Towards a strategy and tool support for test generation based on good software testing practices: classification and prioritization

Detalhes bibliográficos
Ano de defesa: 2025
Autor(a) principal: Villota Ibarra, Camilo
Orientador(a): Rizzo Vincenzi, Auri Marcelo lattes
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Universidade Federal de São Carlos
Câmpus São Carlos
Programa de Pós-Graduação: Programa de Pós-Graduação em Ciência da Computação - PPGCC
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Inglês:
Área do conhecimento CNPq:
Link de acesso: https://hdl.handle.net/20.500.14289/22666
Resumo: This thesis addresses the challenge of defining, validating, and operationalizing good software testing practices, with a focus on improving the quality of test cases. It begins with a systematic literature review, which identifies 131 practices from 103 primary studies, refined into a set of 40 essential best practices. These practices were classified into code-oriented and no-code-oriented groups and validated through a practitioner-centered survey involving experienced software testers, who evaluated their clarity, relevance, applicability, and prioritization. Based on this foundation, the thesis introduces TAI-EvalGenTCS. This AI-based tool uses the OpenAI GPT-4 turbo model to evaluate test cases against proposed practices and generate optimized test cases. The tool was experimentally validated using 16 real-world Java projects, demonstrating its effectiveness in improving the modularity, maintainability, and compliance of the test cases with best practices. The survey results provided empirical confirmation of the proposed classification and offered valuable insights into tool support needs and industry perceptions. The contributions of this research include a structured and validated set of testing practices, a ranked list of essential test case features, empirical validation from industry practitioners, and a practical AI-powered solution that bridges the gap between test automation and test design quality.
id SCAR_62860ee9281d8a1ebd2c23d159e2b728
oai_identifier_str oai:repositorio.ufscar.br:20.500.14289/22666
network_acronym_str SCAR
network_name_str Repositório Institucional da UFSCAR
repository_id_str
spelling Villota Ibarra, CamiloRizzo Vincenzi, Auri Marcelohttp://lattes.cnpq.br/0611351138131709Maldonado, José Carloshttp://lattes.cnpq.br/8807333466702951http://lattes.cnpq.br/7749442562596651https://orcid.org/0000-0001-7926-6837https://orcid.org/0000-0001-5902-1672https://orcid.org/0000-0002-3779-71432025-09-01T18:44:32Z2025-05-13VILLOTA IBARRA, Camilo. Towards a strategy and tool support for test generation based on good software testing practices: classification and prioritization. 2025. Tese (Doutorado em Ciência da Computação) – Universidade Federal de São Carlos, São Carlos, 2025. Disponível em: https://repositorio.ufscar.br/handle/20.500.14289/22666.https://hdl.handle.net/20.500.14289/22666This thesis addresses the challenge of defining, validating, and operationalizing good software testing practices, with a focus on improving the quality of test cases. It begins with a systematic literature review, which identifies 131 practices from 103 primary studies, refined into a set of 40 essential best practices. These practices were classified into code-oriented and no-code-oriented groups and validated through a practitioner-centered survey involving experienced software testers, who evaluated their clarity, relevance, applicability, and prioritization. Based on this foundation, the thesis introduces TAI-EvalGenTCS. This AI-based tool uses the OpenAI GPT-4 turbo model to evaluate test cases against proposed practices and generate optimized test cases. The tool was experimentally validated using 16 real-world Java projects, demonstrating its effectiveness in improving the modularity, maintainability, and compliance of the test cases with best practices. The survey results provided empirical confirmation of the proposed classification and offered valuable insights into tool support needs and industry perceptions. The contributions of this research include a structured and validated set of testing practices, a ranked list of essential test case features, empirical validation from industry practitioners, and a practical AI-powered solution that bridges the gap between test automation and test design quality.Esta tese aborda o desafio de definir, validar e operacionalizar boas práticas de teste de software, com foco na melhoria da qualidade dos casos de teste. O trabalho inicia-se com uma revisão sistemática da literatura, que identificou 131 práticas a partir de 103 estudos primários, refinadas em um conjunto de 40 práticas essenciais. Essas práticas foram classificadas em grupos orientados a código e não orientados a código e validadas por meio de uma pesquisa centrada em profissionais, envolvendo testadores de software experientes que avaliaram sua clareza, relevância, aplicabilidade e priorização. Com base nesse fundamento, a tese apresenta a TAI-EvalGenTCS, uma ferramenta baseada em IA que utiliza o modelo GPT-4 turbo da OpenAI para avaliar casos de teste em relação às práticas propostas e gerar casos de teste otimizados. A ferramenta foi validada experimentalmente com 16 projetos reais em Java, demonstrando sua eficácia na melhoria da modularidade, manutenibilidade e conformidade dos casos de teste com as boas práticas. Os resultados da pesquisa forneceram confirmação empírica da classificação proposta e ofereceram insights valiosos sobre as necessidades de suporte por ferramentas e percepções da indústria. As contribuições desta pesquisa incluem um conjunto estruturado e validado de práticas de teste, uma lista priorizada de características essenciais dos casos de teste, validação empírica com profissionais da indústria e uma solução prática impulsionada por IA que aproxima a automação de testes da qualidade do design de testes.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)engUniversidade Federal de São CarlosCâmpus São CarlosPrograma de Pós-Graduação em Ciência da Computação - PPGCCUFSCarhttps://dl.acm.org/doi/10.1145/3592813.3592930Attribution-NonCommercial-ShareAlike 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-sa/3.0/br/info:eu-repo/semantics/openAccessGood software testing practicesTest casesTest case development practicesTest case generation toolsCIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO::METODOLOGIA E TECNICAS DA COMPUTACAOTowards a strategy and tool support for test generation based on good software testing practices: classification and prioritizationRumo a uma estratégia e apoio por ferramentas para a geração de testes baseada em boas práticas de teste de software: classificação e priorizaçãoinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisreponame:Repositório Institucional da UFSCARinstname:Universidade Federal de São Carlos (UFSCAR)instacron:UFSCARTEXTTese_Camilo__Final_.pdf.txtTese_Camilo__Final_.pdf.txtExtracted texttext/plain100573https://repositorio.ufscar.br/bitstreams/b0851ce0-6c0b-4215-ae54-d6d75b6538d3/download59488143d7374edaf026b941540fac5dMD53falseAnonymousREADTHUMBNAILTese_Camilo__Final_.pdf.jpgTese_Camilo__Final_.pdf.jpgGenerated Thumbnailimage/jpeg4119https://repositorio.ufscar.br/bitstreams/d48920cc-3ef8-4694-aff3-edb61d229702/download69c7c0db00c68fc29e9098bcfff00865MD54falseAnonymousREADCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81167https://repositorio.ufscar.br/bitstreams/64d3db8a-6757-4130-b583-92caa8c9fecf/downloaddcb5d775186468eac043bfcac8407c86MD52falseAnonymousREADORIGINALTese_Camilo__Final_.pdfTese_Camilo__Final_.pdfapplication/pdf1798942https://repositorio.ufscar.br/bitstreams/90ae8cd9-cd2d-4335-bf1c-6287e738b83f/downloadb50b0688b7ffe50721b3b9408cccacc7MD51trueAnonymousREAD20.500.14289/226662025-09-02T03:04:27.766236Zhttp://creativecommons.org/licenses/by-nc-sa/3.0/br/Attribution-NonCommercial-ShareAlike 3.0 Brazilopen.accessoai:repositorio.ufscar.br:20.500.14289/22666https://repositorio.ufscar.brRepositório InstitucionalPUBhttps://repositorio.ufscar.br/oai/requestrepositorio.sibi@ufscar.bropendoar:43222025-09-02T03:04:27Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)false
dc.title.eng.fl_str_mv Towards a strategy and tool support for test generation based on good software testing practices: classification and prioritization
dc.title.alternative.por.fl_str_mv Rumo a uma estratégia e apoio por ferramentas para a geração de testes baseada em boas práticas de teste de software: classificação e priorização
title Towards a strategy and tool support for test generation based on good software testing practices: classification and prioritization
spellingShingle Towards a strategy and tool support for test generation based on good software testing practices: classification and prioritization
Villota Ibarra, Camilo
Good software testing practices
Test cases
Test case development practices
Test case generation tools
CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO::METODOLOGIA E TECNICAS DA COMPUTACAO
title_short Towards a strategy and tool support for test generation based on good software testing practices: classification and prioritization
title_full Towards a strategy and tool support for test generation based on good software testing practices: classification and prioritization
title_fullStr Towards a strategy and tool support for test generation based on good software testing practices: classification and prioritization
title_full_unstemmed Towards a strategy and tool support for test generation based on good software testing practices: classification and prioritization
title_sort Towards a strategy and tool support for test generation based on good software testing practices: classification and prioritization
author Villota Ibarra, Camilo
author_facet Villota Ibarra, Camilo
author_role author
dc.contributor.authorlattes.none.fl_str_mv http://lattes.cnpq.br/7749442562596651
dc.contributor.authororcid.none.fl_str_mv https://orcid.org/0000-0001-7926-6837
dc.contributor.advisor1orcid.none.fl_str_mv https://orcid.org/0000-0001-5902-1672
dc.contributor.advisor-co1orcid.none.fl_str_mv https://orcid.org/0000-0002-3779-7143
dc.contributor.author.fl_str_mv Villota Ibarra, Camilo
dc.contributor.advisor1.fl_str_mv Rizzo Vincenzi, Auri Marcelo
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/0611351138131709
dc.contributor.advisor-co1.fl_str_mv Maldonado, José Carlos
dc.contributor.advisor-co1Lattes.fl_str_mv http://lattes.cnpq.br/8807333466702951
contributor_str_mv Rizzo Vincenzi, Auri Marcelo
Maldonado, José Carlos
dc.subject.eng.fl_str_mv Good software testing practices
Test cases
Test case development practices
Test case generation tools
topic Good software testing practices
Test cases
Test case development practices
Test case generation tools
CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO::METODOLOGIA E TECNICAS DA COMPUTACAO
dc.subject.cnpq.fl_str_mv CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO::METODOLOGIA E TECNICAS DA COMPUTACAO
description This thesis addresses the challenge of defining, validating, and operationalizing good software testing practices, with a focus on improving the quality of test cases. It begins with a systematic literature review, which identifies 131 practices from 103 primary studies, refined into a set of 40 essential best practices. These practices were classified into code-oriented and no-code-oriented groups and validated through a practitioner-centered survey involving experienced software testers, who evaluated their clarity, relevance, applicability, and prioritization. Based on this foundation, the thesis introduces TAI-EvalGenTCS. This AI-based tool uses the OpenAI GPT-4 turbo model to evaluate test cases against proposed practices and generate optimized test cases. The tool was experimentally validated using 16 real-world Java projects, demonstrating its effectiveness in improving the modularity, maintainability, and compliance of the test cases with best practices. The survey results provided empirical confirmation of the proposed classification and offered valuable insights into tool support needs and industry perceptions. The contributions of this research include a structured and validated set of testing practices, a ranked list of essential test case features, empirical validation from industry practitioners, and a practical AI-powered solution that bridges the gap between test automation and test design quality.
publishDate 2025
dc.date.accessioned.fl_str_mv 2025-09-01T18:44:32Z
dc.date.issued.fl_str_mv 2025-05-13
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv VILLOTA IBARRA, Camilo. Towards a strategy and tool support for test generation based on good software testing practices: classification and prioritization. 2025. Tese (Doutorado em Ciência da Computação) – Universidade Federal de São Carlos, São Carlos, 2025. Disponível em: https://repositorio.ufscar.br/handle/20.500.14289/22666.
dc.identifier.uri.fl_str_mv https://hdl.handle.net/20.500.14289/22666
identifier_str_mv VILLOTA IBARRA, Camilo. Towards a strategy and tool support for test generation based on good software testing practices: classification and prioritization. 2025. Tese (Doutorado em Ciência da Computação) – Universidade Federal de São Carlos, São Carlos, 2025. Disponível em: https://repositorio.ufscar.br/handle/20.500.14289/22666.
url https://hdl.handle.net/20.500.14289/22666
dc.language.iso.fl_str_mv eng
language eng
dc.relation.uri.none.fl_str_mv https://dl.acm.org/doi/10.1145/3592813.3592930
dc.rights.driver.fl_str_mv Attribution-NonCommercial-ShareAlike 3.0 Brazil
http://creativecommons.org/licenses/by-nc-sa/3.0/br/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution-NonCommercial-ShareAlike 3.0 Brazil
http://creativecommons.org/licenses/by-nc-sa/3.0/br/
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal de São Carlos
Câmpus São Carlos
dc.publisher.program.fl_str_mv Programa de Pós-Graduação em Ciência da Computação - PPGCC
dc.publisher.initials.fl_str_mv UFSCar
publisher.none.fl_str_mv Universidade Federal de São Carlos
Câmpus São Carlos
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFSCAR
instname:Universidade Federal de São Carlos (UFSCAR)
instacron:UFSCAR
instname_str Universidade Federal de São Carlos (UFSCAR)
instacron_str UFSCAR
institution UFSCAR
reponame_str Repositório Institucional da UFSCAR
collection Repositório Institucional da UFSCAR
bitstream.url.fl_str_mv https://repositorio.ufscar.br/bitstreams/b0851ce0-6c0b-4215-ae54-d6d75b6538d3/download
https://repositorio.ufscar.br/bitstreams/d48920cc-3ef8-4694-aff3-edb61d229702/download
https://repositorio.ufscar.br/bitstreams/64d3db8a-6757-4130-b583-92caa8c9fecf/download
https://repositorio.ufscar.br/bitstreams/90ae8cd9-cd2d-4335-bf1c-6287e738b83f/download
bitstream.checksum.fl_str_mv 59488143d7374edaf026b941540fac5d
69c7c0db00c68fc29e9098bcfff00865
dcb5d775186468eac043bfcac8407c86
b50b0688b7ffe50721b3b9408cccacc7
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)
repository.mail.fl_str_mv repositorio.sibi@ufscar.br
_version_ 1851688890092486656