SparkBLAST : utilização da ferramenta Apache Spark para a execução do BLAST em ambiente distribuído e escalável
| Ano de defesa: | 2017 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | |
| Tipo de documento: | Dissertação |
| Tipo de acesso: | Acesso aberto |
| Idioma: | por |
| Instituição de defesa: |
Universidade Federal de São Carlos
Câmpus São Carlos |
| Programa de Pós-Graduação: |
Programa de Pós-Graduação em Ciência da Computação - PPGCC
|
| Departamento: |
Não Informado pela instituição
|
| País: |
Não Informado pela instituição
|
| Palavras-chave em Português: | |
| Palavras-chave em Inglês: | |
| Área do conhecimento CNPq: | |
| Link de acesso: | https://repositorio.ufscar.br/handle/20.500.14289/9114 |
Resumo: | With the evolution of next generation sequencing devices, the cost for obtaining genomic data has significantly reduced. With reduced costs for sequencing, the amount of genomic data to be processed has increased exponentially. Such data growth supersedes the rate at which computing power can be increased year after year by the hardware and software evolution. Thus, the higher rate of data growth in bioinformatics raises the need for exploiting more efficient and scalable techniques based on parallel and distributed processing, including platforms like Clusters, and Cloud Computing. BLAST is a widely used tool for genomic sequences alignment, which has native support for multicore-based parallel processing. However, its scalability is limited to a single machine. On the other hand, Cloud computing has emerged as an important technology for supporting rapid and elastic provisioning of large amounts of resources. Current frameworks like Apache Hadoop and Apache Spark provide support for the execution of distributed applications. Such environments provide mechanisms for embedding external applications in order to compose large distributed jobs which can be executed on clusters and cloud platforms. In this work, we used Spark to support the high scalable and efficient parallelization of BLAST (Basic Local Alingment Search Tool) to execute on dozens to hundreds of processing cores on a cloud platform. As result, our prototype has demonstrated better performance and scalability then CloudBLAST, a Hadoop based parallelization of BLAST. |
| id |
SCAR_60ea872e8bb68d3ffd2acc9d1fa37ed5 |
|---|---|
| oai_identifier_str |
oai:repositorio.ufscar.br:20.500.14289/9114 |
| network_acronym_str |
SCAR |
| network_name_str |
Repositório Institucional da UFSCAR |
| repository_id_str |
|
| spelling |
Castro, Marcelo Rodrigo deSenger, Hermeshttp://lattes.cnpq.br/3691742159298316http://lattes.cnpq.br/868871203394353446b787fd-c8fd-4eb1-a39f-013b75d223652017-09-25T17:05:03Z2017-09-25T17:05:03Z2017-02-13CASTRO, Marcelo Rodrigo de. SparkBLAST : utilização da ferramenta Apache Spark para a execução do BLAST em ambiente distribuído e escalável. 2017. Dissertação (Mestrado em Ciência da Computação) – Universidade Federal de São Carlos, São Carlos, 2017. Disponível em: https://repositorio.ufscar.br/handle/20.500.14289/9114.https://repositorio.ufscar.br/handle/20.500.14289/9114With the evolution of next generation sequencing devices, the cost for obtaining genomic data has significantly reduced. With reduced costs for sequencing, the amount of genomic data to be processed has increased exponentially. Such data growth supersedes the rate at which computing power can be increased year after year by the hardware and software evolution. Thus, the higher rate of data growth in bioinformatics raises the need for exploiting more efficient and scalable techniques based on parallel and distributed processing, including platforms like Clusters, and Cloud Computing. BLAST is a widely used tool for genomic sequences alignment, which has native support for multicore-based parallel processing. However, its scalability is limited to a single machine. On the other hand, Cloud computing has emerged as an important technology for supporting rapid and elastic provisioning of large amounts of resources. Current frameworks like Apache Hadoop and Apache Spark provide support for the execution of distributed applications. Such environments provide mechanisms for embedding external applications in order to compose large distributed jobs which can be executed on clusters and cloud platforms. In this work, we used Spark to support the high scalable and efficient parallelization of BLAST (Basic Local Alingment Search Tool) to execute on dozens to hundreds of processing cores on a cloud platform. As result, our prototype has demonstrated better performance and scalability then CloudBLAST, a Hadoop based parallelization of BLAST.Com a redução dos custos e evolução dos mecanismos que efetuam o sequenciamento genômico, tem havido um grande aumento na quantidade de dados referentes aos estudos da genomica. O crescimento desses dados tem ocorrido a taxas mais elevadas do que a industria tem conseguido aumentar o poder dos computadores a cada ano. Para melhor atender a necessidade de processamento e analise de dados em bioinformatica faz-se o uso de sistemas paralelos e distribuídos, como por exemplo: Clusters, Grids e Nuvens Computacionais. Contudo, muitas ferramentas, como o BLAST, que fazem o alinhamento entre sequencias e banco de dados, nao foram desenvolvidas para serem processadas de forma distribuída e escalavel. Os atuais frameworks Apache Hadoop e Apache Spark permitem a execucao de aplicacoes de forma distribuída e paralela, desde que as aplicacoes possam ser devidamente adaptadas e paralelizadas. Estudos que permitam melhorar desempenho de aplicacoes em bioinformatica tem se tornado um esforço contínuo. O Spark tem se mostrado uma ferramenta robusta para processamento massivo de dados. Nesta pesquisa de mestrado a ferramenta Apache Spark foi utilizada para dar suporte ao paralelismo da ferramenta BLAST (Basic Local Alingment Search Tool). Experimentos realizados na nuvem Google Cloud e Microsoft Azure demonstram desempenho (speedup) obtido foi similar ou melhor que trabalhos semelhantes ja desenvolvidos em Hadoop.OutraConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ)porUniversidade Federal de São CarlosCâmpus São CarlosPrograma de Pós-Graduação em Ciência da Computação - PPGCCUFSCarBLASTApache SparkNuvens computacionaisSequenciamento genéticoCloud computingGenetic sequencingHadoopCIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAOSparkBLAST : utilização da ferramenta Apache Spark para a execução do BLAST em ambiente distribuído e escalávelinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisOnline6006002947c428-30b1-4d14-8369-e5871a4d7accinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFSCARinstname:Universidade Federal de São Carlos (UFSCAR)instacron:UFSCARORIGINALDissMRC.pdfDissMRC.pdfapplication/pdf1562148https://repositorio.ufscar.br/bitstreams/eaa1b500-26a4-437f-bc40-9577b0191981/download9921840ad67ef82d956e399ab96dd78cMD51trueAnonymousREADLICENSElicense.txtlicense.txttext/plain; charset=utf-81957https://repositorio.ufscar.br/bitstreams/2289cf90-cfab-475c-8cde-4d57f831b8e2/downloadae0398b6f8b235e40ad82cba6c50031dMD52falseAnonymousREADTEXTDissMRC.pdf.txtDissMRC.pdf.txtExtracted texttext/plain161874https://repositorio.ufscar.br/bitstreams/bada32a2-c7e6-48ae-9e11-3212244da5a5/download60c9f768375bf8ec7d483feeac370974MD55falseAnonymousREADTHUMBNAILDissMRC.pdf.jpgDissMRC.pdf.jpgIM Thumbnailimage/jpeg8424https://repositorio.ufscar.br/bitstreams/07aeb01d-9c84-4a6a-92d2-8e3f18029a6f/download482833920f3fa632038ec4bf214d7b64MD56falseAnonymousREAD20.500.14289/91142025-02-05 17:39:49.141Acesso abertoopen.accessoai:repositorio.ufscar.br:20.500.14289/9114https://repositorio.ufscar.brRepositório InstitucionalPUBhttps://repositorio.ufscar.br/oai/requestrepositorio.sibi@ufscar.bropendoar:43222025-02-05T20:39:49Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)falseTElDRU7Dh0EgREUgRElTVFJJQlVJw4fDg08gTsODTy1FWENMVVNJVkEKCkNvbSBhIGFwcmVzZW50YcOnw6NvIGRlc3RhIGxpY2Vuw6dhLCB2b2PDqiAobyBhdXRvciAoZXMpIG91IG8gdGl0dWxhciBkb3MgZGlyZWl0b3MgZGUgYXV0b3IpIGNvbmNlZGUgw6AgVW5pdmVyc2lkYWRlCkZlZGVyYWwgZGUgU8OjbyBDYXJsb3MgbyBkaXJlaXRvIG7Do28tZXhjbHVzaXZvIGRlIHJlcHJvZHV6aXIsICB0cmFkdXppciAoY29uZm9ybWUgZGVmaW5pZG8gYWJhaXhvKSwgZS9vdQpkaXN0cmlidWlyIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyAoaW5jbHVpbmRvIG8gcmVzdW1vKSBwb3IgdG9kbyBvIG11bmRvIG5vIGZvcm1hdG8gaW1wcmVzc28gZSBlbGV0csO0bmljbyBlCmVtIHF1YWxxdWVyIG1laW8sIGluY2x1aW5kbyBvcyBmb3JtYXRvcyDDoXVkaW8gb3UgdsOtZGVvLgoKVm9jw6ogY29uY29yZGEgcXVlIGEgVUZTQ2FyIHBvZGUsIHNlbSBhbHRlcmFyIG8gY29udGXDumRvLCB0cmFuc3BvciBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28KcGFyYSBxdWFscXVlciBtZWlvIG91IGZvcm1hdG8gcGFyYSBmaW5zIGRlIHByZXNlcnZhw6fDo28uCgpWb2PDqiB0YW1iw6ltIGNvbmNvcmRhIHF1ZSBhIFVGU0NhciBwb2RlIG1hbnRlciBtYWlzIGRlIHVtYSBjw7NwaWEgYSBzdWEgdGVzZSBvdQpkaXNzZXJ0YcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcwpuZXN0YSBsaWNlbsOnYS4gVm9jw6ogdGFtYsOpbSBkZWNsYXJhIHF1ZSBvIGRlcMOzc2l0byBkYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIG7Do28sIHF1ZSBzZWphIGRlIHNldQpjb25oZWNpbWVudG8sIGluZnJpbmdlIGRpcmVpdG9zIGF1dG9yYWlzIGRlIG5pbmd1w6ltLgoKQ2FzbyBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gY29udGVuaGEgbWF0ZXJpYWwgcXVlIHZvY8OqIG7Do28gcG9zc3VpIGEgdGl0dWxhcmlkYWRlIGRvcyBkaXJlaXRvcyBhdXRvcmFpcywgdm9jw6oKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIMOgIFVGU0NhcgpvcyBkaXJlaXRvcyBhcHJlc2VudGFkb3MgbmVzdGEgbGljZW7Dp2EsIGUgcXVlIGVzc2UgbWF0ZXJpYWwgZGUgcHJvcHJpZWRhZGUgZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUKaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3Ugbm8gY29udGXDumRvIGRhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBvcmEgZGVwb3NpdGFkYS4KCkNBU08gQSBURVNFIE9VIERJU1NFUlRBw4fDg08gT1JBIERFUE9TSVRBREEgVEVOSEEgU0lETyBSRVNVTFRBRE8gREUgVU0gUEFUUk9Dw41OSU8gT1UKQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBVRlNDYXIsClZPQ8OKIERFQ0xBUkEgUVVFIFJFU1BFSVRPVSBUT0RPUyBFIFFVQUlTUVVFUiBESVJFSVRPUyBERSBSRVZJU8ODTyBDT01PClRBTULDiU0gQVMgREVNQUlTIE9CUklHQcOHw5VFUyBFWElHSURBUyBQT1IgQ09OVFJBVE8gT1UgQUNPUkRPLgoKQSBVRlNDYXIgc2UgY29tcHJvbWV0ZSBhIGlkZW50aWZpY2FyIGNsYXJhbWVudGUgbyBzZXUgbm9tZSAocykgb3UgbyhzKSBub21lKHMpIGRvKHMpCmRldGVudG9yKGVzKSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzCmNvbmNlZGlkYXMgcG9yIGVzdGEgbGljZW7Dp2EuCg== |
| dc.title.por.fl_str_mv |
SparkBLAST : utilização da ferramenta Apache Spark para a execução do BLAST em ambiente distribuído e escalável |
| title |
SparkBLAST : utilização da ferramenta Apache Spark para a execução do BLAST em ambiente distribuído e escalável |
| spellingShingle |
SparkBLAST : utilização da ferramenta Apache Spark para a execução do BLAST em ambiente distribuído e escalável Castro, Marcelo Rodrigo de BLAST Apache Spark Nuvens computacionais Sequenciamento genético Cloud computing Genetic sequencing Hadoop CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO |
| title_short |
SparkBLAST : utilização da ferramenta Apache Spark para a execução do BLAST em ambiente distribuído e escalável |
| title_full |
SparkBLAST : utilização da ferramenta Apache Spark para a execução do BLAST em ambiente distribuído e escalável |
| title_fullStr |
SparkBLAST : utilização da ferramenta Apache Spark para a execução do BLAST em ambiente distribuído e escalável |
| title_full_unstemmed |
SparkBLAST : utilização da ferramenta Apache Spark para a execução do BLAST em ambiente distribuído e escalável |
| title_sort |
SparkBLAST : utilização da ferramenta Apache Spark para a execução do BLAST em ambiente distribuído e escalável |
| author |
Castro, Marcelo Rodrigo de |
| author_facet |
Castro, Marcelo Rodrigo de |
| author_role |
author |
| dc.contributor.authorlattes.por.fl_str_mv |
http://lattes.cnpq.br/8688712033943534 |
| dc.contributor.author.fl_str_mv |
Castro, Marcelo Rodrigo de |
| dc.contributor.advisor1.fl_str_mv |
Senger, Hermes |
| dc.contributor.advisor1Lattes.fl_str_mv |
http://lattes.cnpq.br/3691742159298316 |
| dc.contributor.authorID.fl_str_mv |
46b787fd-c8fd-4eb1-a39f-013b75d22365 |
| contributor_str_mv |
Senger, Hermes |
| dc.subject.por.fl_str_mv |
BLAST Apache Spark Nuvens computacionais Sequenciamento genético |
| topic |
BLAST Apache Spark Nuvens computacionais Sequenciamento genético Cloud computing Genetic sequencing Hadoop CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO |
| dc.subject.eng.fl_str_mv |
Cloud computing Genetic sequencing Hadoop |
| dc.subject.cnpq.fl_str_mv |
CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO |
| description |
With the evolution of next generation sequencing devices, the cost for obtaining genomic data has significantly reduced. With reduced costs for sequencing, the amount of genomic data to be processed has increased exponentially. Such data growth supersedes the rate at which computing power can be increased year after year by the hardware and software evolution. Thus, the higher rate of data growth in bioinformatics raises the need for exploiting more efficient and scalable techniques based on parallel and distributed processing, including platforms like Clusters, and Cloud Computing. BLAST is a widely used tool for genomic sequences alignment, which has native support for multicore-based parallel processing. However, its scalability is limited to a single machine. On the other hand, Cloud computing has emerged as an important technology for supporting rapid and elastic provisioning of large amounts of resources. Current frameworks like Apache Hadoop and Apache Spark provide support for the execution of distributed applications. Such environments provide mechanisms for embedding external applications in order to compose large distributed jobs which can be executed on clusters and cloud platforms. In this work, we used Spark to support the high scalable and efficient parallelization of BLAST (Basic Local Alingment Search Tool) to execute on dozens to hundreds of processing cores on a cloud platform. As result, our prototype has demonstrated better performance and scalability then CloudBLAST, a Hadoop based parallelization of BLAST. |
| publishDate |
2017 |
| dc.date.accessioned.fl_str_mv |
2017-09-25T17:05:03Z |
| dc.date.available.fl_str_mv |
2017-09-25T17:05:03Z |
| dc.date.issued.fl_str_mv |
2017-02-13 |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
| format |
masterThesis |
| status_str |
publishedVersion |
| dc.identifier.citation.fl_str_mv |
CASTRO, Marcelo Rodrigo de. SparkBLAST : utilização da ferramenta Apache Spark para a execução do BLAST em ambiente distribuído e escalável. 2017. Dissertação (Mestrado em Ciência da Computação) – Universidade Federal de São Carlos, São Carlos, 2017. Disponível em: https://repositorio.ufscar.br/handle/20.500.14289/9114. |
| dc.identifier.uri.fl_str_mv |
https://repositorio.ufscar.br/handle/20.500.14289/9114 |
| identifier_str_mv |
CASTRO, Marcelo Rodrigo de. SparkBLAST : utilização da ferramenta Apache Spark para a execução do BLAST em ambiente distribuído e escalável. 2017. Dissertação (Mestrado em Ciência da Computação) – Universidade Federal de São Carlos, São Carlos, 2017. Disponível em: https://repositorio.ufscar.br/handle/20.500.14289/9114. |
| url |
https://repositorio.ufscar.br/handle/20.500.14289/9114 |
| dc.language.iso.fl_str_mv |
por |
| language |
por |
| dc.relation.confidence.fl_str_mv |
600 600 |
| dc.relation.authority.fl_str_mv |
2947c428-30b1-4d14-8369-e5871a4d7acc |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.publisher.none.fl_str_mv |
Universidade Federal de São Carlos Câmpus São Carlos |
| dc.publisher.program.fl_str_mv |
Programa de Pós-Graduação em Ciência da Computação - PPGCC |
| dc.publisher.initials.fl_str_mv |
UFSCar |
| publisher.none.fl_str_mv |
Universidade Federal de São Carlos Câmpus São Carlos |
| dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFSCAR instname:Universidade Federal de São Carlos (UFSCAR) instacron:UFSCAR |
| instname_str |
Universidade Federal de São Carlos (UFSCAR) |
| instacron_str |
UFSCAR |
| institution |
UFSCAR |
| reponame_str |
Repositório Institucional da UFSCAR |
| collection |
Repositório Institucional da UFSCAR |
| bitstream.url.fl_str_mv |
https://repositorio.ufscar.br/bitstreams/eaa1b500-26a4-437f-bc40-9577b0191981/download https://repositorio.ufscar.br/bitstreams/2289cf90-cfab-475c-8cde-4d57f831b8e2/download https://repositorio.ufscar.br/bitstreams/bada32a2-c7e6-48ae-9e11-3212244da5a5/download https://repositorio.ufscar.br/bitstreams/07aeb01d-9c84-4a6a-92d2-8e3f18029a6f/download |
| bitstream.checksum.fl_str_mv |
9921840ad67ef82d956e399ab96dd78c ae0398b6f8b235e40ad82cba6c50031d 60c9f768375bf8ec7d483feeac370974 482833920f3fa632038ec4bf214d7b64 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR) |
| repository.mail.fl_str_mv |
repositorio.sibi@ufscar.br |
| _version_ |
1851688752226762752 |