Instituição de defesa: |
Universidade Federal de São Carlos
Câmpus São Carlos |
| Programa de Pós-Graduação: |
Programa de Pós-Graduação em Ciência da Computação - PPGCC
|
| Departamento: |
Não Informado pela instituição
|
| País: |
Não Informado pela instituição
|
| Palavras-chave em Português: | |
| Área do conhecimento CNPq: | |
| Link de acesso: | https://repositorio.ufscar.br/handle/20.500.14289/8152 |
Resumo: | With the exponentially growing of data available on the Web, several projects were created to automatically represent this information as knowledge bases(KBs). Knowledge bases used in most projects are represented in an ontology-based fashion, so the data can be better organized and easily accessible. It is common to map these KBs into a graph to apply graph mining algorithms to extract implicit knowledge from the KB, knowledge that sometimes is easy for human beings to infer but not so trivial to a machine. One common graph-based task is link prediction, which can be used not only to predict edges (new facts for the KB) that will appear in a near future, but also to nd misplaced edges (wrong facts present in the KB). In this project, we create algorithms that uses graph-mining (mostly link-prediction based) approaches to nd implicit knowledge from ontological knowledge bases. Despite of common graph-mining algorithms, we mine not just the facts on the KB, but also the ontology information (such as categories of instances and relations among them). The implicit knowledge that our algorithms will nd, is not just new facts for the KB, but also new relations and categories, extending the ontology as well. |
| id |
SCAR_573ab2cf10933fc20e13f5c1e30f0c8f |
|---|---|
| oai_identifier_str |
oai:repositorio.ufscar.br:20.500.14289/8152 |
| network_acronym_str |
SCAR |
| network_name_str |
Repositório Institucional da UFSCAR |
| repository_id_str |
|
| spelling |
Navarro, Lucas FonsecaAppel, Ana Paulahttp://lattes.cnpq.br/6279577249131944http://lattes.cnpq.br/1289186954993246e43131a3-f319-4be3-b723-615d6c37dc6a2016-10-21T13:49:18Z2016-10-21T13:49:18Z2016-04-07NAVARRO, Lucas Fonseca. Mining ontologies to extract implicit knowledge. 2016. Dissertação (Mestrado em Ciência da Computação) – Universidade Federal de São Carlos, São Carlos, 2016. Disponível em: https://repositorio.ufscar.br/handle/20.500.14289/8152.https://repositorio.ufscar.br/handle/20.500.14289/8152With the exponentially growing of data available on the Web, several projects were created to automatically represent this information as knowledge bases(KBs). Knowledge bases used in most projects are represented in an ontology-based fashion, so the data can be better organized and easily accessible. It is common to map these KBs into a graph to apply graph mining algorithms to extract implicit knowledge from the KB, knowledge that sometimes is easy for human beings to infer but not so trivial to a machine. One common graph-based task is link prediction, which can be used not only to predict edges (new facts for the KB) that will appear in a near future, but also to nd misplaced edges (wrong facts present in the KB). In this project, we create algorithms that uses graph-mining (mostly link-prediction based) approaches to nd implicit knowledge from ontological knowledge bases. Despite of common graph-mining algorithms, we mine not just the facts on the KB, but also the ontology information (such as categories of instances and relations among them). The implicit knowledge that our algorithms will nd, is not just new facts for the KB, but also new relations and categories, extending the ontology as well.Com o crescimento exponencial dos dados disponíveis na Web, diversos projetos foram criados para automaticamente representar esta informação como bases de conhecimento( KBs). As bases de conhecimento utilizadas na maioria destes projetos são representadas através de uma ontologia, então os dados são melhor organizados e facilmente acessíveis. E comum mapear estes KBs utilizando grafos para aplicação de algoritmos de mineração em grafos com o intuito de extrair conhecimento implícito do KB, conhecimento que as pode ser facil para seres humanos inferir mas não são tão triviais para uma maquina. Uma tarefa comum e a predição de arestas, que pode ser usada para encontrar arestas (fatos no KB) que vão aparecer em um futuro próximo, e além disso para encontrar arestas mal alocadas (fatos incorretos no KB). Neste projeto, criamos algoritmos que utilizam mineração em grafos (na maioria baseados em predição de arestas) para encontrar conhecimento implícito em bancos de conhecimento ontológicos. Apesar do uso comum de algoritmos de predição de arestas, vamos minerar também informações da ontologia (como categorias das instancias e relações entre elas). O conhecimento implícito que nossos algoritmos vai encontrar, serão não somente novos fatos para o KB, mas também novas relações e categorias, estendendo também a ontologia.Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)engUniversidade Federal de São CarlosCâmpus São CarlosPrograma de Pós-Graduação em Ciência da Computação - PPGCCUFSCarMineração de dadosOntologiaBases de conhecimentoAlgoritmosCIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAOMining ontologies to extract implicit knowledgeinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisOnline60060021ce13ed-175d-4337-abb7-37c217e32d0finfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFSCARinstname:Universidade Federal de São Carlos (UFSCAR)instacron:UFSCARORIGINALDissLFN.pdfDissLFN.pdfapplication/pdf3044084https://repositorio.ufscar.br/bitstreams/dbf9beac-8db4-4a64-a3ec-7f49f42fd32f/download821534c448710467d6addecc27edfec0MD51trueAnonymousREADLICENSElicense.txtlicense.txttext/plain; charset=utf-81957https://repositorio.ufscar.br/bitstreams/2a5f67df-0fa9-40f1-a11c-9b2db5a0c392/downloadae0398b6f8b235e40ad82cba6c50031dMD52falseAnonymousREADTEXTDissLFN.pdf.txtDissLFN.pdf.txtExtracted texttext/plain144708https://repositorio.ufscar.br/bitstreams/fb7c4648-8bc2-4528-bd49-70946962f56c/download69cc31c26f850f94b1764d24d769fe2cMD55falseAnonymousREADTHUMBNAILDissLFN.pdf.jpgDissLFN.pdf.jpgIM Thumbnailimage/jpeg4686https://repositorio.ufscar.br/bitstreams/e38a31aa-70cb-4980-bcff-5b9071545dde/download7c6b20467b281ab5c43d2c06138ae83fMD56falseAnonymousREAD20.500.14289/81522025-02-05 17:24:57.918Acesso abertoopen.accessoai:repositorio.ufscar.br:20.500.14289/8152https://repositorio.ufscar.brRepositório InstitucionalPUBhttps://repositorio.ufscar.br/oai/requestrepositorio.sibi@ufscar.bropendoar:43222025-02-05T20:24:57Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)falseTElDRU7Dh0EgREUgRElTVFJJQlVJw4fDg08gTsODTy1FWENMVVNJVkEKCkNvbSBhIGFwcmVzZW50YcOnw6NvIGRlc3RhIGxpY2Vuw6dhLCB2b2PDqiAobyBhdXRvciAoZXMpIG91IG8gdGl0dWxhciBkb3MgZGlyZWl0b3MgZGUgYXV0b3IpIGNvbmNlZGUgw6AgVW5pdmVyc2lkYWRlCkZlZGVyYWwgZGUgU8OjbyBDYXJsb3MgbyBkaXJlaXRvIG7Do28tZXhjbHVzaXZvIGRlIHJlcHJvZHV6aXIsICB0cmFkdXppciAoY29uZm9ybWUgZGVmaW5pZG8gYWJhaXhvKSwgZS9vdQpkaXN0cmlidWlyIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyAoaW5jbHVpbmRvIG8gcmVzdW1vKSBwb3IgdG9kbyBvIG11bmRvIG5vIGZvcm1hdG8gaW1wcmVzc28gZSBlbGV0csO0bmljbyBlCmVtIHF1YWxxdWVyIG1laW8sIGluY2x1aW5kbyBvcyBmb3JtYXRvcyDDoXVkaW8gb3UgdsOtZGVvLgoKVm9jw6ogY29uY29yZGEgcXVlIGEgVUZTQ2FyIHBvZGUsIHNlbSBhbHRlcmFyIG8gY29udGXDumRvLCB0cmFuc3BvciBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28KcGFyYSBxdWFscXVlciBtZWlvIG91IGZvcm1hdG8gcGFyYSBmaW5zIGRlIHByZXNlcnZhw6fDo28uCgpWb2PDqiB0YW1iw6ltIGNvbmNvcmRhIHF1ZSBhIFVGU0NhciBwb2RlIG1hbnRlciBtYWlzIGRlIHVtYSBjw7NwaWEgYSBzdWEgdGVzZSBvdQpkaXNzZXJ0YcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcwpuZXN0YSBsaWNlbsOnYS4gVm9jw6ogdGFtYsOpbSBkZWNsYXJhIHF1ZSBvIGRlcMOzc2l0byBkYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIG7Do28sIHF1ZSBzZWphIGRlIHNldQpjb25oZWNpbWVudG8sIGluZnJpbmdlIGRpcmVpdG9zIGF1dG9yYWlzIGRlIG5pbmd1w6ltLgoKQ2FzbyBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gY29udGVuaGEgbWF0ZXJpYWwgcXVlIHZvY8OqIG7Do28gcG9zc3VpIGEgdGl0dWxhcmlkYWRlIGRvcyBkaXJlaXRvcyBhdXRvcmFpcywgdm9jw6oKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIMOgIFVGU0NhcgpvcyBkaXJlaXRvcyBhcHJlc2VudGFkb3MgbmVzdGEgbGljZW7Dp2EsIGUgcXVlIGVzc2UgbWF0ZXJpYWwgZGUgcHJvcHJpZWRhZGUgZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUKaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3Ugbm8gY29udGXDumRvIGRhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBvcmEgZGVwb3NpdGFkYS4KCkNBU08gQSBURVNFIE9VIERJU1NFUlRBw4fDg08gT1JBIERFUE9TSVRBREEgVEVOSEEgU0lETyBSRVNVTFRBRE8gREUgVU0gUEFUUk9Dw41OSU8gT1UKQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBVRlNDYXIsClZPQ8OKIERFQ0xBUkEgUVVFIFJFU1BFSVRPVSBUT0RPUyBFIFFVQUlTUVVFUiBESVJFSVRPUyBERSBSRVZJU8ODTyBDT01PClRBTULDiU0gQVMgREVNQUlTIE9CUklHQcOHw5VFUyBFWElHSURBUyBQT1IgQ09OVFJBVE8gT1UgQUNPUkRPLgoKQSBVRlNDYXIgc2UgY29tcHJvbWV0ZSBhIGlkZW50aWZpY2FyIGNsYXJhbWVudGUgbyBzZXUgbm9tZSAocykgb3UgbyhzKSBub21lKHMpIGRvKHMpCmRldGVudG9yKGVzKSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzCmNvbmNlZGlkYXMgcG9yIGVzdGEgbGljZW7Dp2EuCg== |
| dc.title.eng.fl_str_mv |
Mining ontologies to extract implicit knowledge |
| title |
Mining ontologies to extract implicit knowledge |
| spellingShingle |
Mining ontologies to extract implicit knowledge Navarro, Lucas Fonseca Mineração de dados Ontologia Bases de conhecimento Algoritmos CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO |
| title_short |
Mining ontologies to extract implicit knowledge |
| title_full |
Mining ontologies to extract implicit knowledge |
| title_fullStr |
Mining ontologies to extract implicit knowledge |
| title_full_unstemmed |
Mining ontologies to extract implicit knowledge |
| title_sort |
Mining ontologies to extract implicit knowledge |
| author |
Navarro, Lucas Fonseca |
| author_facet |
Navarro, Lucas Fonseca |
| author_role |
author |
| dc.contributor.authorlattes.por.fl_str_mv |
http://lattes.cnpq.br/1289186954993246 |
| dc.contributor.author.fl_str_mv |
Navarro, Lucas Fonseca |
| dc.contributor.advisor1.fl_str_mv |
Appel, Ana Paula |
| dc.contributor.advisor1Lattes.fl_str_mv |
http://lattes.cnpq.br/6279577249131944 |
| dc.contributor.authorID.fl_str_mv |
e43131a3-f319-4be3-b723-615d6c37dc6a |
| contributor_str_mv |
Appel, Ana Paula |
| dc.subject.por.fl_str_mv |
Mineração de dados Ontologia Bases de conhecimento Algoritmos |
| topic |
Mineração de dados Ontologia Bases de conhecimento Algoritmos CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO |
| dc.subject.cnpq.fl_str_mv |
CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO |
| description |
With the exponentially growing of data available on the Web, several projects were created to automatically represent this information as knowledge bases(KBs). Knowledge bases used in most projects are represented in an ontology-based fashion, so the data can be better organized and easily accessible. It is common to map these KBs into a graph to apply graph mining algorithms to extract implicit knowledge from the KB, knowledge that sometimes is easy for human beings to infer but not so trivial to a machine. One common graph-based task is link prediction, which can be used not only to predict edges (new facts for the KB) that will appear in a near future, but also to nd misplaced edges (wrong facts present in the KB). In this project, we create algorithms that uses graph-mining (mostly link-prediction based) approaches to nd implicit knowledge from ontological knowledge bases. Despite of common graph-mining algorithms, we mine not just the facts on the KB, but also the ontology information (such as categories of instances and relations among them). The implicit knowledge that our algorithms will nd, is not just new facts for the KB, but also new relations and categories, extending the ontology as well. |
| publishDate |
2016 |
| dc.date.accessioned.fl_str_mv |
2016-10-21T13:49:18Z |
| dc.date.available.fl_str_mv |
2016-10-21T13:49:18Z |
| dc.date.issued.fl_str_mv |
2016-04-07 |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
| format |
masterThesis |
| status_str |
publishedVersion |
| dc.identifier.citation.fl_str_mv |
NAVARRO, Lucas Fonseca. Mining ontologies to extract implicit knowledge. 2016. Dissertação (Mestrado em Ciência da Computação) – Universidade Federal de São Carlos, São Carlos, 2016. Disponível em: https://repositorio.ufscar.br/handle/20.500.14289/8152. |
| dc.identifier.uri.fl_str_mv |
https://repositorio.ufscar.br/handle/20.500.14289/8152 |
| identifier_str_mv |
NAVARRO, Lucas Fonseca. Mining ontologies to extract implicit knowledge. 2016. Dissertação (Mestrado em Ciência da Computação) – Universidade Federal de São Carlos, São Carlos, 2016. Disponível em: https://repositorio.ufscar.br/handle/20.500.14289/8152. |
| url |
https://repositorio.ufscar.br/handle/20.500.14289/8152 |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.relation.confidence.fl_str_mv |
600 600 |
| dc.relation.authority.fl_str_mv |
21ce13ed-175d-4337-abb7-37c217e32d0f |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.publisher.none.fl_str_mv |
Universidade Federal de São Carlos Câmpus São Carlos |
| dc.publisher.program.fl_str_mv |
Programa de Pós-Graduação em Ciência da Computação - PPGCC |
| dc.publisher.initials.fl_str_mv |
UFSCar |
| publisher.none.fl_str_mv |
Universidade Federal de São Carlos Câmpus São Carlos |
| dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFSCAR instname:Universidade Federal de São Carlos (UFSCAR) instacron:UFSCAR |
| instname_str |
Universidade Federal de São Carlos (UFSCAR) |
| instacron_str |
UFSCAR |
| institution |
UFSCAR |
| reponame_str |
Repositório Institucional da UFSCAR |
| collection |
Repositório Institucional da UFSCAR |
| bitstream.url.fl_str_mv |
https://repositorio.ufscar.br/bitstreams/dbf9beac-8db4-4a64-a3ec-7f49f42fd32f/download https://repositorio.ufscar.br/bitstreams/2a5f67df-0fa9-40f1-a11c-9b2db5a0c392/download https://repositorio.ufscar.br/bitstreams/fb7c4648-8bc2-4528-bd49-70946962f56c/download https://repositorio.ufscar.br/bitstreams/e38a31aa-70cb-4980-bcff-5b9071545dde/download |
| bitstream.checksum.fl_str_mv |
821534c448710467d6addecc27edfec0 ae0398b6f8b235e40ad82cba6c50031d 69cc31c26f850f94b1764d24d769fe2c 7c6b20467b281ab5c43d2c06138ae83f |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR) |
| repository.mail.fl_str_mv |
repositorio.sibi@ufscar.br |
| _version_ |
1851688766401413120 |