SB-Index : um índice espacial baseado em bitmap para data warehouse geográfico
| Ano de defesa: | 2009 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | |
| Tipo de documento: | Dissertação |
| Tipo de acesso: | Acesso aberto |
| Idioma: | por |
| Instituição de defesa: |
Universidade Federal de São Carlos
|
| Programa de Pós-Graduação: |
Programa de Pós-Graduação em Ciência da Computação - PPGCC
|
| Departamento: |
Não Informado pela instituição
|
| País: |
BR
|
| Palavras-chave em Português: | |
| Palavras-chave em Inglês: | |
| Área do conhecimento CNPq: | |
| Link de acesso: | https://repositorio.ufscar.br/handle/20.500.14289/418 |
Resumo: | Geographic Data Warehouses (GDW) became one of the main technologies used in decision-making processes and spatial analysis since they provide the integration of Data Warehouses, On-Line Analytical Processing and Geographic Information Systems. As a result, a GDW enables spatial analyses together with agile and flexible multidimensional analytical queries over huge volumes of data. On the other hand, there is a challenge in a GDW concerning the query performance, which consists of retrieving data related to ad-hoc spatial query windows and avoiding the high cost of star-joins. Clearly, mechanisms to provide efficient query processing, as index structures, are essential. In this master s thesis, a novel index for GDW is introduced, namely the SB-index, which is based on the Bitmap Join Index and the Minimum Bounding Rectangle. The SB-index inherits the Bitmap Index legacy techniques and introduces them in GDW, as well as it enables support for predefined spatial attribute hierarchies. The SB-index validation was performed through experimental performance tests. Comparisons among the SB-index approach, the star-join aided by R-tree and the star-join aided by GiST indicated that the SB-index significantly improves the elapsed time in query processing from 76% up to 96% with regard to queries defined over the spatial predicates of intersection, enclosure and containment and applied to roll-up and drill-down operations. In addition, the impact of the increase in data volume on the performance was analyzed. The increase did not impair the performance of the SB-index, which highly improved the elapsed time in query processing. Moreover, in this master s thesis there is an experimental investigation on how does the spatial data redundancy affect query response time and storage requirements in a GDW? . Redundant and non-redundant GDW schemas were compared, concluding that redundancy is related to high performance losses. Then, aiming at improving query performance, the SB-index performance was evaluated on the redundant GDW schema. The results pointed out that SB-index significantly improves the elapsed time in query processing from 25% up to 99%. Finally, a specific enhancement of the SB-index was developed in order to deal with spatial data redundancy. With this enhancement, the minimum performance gain observed became 80%. |
| id |
SCAR_63973b0857ed7c2b4c003e39b437d692 |
|---|---|
| oai_identifier_str |
oai:repositorio.ufscar.br:20.500.14289/418 |
| network_acronym_str |
SCAR |
| network_name_str |
Repositório Institucional da UFSCAR |
| repository_id_str |
|
| spelling |
Siqueira, Thiago Luís LopesCiferri, Ricardo Rodrigueshttp://lattes.cnpq.br/8382221522817502http://lattes.cnpq.br/4302523779194273fe1bdff7-953c-4613-8a0c-8d2d71e866a52016-06-02T19:05:38Z2009-12-032016-06-02T19:05:38Z2009-08-26SIQUEIRA, Thiago Luís Lopes. SB-Index : um índice espacial baseado em bitmap para data warehouse geográfico. 2009. 120 f. Dissertação (Mestrado em Ciências Exatas e da Terra) - Universidade Federal de São Carlos, São Carlos, 2009.https://repositorio.ufscar.br/handle/20.500.14289/418Geographic Data Warehouses (GDW) became one of the main technologies used in decision-making processes and spatial analysis since they provide the integration of Data Warehouses, On-Line Analytical Processing and Geographic Information Systems. As a result, a GDW enables spatial analyses together with agile and flexible multidimensional analytical queries over huge volumes of data. On the other hand, there is a challenge in a GDW concerning the query performance, which consists of retrieving data related to ad-hoc spatial query windows and avoiding the high cost of star-joins. Clearly, mechanisms to provide efficient query processing, as index structures, are essential. In this master s thesis, a novel index for GDW is introduced, namely the SB-index, which is based on the Bitmap Join Index and the Minimum Bounding Rectangle. The SB-index inherits the Bitmap Index legacy techniques and introduces them in GDW, as well as it enables support for predefined spatial attribute hierarchies. The SB-index validation was performed through experimental performance tests. Comparisons among the SB-index approach, the star-join aided by R-tree and the star-join aided by GiST indicated that the SB-index significantly improves the elapsed time in query processing from 76% up to 96% with regard to queries defined over the spatial predicates of intersection, enclosure and containment and applied to roll-up and drill-down operations. In addition, the impact of the increase in data volume on the performance was analyzed. The increase did not impair the performance of the SB-index, which highly improved the elapsed time in query processing. Moreover, in this master s thesis there is an experimental investigation on how does the spatial data redundancy affect query response time and storage requirements in a GDW? . Redundant and non-redundant GDW schemas were compared, concluding that redundancy is related to high performance losses. Then, aiming at improving query performance, the SB-index performance was evaluated on the redundant GDW schema. The results pointed out that SB-index significantly improves the elapsed time in query processing from 25% up to 99%. Finally, a specific enhancement of the SB-index was developed in order to deal with spatial data redundancy. With this enhancement, the minimum performance gain observed became 80%.O Data Warehouse Geográfico (DWG) tornou-se uma das principais tecnologias de suporte à decisão, pois promove a integração de data warehouses, On-Line Analytical Processing e Sistemas de Informações Geográficas. Por isso, um DWG viabiliza a análise espacial aliada à execução de consultas analíticas multidimensionais envolvendo enormes volumes de dados. Por outro lado, existe um desafio relativo ao desempenho no processamento de consultas, que envolvem janelas de consulta espaciais ad-hoc e várias junções entre tabelas. Claramente, mecanismos para aumentar o desempenho do processamento de consultas, como as estruturas de indexação, são essenciais. Nesta dissertação, propõe-se um novo índice para DWG chamado SB-index, baseado no Índice Bitmap de Junção e no Retângulo Envolvente Mínimo. O SB-index herda todo o legado de técnicas do Índice Bitmap e o introduz no DWG. Além disso, ele provê suporte a hierarquias de atributos espaciais predefinidas. Este índice foi validado por meio de testes experimentais de desempenho. Comparações entre o SB-index, a junção estrela auxiliada pela R-tree e a junção-estrela auxiliada por GiST indicaram que o SB-index diminui significativamente o tempo de resposta do processamento de consultas roll-up e drill-down relacionadas aos predicados espaciais intersecta , está contido e contém , promovendo ganhos de 76% a 96%. Mostrou-se ainda que a variação do volume de dados não prejudica o desempenho do SB-index. Esta dissertação também investiga a seguinte questão: como a redundância de dados espaciais afeta um DWG? . Foram comparados os esquemas de DWG redundante e não-redundante. Observou-se que a redundância de dados espaciais acarreta prejuízos ao tempo de resposta das consultas e aos requisitos de armazenamento do DWG. Então, visando melhorar o desempenho do processamento de consultas, introduziu-se o SB-index no esquema de DWG redundante. Os ganhos de desempenho obtidos a partir desta ação variaram de 25% a 99%. Por fim, foi proposta uma melhoria sobre o SB-index a fim de lidar especificamente com a questão da redundância de dados espaciais. A partir desta melhoria, o ganho mínimo de desempenho tornou-se 80%.Universidade Federal de Minas Geraisapplication/pdfporUniversidade Federal de São CarlosPrograma de Pós-Graduação em Ciência da Computação - PPGCCUFSCarBRBanco de dadosData warehouse geográficoIndexaçãoÍndice bitmapGeographic data warehouseBitmap indexIndexingCIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAOSB-Index : um índice espacial baseado em bitmap para data warehouse geográficoinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesis-1-13b1d5172-8bf0-4d0b-8777-ab82599bbf09info:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFSCARinstname:Universidade Federal de São Carlos (UFSCAR)instacron:UFSCARTEXT2652.pdf.txt2652.pdf.txtExtracted texttext/plain102759https://repositorio.ufscar.br/bitstreams/f78b08a1-6bd6-4048-a7df-37181c8ec24c/download630ea19228079981612cf5216f9facbcMD53falseAnonymousREADORIGINAL2652.pdfapplication/pdf3404746https://repositorio.ufscar.br/bitstreams/3587157b-4214-4173-9159-439e1f34f609/downloadb3a10a77ac70bae2b29efed871dc75e4MD51trueAnonymousREADTHUMBNAIL2652.pdf.jpg2652.pdf.jpgIM Thumbnailimage/jpeg6626https://repositorio.ufscar.br/bitstreams/988ddd6b-84a5-4f53-b46f-a57f9c4a6aaf/download1ae80a543477ef906446189f4bac6b7dMD52falseAnonymousREAD20.500.14289/4182025-02-05 15:06:49.889open.accessoai:repositorio.ufscar.br:20.500.14289/418https://repositorio.ufscar.brRepositório InstitucionalPUBhttps://repositorio.ufscar.br/oai/requestrepositorio.sibi@ufscar.bropendoar:43222025-02-05T18:06:49Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)false |
| dc.title.por.fl_str_mv |
SB-Index : um índice espacial baseado em bitmap para data warehouse geográfico |
| title |
SB-Index : um índice espacial baseado em bitmap para data warehouse geográfico |
| spellingShingle |
SB-Index : um índice espacial baseado em bitmap para data warehouse geográfico Siqueira, Thiago Luís Lopes Banco de dados Data warehouse geográfico Indexação Índice bitmap Geographic data warehouse Bitmap index Indexing CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO |
| title_short |
SB-Index : um índice espacial baseado em bitmap para data warehouse geográfico |
| title_full |
SB-Index : um índice espacial baseado em bitmap para data warehouse geográfico |
| title_fullStr |
SB-Index : um índice espacial baseado em bitmap para data warehouse geográfico |
| title_full_unstemmed |
SB-Index : um índice espacial baseado em bitmap para data warehouse geográfico |
| title_sort |
SB-Index : um índice espacial baseado em bitmap para data warehouse geográfico |
| author |
Siqueira, Thiago Luís Lopes |
| author_facet |
Siqueira, Thiago Luís Lopes |
| author_role |
author |
| dc.contributor.authorlattes.por.fl_str_mv |
http://lattes.cnpq.br/4302523779194273 |
| dc.contributor.author.fl_str_mv |
Siqueira, Thiago Luís Lopes |
| dc.contributor.advisor1.fl_str_mv |
Ciferri, Ricardo Rodrigues |
| dc.contributor.advisor1Lattes.fl_str_mv |
http://lattes.cnpq.br/8382221522817502 |
| dc.contributor.authorID.fl_str_mv |
fe1bdff7-953c-4613-8a0c-8d2d71e866a5 |
| contributor_str_mv |
Ciferri, Ricardo Rodrigues |
| dc.subject.por.fl_str_mv |
Banco de dados Data warehouse geográfico Indexação Índice bitmap |
| topic |
Banco de dados Data warehouse geográfico Indexação Índice bitmap Geographic data warehouse Bitmap index Indexing CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO |
| dc.subject.eng.fl_str_mv |
Geographic data warehouse Bitmap index Indexing |
| dc.subject.cnpq.fl_str_mv |
CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO |
| description |
Geographic Data Warehouses (GDW) became one of the main technologies used in decision-making processes and spatial analysis since they provide the integration of Data Warehouses, On-Line Analytical Processing and Geographic Information Systems. As a result, a GDW enables spatial analyses together with agile and flexible multidimensional analytical queries over huge volumes of data. On the other hand, there is a challenge in a GDW concerning the query performance, which consists of retrieving data related to ad-hoc spatial query windows and avoiding the high cost of star-joins. Clearly, mechanisms to provide efficient query processing, as index structures, are essential. In this master s thesis, a novel index for GDW is introduced, namely the SB-index, which is based on the Bitmap Join Index and the Minimum Bounding Rectangle. The SB-index inherits the Bitmap Index legacy techniques and introduces them in GDW, as well as it enables support for predefined spatial attribute hierarchies. The SB-index validation was performed through experimental performance tests. Comparisons among the SB-index approach, the star-join aided by R-tree and the star-join aided by GiST indicated that the SB-index significantly improves the elapsed time in query processing from 76% up to 96% with regard to queries defined over the spatial predicates of intersection, enclosure and containment and applied to roll-up and drill-down operations. In addition, the impact of the increase in data volume on the performance was analyzed. The increase did not impair the performance of the SB-index, which highly improved the elapsed time in query processing. Moreover, in this master s thesis there is an experimental investigation on how does the spatial data redundancy affect query response time and storage requirements in a GDW? . Redundant and non-redundant GDW schemas were compared, concluding that redundancy is related to high performance losses. Then, aiming at improving query performance, the SB-index performance was evaluated on the redundant GDW schema. The results pointed out that SB-index significantly improves the elapsed time in query processing from 25% up to 99%. Finally, a specific enhancement of the SB-index was developed in order to deal with spatial data redundancy. With this enhancement, the minimum performance gain observed became 80%. |
| publishDate |
2009 |
| dc.date.available.fl_str_mv |
2009-12-03 2016-06-02T19:05:38Z |
| dc.date.issued.fl_str_mv |
2009-08-26 |
| dc.date.accessioned.fl_str_mv |
2016-06-02T19:05:38Z |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
| format |
masterThesis |
| status_str |
publishedVersion |
| dc.identifier.citation.fl_str_mv |
SIQUEIRA, Thiago Luís Lopes. SB-Index : um índice espacial baseado em bitmap para data warehouse geográfico. 2009. 120 f. Dissertação (Mestrado em Ciências Exatas e da Terra) - Universidade Federal de São Carlos, São Carlos, 2009. |
| dc.identifier.uri.fl_str_mv |
https://repositorio.ufscar.br/handle/20.500.14289/418 |
| identifier_str_mv |
SIQUEIRA, Thiago Luís Lopes. SB-Index : um índice espacial baseado em bitmap para data warehouse geográfico. 2009. 120 f. Dissertação (Mestrado em Ciências Exatas e da Terra) - Universidade Federal de São Carlos, São Carlos, 2009. |
| url |
https://repositorio.ufscar.br/handle/20.500.14289/418 |
| dc.language.iso.fl_str_mv |
por |
| language |
por |
| dc.relation.confidence.fl_str_mv |
-1 -1 |
| dc.relation.authority.fl_str_mv |
3b1d5172-8bf0-4d0b-8777-ab82599bbf09 |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.publisher.none.fl_str_mv |
Universidade Federal de São Carlos |
| dc.publisher.program.fl_str_mv |
Programa de Pós-Graduação em Ciência da Computação - PPGCC |
| dc.publisher.initials.fl_str_mv |
UFSCar |
| dc.publisher.country.fl_str_mv |
BR |
| publisher.none.fl_str_mv |
Universidade Federal de São Carlos |
| dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFSCAR instname:Universidade Federal de São Carlos (UFSCAR) instacron:UFSCAR |
| instname_str |
Universidade Federal de São Carlos (UFSCAR) |
| instacron_str |
UFSCAR |
| institution |
UFSCAR |
| reponame_str |
Repositório Institucional da UFSCAR |
| collection |
Repositório Institucional da UFSCAR |
| bitstream.url.fl_str_mv |
https://repositorio.ufscar.br/bitstreams/f78b08a1-6bd6-4048-a7df-37181c8ec24c/download https://repositorio.ufscar.br/bitstreams/3587157b-4214-4173-9159-439e1f34f609/download https://repositorio.ufscar.br/bitstreams/988ddd6b-84a5-4f53-b46f-a57f9c4a6aaf/download |
| bitstream.checksum.fl_str_mv |
630ea19228079981612cf5216f9facbc b3a10a77ac70bae2b29efed871dc75e4 1ae80a543477ef906446189f4bac6b7d |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR) |
| repository.mail.fl_str_mv |
repositorio.sibi@ufscar.br |
| _version_ |
1851688757058600960 |