Mining ontologies to extract implicit knowledge

Detalhes bibliográficos
Ano de defesa: 2016
Autor(a) principal: Navarro, Lucas Fonseca
Orientador(a): Appel, Ana Paula lattes
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Universidade Federal de São Carlos
Câmpus São Carlos
Programa de Pós-Graduação: Programa de Pós-Graduação em Ciência da Computação - PPGCC
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Área do conhecimento CNPq:
Link de acesso: https://repositorio.ufscar.br/handle/20.500.14289/8152
Resumo: With the exponentially growing of data available on the Web, several projects were created to automatically represent this information as knowledge bases(KBs). Knowledge bases used in most projects are represented in an ontology-based fashion, so the data can be better organized and easily accessible. It is common to map these KBs into a graph to apply graph mining algorithms to extract implicit knowledge from the KB, knowledge that sometimes is easy for human beings to infer but not so trivial to a machine. One common graph-based task is link prediction, which can be used not only to predict edges (new facts for the KB) that will appear in a near future, but also to nd misplaced edges (wrong facts present in the KB). In this project, we create algorithms that uses graph-mining (mostly link-prediction based) approaches to nd implicit knowledge from ontological knowledge bases. Despite of common graph-mining algorithms, we mine not just the facts on the KB, but also the ontology information (such as categories of instances and relations among them). The implicit knowledge that our algorithms will nd, is not just new facts for the KB, but also new relations and categories, extending the ontology as well.
id SCAR_573ab2cf10933fc20e13f5c1e30f0c8f
oai_identifier_str oai:repositorio.ufscar.br:20.500.14289/8152
network_acronym_str SCAR
network_name_str Repositório Institucional da UFSCAR
repository_id_str
spelling Navarro, Lucas FonsecaAppel, Ana Paulahttp://lattes.cnpq.br/6279577249131944http://lattes.cnpq.br/1289186954993246e43131a3-f319-4be3-b723-615d6c37dc6a2016-10-21T13:49:18Z2016-10-21T13:49:18Z2016-04-07NAVARRO, Lucas Fonseca. Mining ontologies to extract implicit knowledge. 2016. Dissertação (Mestrado em Ciência da Computação) – Universidade Federal de São Carlos, São Carlos, 2016. Disponível em: https://repositorio.ufscar.br/handle/20.500.14289/8152.https://repositorio.ufscar.br/handle/20.500.14289/8152With the exponentially growing of data available on the Web, several projects were created to automatically represent this information as knowledge bases(KBs). Knowledge bases used in most projects are represented in an ontology-based fashion, so the data can be better organized and easily accessible. It is common to map these KBs into a graph to apply graph mining algorithms to extract implicit knowledge from the KB, knowledge that sometimes is easy for human beings to infer but not so trivial to a machine. One common graph-based task is link prediction, which can be used not only to predict edges (new facts for the KB) that will appear in a near future, but also to nd misplaced edges (wrong facts present in the KB). In this project, we create algorithms that uses graph-mining (mostly link-prediction based) approaches to nd implicit knowledge from ontological knowledge bases. Despite of common graph-mining algorithms, we mine not just the facts on the KB, but also the ontology information (such as categories of instances and relations among them). The implicit knowledge that our algorithms will nd, is not just new facts for the KB, but also new relations and categories, extending the ontology as well.Com o crescimento exponencial dos dados disponíveis na Web, diversos projetos foram criados para automaticamente representar esta informação como bases de conhecimento( KBs). As bases de conhecimento utilizadas na maioria destes projetos são representadas através de uma ontologia, então os dados são melhor organizados e facilmente acessíveis. E comum mapear estes KBs utilizando grafos para aplicação de algoritmos de mineração em grafos com o intuito de extrair conhecimento implícito do KB, conhecimento que as pode ser facil para seres humanos inferir mas não são tão triviais para uma maquina. Uma tarefa comum e a predição de arestas, que pode ser usada para encontrar arestas (fatos no KB) que vão aparecer em um futuro próximo, e além disso para encontrar arestas mal alocadas (fatos incorretos no KB). Neste projeto, criamos algoritmos que utilizam mineração em grafos (na maioria baseados em predição de arestas) para encontrar conhecimento implícito em bancos de conhecimento ontológicos. Apesar do uso comum de algoritmos de predição de arestas, vamos minerar também informações da ontologia (como categorias das instancias e relações entre elas). O conhecimento implícito que nossos algoritmos vai encontrar, serão não somente novos fatos para o KB, mas também novas relações e categorias, estendendo também a ontologia.Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)engUniversidade Federal de São CarlosCâmpus São CarlosPrograma de Pós-Graduação em Ciência da Computação - PPGCCUFSCarMineração de dadosOntologiaBases de conhecimentoAlgoritmosCIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAOMining ontologies to extract implicit knowledgeinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisOnline60060021ce13ed-175d-4337-abb7-37c217e32d0finfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFSCARinstname:Universidade Federal de São Carlos (UFSCAR)instacron:UFSCARORIGINALDissLFN.pdfDissLFN.pdfapplication/pdf3044084https://repositorio.ufscar.br/bitstreams/dbf9beac-8db4-4a64-a3ec-7f49f42fd32f/download821534c448710467d6addecc27edfec0MD51trueAnonymousREADLICENSElicense.txtlicense.txttext/plain; charset=utf-81957https://repositorio.ufscar.br/bitstreams/2a5f67df-0fa9-40f1-a11c-9b2db5a0c392/downloadae0398b6f8b235e40ad82cba6c50031dMD52falseAnonymousREADTEXTDissLFN.pdf.txtDissLFN.pdf.txtExtracted texttext/plain144708https://repositorio.ufscar.br/bitstreams/fb7c4648-8bc2-4528-bd49-70946962f56c/download69cc31c26f850f94b1764d24d769fe2cMD55falseAnonymousREADTHUMBNAILDissLFN.pdf.jpgDissLFN.pdf.jpgIM Thumbnailimage/jpeg4686https://repositorio.ufscar.br/bitstreams/e38a31aa-70cb-4980-bcff-5b9071545dde/download7c6b20467b281ab5c43d2c06138ae83fMD56falseAnonymousREAD20.500.14289/81522025-02-05 17:24:57.918Acesso abertoopen.accessoai:repositorio.ufscar.br:20.500.14289/8152https://repositorio.ufscar.brRepositório InstitucionalPUBhttps://repositorio.ufscar.br/oai/requestrepositorio.sibi@ufscar.bropendoar:43222025-02-05T20:24:57Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)falseTElDRU7Dh0EgREUgRElTVFJJQlVJw4fDg08gTsODTy1FWENMVVNJVkEKCkNvbSBhIGFwcmVzZW50YcOnw6NvIGRlc3RhIGxpY2Vuw6dhLCB2b2PDqiAobyBhdXRvciAoZXMpIG91IG8gdGl0dWxhciBkb3MgZGlyZWl0b3MgZGUgYXV0b3IpIGNvbmNlZGUgw6AgVW5pdmVyc2lkYWRlCkZlZGVyYWwgZGUgU8OjbyBDYXJsb3MgbyBkaXJlaXRvIG7Do28tZXhjbHVzaXZvIGRlIHJlcHJvZHV6aXIsICB0cmFkdXppciAoY29uZm9ybWUgZGVmaW5pZG8gYWJhaXhvKSwgZS9vdQpkaXN0cmlidWlyIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyAoaW5jbHVpbmRvIG8gcmVzdW1vKSBwb3IgdG9kbyBvIG11bmRvIG5vIGZvcm1hdG8gaW1wcmVzc28gZSBlbGV0csO0bmljbyBlCmVtIHF1YWxxdWVyIG1laW8sIGluY2x1aW5kbyBvcyBmb3JtYXRvcyDDoXVkaW8gb3UgdsOtZGVvLgoKVm9jw6ogY29uY29yZGEgcXVlIGEgVUZTQ2FyIHBvZGUsIHNlbSBhbHRlcmFyIG8gY29udGXDumRvLCB0cmFuc3BvciBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28KcGFyYSBxdWFscXVlciBtZWlvIG91IGZvcm1hdG8gcGFyYSBmaW5zIGRlIHByZXNlcnZhw6fDo28uCgpWb2PDqiB0YW1iw6ltIGNvbmNvcmRhIHF1ZSBhIFVGU0NhciBwb2RlIG1hbnRlciBtYWlzIGRlIHVtYSBjw7NwaWEgYSBzdWEgdGVzZSBvdQpkaXNzZXJ0YcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcwpuZXN0YSBsaWNlbsOnYS4gVm9jw6ogdGFtYsOpbSBkZWNsYXJhIHF1ZSBvIGRlcMOzc2l0byBkYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIG7Do28sIHF1ZSBzZWphIGRlIHNldQpjb25oZWNpbWVudG8sIGluZnJpbmdlIGRpcmVpdG9zIGF1dG9yYWlzIGRlIG5pbmd1w6ltLgoKQ2FzbyBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gY29udGVuaGEgbWF0ZXJpYWwgcXVlIHZvY8OqIG7Do28gcG9zc3VpIGEgdGl0dWxhcmlkYWRlIGRvcyBkaXJlaXRvcyBhdXRvcmFpcywgdm9jw6oKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIMOgIFVGU0NhcgpvcyBkaXJlaXRvcyBhcHJlc2VudGFkb3MgbmVzdGEgbGljZW7Dp2EsIGUgcXVlIGVzc2UgbWF0ZXJpYWwgZGUgcHJvcHJpZWRhZGUgZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUKaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3Ugbm8gY29udGXDumRvIGRhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBvcmEgZGVwb3NpdGFkYS4KCkNBU08gQSBURVNFIE9VIERJU1NFUlRBw4fDg08gT1JBIERFUE9TSVRBREEgVEVOSEEgU0lETyBSRVNVTFRBRE8gREUgVU0gUEFUUk9Dw41OSU8gT1UKQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBVRlNDYXIsClZPQ8OKIERFQ0xBUkEgUVVFIFJFU1BFSVRPVSBUT0RPUyBFIFFVQUlTUVVFUiBESVJFSVRPUyBERSBSRVZJU8ODTyBDT01PClRBTULDiU0gQVMgREVNQUlTIE9CUklHQcOHw5VFUyBFWElHSURBUyBQT1IgQ09OVFJBVE8gT1UgQUNPUkRPLgoKQSBVRlNDYXIgc2UgY29tcHJvbWV0ZSBhIGlkZW50aWZpY2FyIGNsYXJhbWVudGUgbyBzZXUgbm9tZSAocykgb3UgbyhzKSBub21lKHMpIGRvKHMpCmRldGVudG9yKGVzKSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzCmNvbmNlZGlkYXMgcG9yIGVzdGEgbGljZW7Dp2EuCg==
dc.title.eng.fl_str_mv Mining ontologies to extract implicit knowledge
title Mining ontologies to extract implicit knowledge
spellingShingle Mining ontologies to extract implicit knowledge
Navarro, Lucas Fonseca
Mineração de dados
Ontologia
Bases de conhecimento
Algoritmos
CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO
title_short Mining ontologies to extract implicit knowledge
title_full Mining ontologies to extract implicit knowledge
title_fullStr Mining ontologies to extract implicit knowledge
title_full_unstemmed Mining ontologies to extract implicit knowledge
title_sort Mining ontologies to extract implicit knowledge
author Navarro, Lucas Fonseca
author_facet Navarro, Lucas Fonseca
author_role author
dc.contributor.authorlattes.por.fl_str_mv http://lattes.cnpq.br/1289186954993246
dc.contributor.author.fl_str_mv Navarro, Lucas Fonseca
dc.contributor.advisor1.fl_str_mv Appel, Ana Paula
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/6279577249131944
dc.contributor.authorID.fl_str_mv e43131a3-f319-4be3-b723-615d6c37dc6a
contributor_str_mv Appel, Ana Paula
dc.subject.por.fl_str_mv Mineração de dados
Ontologia
Bases de conhecimento
Algoritmos
topic Mineração de dados
Ontologia
Bases de conhecimento
Algoritmos
CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO
dc.subject.cnpq.fl_str_mv CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO
description With the exponentially growing of data available on the Web, several projects were created to automatically represent this information as knowledge bases(KBs). Knowledge bases used in most projects are represented in an ontology-based fashion, so the data can be better organized and easily accessible. It is common to map these KBs into a graph to apply graph mining algorithms to extract implicit knowledge from the KB, knowledge that sometimes is easy for human beings to infer but not so trivial to a machine. One common graph-based task is link prediction, which can be used not only to predict edges (new facts for the KB) that will appear in a near future, but also to nd misplaced edges (wrong facts present in the KB). In this project, we create algorithms that uses graph-mining (mostly link-prediction based) approaches to nd implicit knowledge from ontological knowledge bases. Despite of common graph-mining algorithms, we mine not just the facts on the KB, but also the ontology information (such as categories of instances and relations among them). The implicit knowledge that our algorithms will nd, is not just new facts for the KB, but also new relations and categories, extending the ontology as well.
publishDate 2016
dc.date.accessioned.fl_str_mv 2016-10-21T13:49:18Z
dc.date.available.fl_str_mv 2016-10-21T13:49:18Z
dc.date.issued.fl_str_mv 2016-04-07
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv NAVARRO, Lucas Fonseca. Mining ontologies to extract implicit knowledge. 2016. Dissertação (Mestrado em Ciência da Computação) – Universidade Federal de São Carlos, São Carlos, 2016. Disponível em: https://repositorio.ufscar.br/handle/20.500.14289/8152.
dc.identifier.uri.fl_str_mv https://repositorio.ufscar.br/handle/20.500.14289/8152
identifier_str_mv NAVARRO, Lucas Fonseca. Mining ontologies to extract implicit knowledge. 2016. Dissertação (Mestrado em Ciência da Computação) – Universidade Federal de São Carlos, São Carlos, 2016. Disponível em: https://repositorio.ufscar.br/handle/20.500.14289/8152.
url https://repositorio.ufscar.br/handle/20.500.14289/8152
dc.language.iso.fl_str_mv eng
language eng
dc.relation.confidence.fl_str_mv 600
600
dc.relation.authority.fl_str_mv 21ce13ed-175d-4337-abb7-37c217e32d0f
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal de São Carlos
Câmpus São Carlos
dc.publisher.program.fl_str_mv Programa de Pós-Graduação em Ciência da Computação - PPGCC
dc.publisher.initials.fl_str_mv UFSCar
publisher.none.fl_str_mv Universidade Federal de São Carlos
Câmpus São Carlos
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFSCAR
instname:Universidade Federal de São Carlos (UFSCAR)
instacron:UFSCAR
instname_str Universidade Federal de São Carlos (UFSCAR)
instacron_str UFSCAR
institution UFSCAR
reponame_str Repositório Institucional da UFSCAR
collection Repositório Institucional da UFSCAR
bitstream.url.fl_str_mv https://repositorio.ufscar.br/bitstreams/dbf9beac-8db4-4a64-a3ec-7f49f42fd32f/download
https://repositorio.ufscar.br/bitstreams/2a5f67df-0fa9-40f1-a11c-9b2db5a0c392/download
https://repositorio.ufscar.br/bitstreams/fb7c4648-8bc2-4528-bd49-70946962f56c/download
https://repositorio.ufscar.br/bitstreams/e38a31aa-70cb-4980-bcff-5b9071545dde/download
bitstream.checksum.fl_str_mv 821534c448710467d6addecc27edfec0
ae0398b6f8b235e40ad82cba6c50031d
69cc31c26f850f94b1764d24d769fe2c
7c6b20467b281ab5c43d2c06138ae83f
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)
repository.mail.fl_str_mv repositorio.sibi@ufscar.br
_version_ 1851688766401413120