Aprendizado de máquina aplicado ao auxílio do diagnóstico da doença de Parkinson

Detalhes bibliográficos
Ano de defesa: 2017
Autor(a) principal: Pereira, Clayton Reginaldo
Orientador(a): Papa, João Paulo lattes
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Universidade Federal de São Carlos
Câmpus São Carlos
Programa de Pós-Graduação: Programa de Pós-Graduação em Ciência da Computação - PPGCC
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Palavras-chave em Inglês:
Área do conhecimento CNPq:
Link de acesso: https://repositorio.ufscar.br/handle/20.500.14289/9299
Resumo: Currently, it is not a trivial task to point out a test that can diagnose accurately enough a patient with Parkinson’s Disease, as well as it is quit difficult to assess the level of the disease. Experts recommend the application of different types of tests, many of them based on signs and biomedical imaging, such as electroencephalogram, computed tomography and magnetic resonance to aid the detection of the disease process, since as the age ranges, symptoms such as fatigue and weakness can hide diagnosis. In order to provide a more effective clinical information to doctors aiming at diagnosis with greater confidence, methodologies to perform the fusion of different imaging modalities have become increasingly popular and promising. Recently, the use of forms containing some activities using a biometric pen with multi-sensors have been applied for the detection of Parkinson’s Disease by means of handwriting analysis. However, information derived from the scanned image of the form itself, and the one obtained by same pen have not been used together for this purpose. Thus, this proposal aims using pattern recognition techniques and image processing aimed at using the information from the form together with data from the pen. We believe a possible improvement in the medical diagnosis of Parkinson’s Disease can be archived. Another contribution of this proposal, is the design of a multimodal database to aid in the diagnosis of Parkinson’s Disease.
id SCAR_60c32188043ff049047d439a03832889
oai_identifier_str oai:repositorio.ufscar.br:20.500.14289/9299
network_acronym_str SCAR
network_name_str Repositório Institucional da UFSCAR
repository_id_str
spelling Pereira, Clayton ReginaldoPapa, João Paulohttp://lattes.cnpq.br/9039182932747194http://lattes.cnpq.br/90836977748708522f034467-7e2f-4eb5-aeb8-e1e1d998bf5c2018-01-25T16:41:48Z2018-01-25T16:41:48Z2017-07-26PEREIRA, Clayton Reginaldo. Aprendizado de máquina aplicado ao auxílio do diagnóstico da doença de Parkinson. 2017. Tese (Doutorado em Ciência da Computação) – Universidade Federal de São Carlos, São Carlos, 2017. Disponível em: https://repositorio.ufscar.br/handle/20.500.14289/9299.https://repositorio.ufscar.br/handle/20.500.14289/9299Currently, it is not a trivial task to point out a test that can diagnose accurately enough a patient with Parkinson’s Disease, as well as it is quit difficult to assess the level of the disease. Experts recommend the application of different types of tests, many of them based on signs and biomedical imaging, such as electroencephalogram, computed tomography and magnetic resonance to aid the detection of the disease process, since as the age ranges, symptoms such as fatigue and weakness can hide diagnosis. In order to provide a more effective clinical information to doctors aiming at diagnosis with greater confidence, methodologies to perform the fusion of different imaging modalities have become increasingly popular and promising. Recently, the use of forms containing some activities using a biometric pen with multi-sensors have been applied for the detection of Parkinson’s Disease by means of handwriting analysis. However, information derived from the scanned image of the form itself, and the one obtained by same pen have not been used together for this purpose. Thus, this proposal aims using pattern recognition techniques and image processing aimed at using the information from the form together with data from the pen. We believe a possible improvement in the medical diagnosis of Parkinson’s Disease can be archived. Another contribution of this proposal, is the design of a multimodal database to aid in the diagnosis of Parkinson’s Disease.Atualmente, não é uma tarefa trivial apontar um exame que possa diagnosticar com precisão suficiente um paciente com mal de Parkinson, tendo como ponto importante também, após a constatação da enfermidade, a análise do nível da mesma. Especialistas recomendam a aplicação de diferentes tipos de exames, muitos deles baseados em sinais e imagens biomédicas, tais como eletroencefalograma, tomografia computadorizada e ressonância magnética para auxiliar no processo de detecção da doença, já que a faixa etária elevada e sintomas como cansaço e fraqueza podem ocultar o diagnóstico. Com o intuito de prover informações mais eficazes propiciando aos médicos um diagnóstico com maior confiança, metodologias para realizar a fusão entre diferentes modalidades de imagens tem se tornado cada vez mais populares e promissoras. Recentemente, a utilização de formulários contendo algumas atividades utilizando como ferramenta para o seu preenchimento uma caneta biométrica com multi-sensores tem sido aplicada para detecção do mal de Parkinson, efetuando o registro adquirido para análise da escrita. Entretanto, as informações oriundas da própria imagem digitalizada do formulário, bem como as mesmas obtidas pela caneta, ainda não foram utilizadas em conjunto para este fim. Desta forma, a presente proposta de tese de doutorado objetiva a utilização de técnicas de reconhecimento de padrões e processamento de imagens visando utilizar as diferentes informações provenientes do preenchimento do formulário em conjunto com dados provenientes da caneta, visando uma possível melhora no processo de auxílio ao diagnóstico médico do mal de Parkinson. Uma outra contribuição do trabalho é a criação de uma base de dados multimodal para o auxílio ao diagnóstico do mal de Parkinson.Não recebi financiamentoengUniversidade Federal de São CarlosCâmpus São CarlosPrograma de Pós-Graduação em Ciência da Computação - PPGCCUFSCarAprendizado do computadorDiagnósticoParkinson, Doença deMachine learningDiagnosisParkinson's diseaseCIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAOAprendizado de máquina aplicado ao auxílio do diagnóstico da doença de Parkinsoninfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisOnline600600a26a6b97-f6e5-4bd7-9c5a-876ad8cf02fdinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFSCARinstname:Universidade Federal de São Carlos (UFSCAR)instacron:UFSCARORIGINALTeseCRP.pdfTeseCRP.pdfapplication/pdf16817329https://repositorio.ufscar.br/bitstreams/95654f60-c311-402c-96f3-3be1883185c7/downloadcaeccc84696f23e07efee854d9bff6f5MD51trueAnonymousREADLICENSElicense.txtlicense.txttext/plain; charset=utf-81957https://repositorio.ufscar.br/bitstreams/8b5b10ad-36f8-4249-9597-e997274afbc8/downloadae0398b6f8b235e40ad82cba6c50031dMD52falseAnonymousREADTEXTTeseCRP.pdf.txtTeseCRP.pdf.txtExtracted texttext/plain263355https://repositorio.ufscar.br/bitstreams/513c898a-d207-4969-b9b4-cdc1798eebda/downloada7a933f4381599b5abbf2f636217fa74MD55falseAnonymousREADTHUMBNAILTeseCRP.pdf.jpgTeseCRP.pdf.jpgIM Thumbnailimage/jpeg6195https://repositorio.ufscar.br/bitstreams/29e7404d-1236-44a2-8817-399bfb3efb88/downloadf200be342314d98e7f37e0fde16b5a85MD56falseAnonymousREAD20.500.14289/92992025-02-05 19:01:35.855Acesso abertoopen.accessoai:repositorio.ufscar.br:20.500.14289/9299https://repositorio.ufscar.brRepositório InstitucionalPUBhttps://repositorio.ufscar.br/oai/requestrepositorio.sibi@ufscar.bropendoar:43222025-02-05T22:01:35Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)falseTElDRU7Dh0EgREUgRElTVFJJQlVJw4fDg08gTsODTy1FWENMVVNJVkEKCkNvbSBhIGFwcmVzZW50YcOnw6NvIGRlc3RhIGxpY2Vuw6dhLCB2b2PDqiAobyBhdXRvciAoZXMpIG91IG8gdGl0dWxhciBkb3MgZGlyZWl0b3MgZGUgYXV0b3IpIGNvbmNlZGUgw6AgVW5pdmVyc2lkYWRlCkZlZGVyYWwgZGUgU8OjbyBDYXJsb3MgbyBkaXJlaXRvIG7Do28tZXhjbHVzaXZvIGRlIHJlcHJvZHV6aXIsICB0cmFkdXppciAoY29uZm9ybWUgZGVmaW5pZG8gYWJhaXhvKSwgZS9vdQpkaXN0cmlidWlyIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyAoaW5jbHVpbmRvIG8gcmVzdW1vKSBwb3IgdG9kbyBvIG11bmRvIG5vIGZvcm1hdG8gaW1wcmVzc28gZSBlbGV0csO0bmljbyBlCmVtIHF1YWxxdWVyIG1laW8sIGluY2x1aW5kbyBvcyBmb3JtYXRvcyDDoXVkaW8gb3UgdsOtZGVvLgoKVm9jw6ogY29uY29yZGEgcXVlIGEgVUZTQ2FyIHBvZGUsIHNlbSBhbHRlcmFyIG8gY29udGXDumRvLCB0cmFuc3BvciBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28KcGFyYSBxdWFscXVlciBtZWlvIG91IGZvcm1hdG8gcGFyYSBmaW5zIGRlIHByZXNlcnZhw6fDo28uCgpWb2PDqiB0YW1iw6ltIGNvbmNvcmRhIHF1ZSBhIFVGU0NhciBwb2RlIG1hbnRlciBtYWlzIGRlIHVtYSBjw7NwaWEgYSBzdWEgdGVzZSBvdQpkaXNzZXJ0YcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcwpuZXN0YSBsaWNlbsOnYS4gVm9jw6ogdGFtYsOpbSBkZWNsYXJhIHF1ZSBvIGRlcMOzc2l0byBkYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIG7Do28sIHF1ZSBzZWphIGRlIHNldQpjb25oZWNpbWVudG8sIGluZnJpbmdlIGRpcmVpdG9zIGF1dG9yYWlzIGRlIG5pbmd1w6ltLgoKQ2FzbyBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gY29udGVuaGEgbWF0ZXJpYWwgcXVlIHZvY8OqIG7Do28gcG9zc3VpIGEgdGl0dWxhcmlkYWRlIGRvcyBkaXJlaXRvcyBhdXRvcmFpcywgdm9jw6oKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIMOgIFVGU0NhcgpvcyBkaXJlaXRvcyBhcHJlc2VudGFkb3MgbmVzdGEgbGljZW7Dp2EsIGUgcXVlIGVzc2UgbWF0ZXJpYWwgZGUgcHJvcHJpZWRhZGUgZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUKaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3Ugbm8gY29udGXDumRvIGRhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBvcmEgZGVwb3NpdGFkYS4KCkNBU08gQSBURVNFIE9VIERJU1NFUlRBw4fDg08gT1JBIERFUE9TSVRBREEgVEVOSEEgU0lETyBSRVNVTFRBRE8gREUgVU0gUEFUUk9Dw41OSU8gT1UKQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBVRlNDYXIsClZPQ8OKIERFQ0xBUkEgUVVFIFJFU1BFSVRPVSBUT0RPUyBFIFFVQUlTUVVFUiBESVJFSVRPUyBERSBSRVZJU8ODTyBDT01PClRBTULDiU0gQVMgREVNQUlTIE9CUklHQcOHw5VFUyBFWElHSURBUyBQT1IgQ09OVFJBVE8gT1UgQUNPUkRPLgoKQSBVRlNDYXIgc2UgY29tcHJvbWV0ZSBhIGlkZW50aWZpY2FyIGNsYXJhbWVudGUgbyBzZXUgbm9tZSAocykgb3UgbyhzKSBub21lKHMpIGRvKHMpCmRldGVudG9yKGVzKSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzCmNvbmNlZGlkYXMgcG9yIGVzdGEgbGljZW7Dp2EuCg==
dc.title.por.fl_str_mv Aprendizado de máquina aplicado ao auxílio do diagnóstico da doença de Parkinson
title Aprendizado de máquina aplicado ao auxílio do diagnóstico da doença de Parkinson
spellingShingle Aprendizado de máquina aplicado ao auxílio do diagnóstico da doença de Parkinson
Pereira, Clayton Reginaldo
Aprendizado do computador
Diagnóstico
Parkinson, Doença de
Machine learning
Diagnosis
Parkinson's disease
CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO
title_short Aprendizado de máquina aplicado ao auxílio do diagnóstico da doença de Parkinson
title_full Aprendizado de máquina aplicado ao auxílio do diagnóstico da doença de Parkinson
title_fullStr Aprendizado de máquina aplicado ao auxílio do diagnóstico da doença de Parkinson
title_full_unstemmed Aprendizado de máquina aplicado ao auxílio do diagnóstico da doença de Parkinson
title_sort Aprendizado de máquina aplicado ao auxílio do diagnóstico da doença de Parkinson
author Pereira, Clayton Reginaldo
author_facet Pereira, Clayton Reginaldo
author_role author
dc.contributor.authorlattes.por.fl_str_mv http://lattes.cnpq.br/9083697774870852
dc.contributor.author.fl_str_mv Pereira, Clayton Reginaldo
dc.contributor.advisor1.fl_str_mv Papa, João Paulo
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/9039182932747194
dc.contributor.authorID.fl_str_mv 2f034467-7e2f-4eb5-aeb8-e1e1d998bf5c
contributor_str_mv Papa, João Paulo
dc.subject.por.fl_str_mv Aprendizado do computador
Diagnóstico
Parkinson, Doença de
topic Aprendizado do computador
Diagnóstico
Parkinson, Doença de
Machine learning
Diagnosis
Parkinson's disease
CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO
dc.subject.eng.fl_str_mv Machine learning
Diagnosis
Parkinson's disease
dc.subject.cnpq.fl_str_mv CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO
description Currently, it is not a trivial task to point out a test that can diagnose accurately enough a patient with Parkinson’s Disease, as well as it is quit difficult to assess the level of the disease. Experts recommend the application of different types of tests, many of them based on signs and biomedical imaging, such as electroencephalogram, computed tomography and magnetic resonance to aid the detection of the disease process, since as the age ranges, symptoms such as fatigue and weakness can hide diagnosis. In order to provide a more effective clinical information to doctors aiming at diagnosis with greater confidence, methodologies to perform the fusion of different imaging modalities have become increasingly popular and promising. Recently, the use of forms containing some activities using a biometric pen with multi-sensors have been applied for the detection of Parkinson’s Disease by means of handwriting analysis. However, information derived from the scanned image of the form itself, and the one obtained by same pen have not been used together for this purpose. Thus, this proposal aims using pattern recognition techniques and image processing aimed at using the information from the form together with data from the pen. We believe a possible improvement in the medical diagnosis of Parkinson’s Disease can be archived. Another contribution of this proposal, is the design of a multimodal database to aid in the diagnosis of Parkinson’s Disease.
publishDate 2017
dc.date.issued.fl_str_mv 2017-07-26
dc.date.accessioned.fl_str_mv 2018-01-25T16:41:48Z
dc.date.available.fl_str_mv 2018-01-25T16:41:48Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv PEREIRA, Clayton Reginaldo. Aprendizado de máquina aplicado ao auxílio do diagnóstico da doença de Parkinson. 2017. Tese (Doutorado em Ciência da Computação) – Universidade Federal de São Carlos, São Carlos, 2017. Disponível em: https://repositorio.ufscar.br/handle/20.500.14289/9299.
dc.identifier.uri.fl_str_mv https://repositorio.ufscar.br/handle/20.500.14289/9299
identifier_str_mv PEREIRA, Clayton Reginaldo. Aprendizado de máquina aplicado ao auxílio do diagnóstico da doença de Parkinson. 2017. Tese (Doutorado em Ciência da Computação) – Universidade Federal de São Carlos, São Carlos, 2017. Disponível em: https://repositorio.ufscar.br/handle/20.500.14289/9299.
url https://repositorio.ufscar.br/handle/20.500.14289/9299
dc.language.iso.fl_str_mv eng
language eng
dc.relation.confidence.fl_str_mv 600
600
dc.relation.authority.fl_str_mv a26a6b97-f6e5-4bd7-9c5a-876ad8cf02fd
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal de São Carlos
Câmpus São Carlos
dc.publisher.program.fl_str_mv Programa de Pós-Graduação em Ciência da Computação - PPGCC
dc.publisher.initials.fl_str_mv UFSCar
publisher.none.fl_str_mv Universidade Federal de São Carlos
Câmpus São Carlos
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFSCAR
instname:Universidade Federal de São Carlos (UFSCAR)
instacron:UFSCAR
instname_str Universidade Federal de São Carlos (UFSCAR)
instacron_str UFSCAR
institution UFSCAR
reponame_str Repositório Institucional da UFSCAR
collection Repositório Institucional da UFSCAR
bitstream.url.fl_str_mv https://repositorio.ufscar.br/bitstreams/95654f60-c311-402c-96f3-3be1883185c7/download
https://repositorio.ufscar.br/bitstreams/8b5b10ad-36f8-4249-9597-e997274afbc8/download
https://repositorio.ufscar.br/bitstreams/513c898a-d207-4969-b9b4-cdc1798eebda/download
https://repositorio.ufscar.br/bitstreams/29e7404d-1236-44a2-8817-399bfb3efb88/download
bitstream.checksum.fl_str_mv caeccc84696f23e07efee854d9bff6f5
ae0398b6f8b235e40ad82cba6c50031d
a7a933f4381599b5abbf2f636217fa74
f200be342314d98e7f37e0fde16b5a85
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)
repository.mail.fl_str_mv repositorio.sibi@ufscar.br
_version_ 1851688940793233408