Análise do desempenho de gráficos de controle X-Bar considerando diferentes estimadores do desvio padrão

Detalhes bibliográficos
Ano de defesa: 2018
Autor(a) principal: Sobue, Cássio Eduardo Faria
Orientador(a): Oprime, Pedro Carlos lattes
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de São Carlos
Câmpus São Carlos
Programa de Pós-Graduação: Programa de Pós-Graduação em Engenharia de Produção - PPGEP
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Palavras-chave em Inglês:
Área do conhecimento CNPq:
Link de acesso: https://repositorio.ufscar.br/handle/20.500.14289/10002
Resumo: The reference works about control charts consider the statistical parameters as known to calculate the control limits. However, in the last decades, the literature about SPC (Statistical Process Control) has indicated a difference between the theoretical and the real performance of control charts which use estimated statistical parameters, increasing the incidence of false alarms. Reference researchers in SPC, as Castagliola and Chakraborti, propose new designs of control charts, improving the performance of Shewhart’s control charts. This work aims to compare the X-bar control charts performance, using five standard deviation estimators, based on the analysis of proportion of ARL values (Average Run Length, the average number of samples until the incidence of a false alarm) in the interval between 0 and 200 of the ARL distribution and varying the sample size and the number of the samples. The five estimators are: the estimator calculated from the average sample range; the estimator calculated from the average sample standard deviation; the estimator calculated from the pooled standard deviation divided by the result of c4 (constant influenced by the sample size) in function of ν (number of degrees of freedom, resultant from the number of samples times the sample size minus one); the estimator calculated from the pooled standard deviation times the result of the constant c4 in function of ν; and the estimator based only on the pooled standard deviation. The method applied is the simulation, developing five programs to simulate productive in-control processes, each one for each standard deviation estimator. After the comparison of proportions, the third estimator is indicated for the situation with the lowest samples values tested (m=20 and n=5 and n=10), and the first estimator is indicated for the situation with the highest samples values tested (m=200 and n=5 and n=10). Only for m=100 and n=10, there is no evidence that proves an estimator has a better performance than another. This work also proved that the sample size and the number of samples influence the performance of the control charts.
id SCAR_723f0d4f92ca62207640c2506f34b8c2
oai_identifier_str oai:repositorio.ufscar.br:20.500.14289/10002
network_acronym_str SCAR
network_name_str Repositório Institucional da UFSCAR
repository_id_str
spelling Sobue, Cássio Eduardo FariaOprime, Pedro Carloshttp://lattes.cnpq.br/9291517431456908http://lattes.cnpq.br/06153563565312387ccf68bb-6bc1-4194-8a36-125fbefb2d8c2018-05-14T19:58:46Z2018-05-14T19:58:46Z2018-02-16SOBUE, Cássio Eduardo Faria. Análise do desempenho de gráficos de controle X-Bar considerando diferentes estimadores do desvio padrão. 2018. Dissertação (Mestrado em Engenharia de Produção) – Universidade Federal de São Carlos, São Carlos, 2018. Disponível em: https://repositorio.ufscar.br/handle/20.500.14289/10002.https://repositorio.ufscar.br/handle/20.500.14289/10002The reference works about control charts consider the statistical parameters as known to calculate the control limits. However, in the last decades, the literature about SPC (Statistical Process Control) has indicated a difference between the theoretical and the real performance of control charts which use estimated statistical parameters, increasing the incidence of false alarms. Reference researchers in SPC, as Castagliola and Chakraborti, propose new designs of control charts, improving the performance of Shewhart’s control charts. This work aims to compare the X-bar control charts performance, using five standard deviation estimators, based on the analysis of proportion of ARL values (Average Run Length, the average number of samples until the incidence of a false alarm) in the interval between 0 and 200 of the ARL distribution and varying the sample size and the number of the samples. The five estimators are: the estimator calculated from the average sample range; the estimator calculated from the average sample standard deviation; the estimator calculated from the pooled standard deviation divided by the result of c4 (constant influenced by the sample size) in function of ν (number of degrees of freedom, resultant from the number of samples times the sample size minus one); the estimator calculated from the pooled standard deviation times the result of the constant c4 in function of ν; and the estimator based only on the pooled standard deviation. The method applied is the simulation, developing five programs to simulate productive in-control processes, each one for each standard deviation estimator. After the comparison of proportions, the third estimator is indicated for the situation with the lowest samples values tested (m=20 and n=5 and n=10), and the first estimator is indicated for the situation with the highest samples values tested (m=200 and n=5 and n=10). Only for m=100 and n=10, there is no evidence that proves an estimator has a better performance than another. This work also proved that the sample size and the number of samples influence the performance of the control charts.Os textos de referência sobre gráficos de controle tratam os parâmetros estatísticos como supostamente conhecidos nos cálculos dos limites estatísticos de controle. Entretanto, nas últimas décadas, a literatura referente ao CEP (Controle Estatístico de Processo) tem mostrado que há diferença entre o desempenho teórico e o real, havendo um aumento na incidência de falsos alarmes nos gráficos de controle que utilizam parâmetros estatísticos estimados. Importantes pesquisadores, como Castagliola e Chakraborti, propõem novos designs de gráficos, visando a melhoria do desempenho do gráfico de controle de Shewhart. Sob essa perspectiva, o objetivo desta dissertação é comparar o desempenho dos gráficos de controle X-bar, utilizando-se cinco estimadores do desvio-padrão, com base na análise da proporção de valores do ARL (Average Run Length, número médio de amostras até a ocorrência de um falso alarme) concentrados no intervalo entre 0 e 200 da distribuição do ARL, variando-se o tamanho (n) e a quantidade amostral (m) disponível. Os cinco estimadores de desvio-padrão utilizados são: estimador calculado com base na amplitude amostral média; estimador calculado com base no desvio-padrão amostral médio; estimador calculado com base no desvio-padrão agrupado, dividido pelo produto de c4 (constante tabelada, de acordo com o tamanho amostral) em função de ν (número de graus de liberdade, calculado a partir do produto do número de amostras pelo tamanho amostral menos um); estimador calculado com base no desvio-padrão agrupado, multiplicado pelo produto de c4 em função de ν; e, por fim, o estimador calculado com base apenas no desvio-padrão agrupado. O método utilizado é a simulação, na qual foram desenvolvidos cinco programas que simulam processos produtivos sob controle, para cada um dos estimadores do desvio-padrão. Verifica-se que há diferença de desempenho entre os cinco estimadores do desvio-padrão, sendo o terceiro estimador mais indicado na situação simulada com menor quantidade amostral (m=20 e n=5 e n=10), e o primeiro estimador mais indicado na situação com maior quantidade amostral disponível (m=200, e n=5 e n=10). Apenas para m=100 e n=10, não houve diferença no desempenho entre os cinco estimadores. Verifica-se também que a quantidade amostral e o tamanho da amostra influenciam no desempenho dos gráficos de controle.Não recebi financiamentoporUniversidade Federal de São CarlosCâmpus São CarlosPrograma de Pós-Graduação em Engenharia de Produção - PPGEPUFSCarGráfico de controleSimulaçãoEstimadores de desvio-padrãoDesempenhoControl chartSimulationStandard deviation estimatorPerformanceENGENHARIAS::ENGENHARIA DE PRODUCAO::GERENCIA DE PRODUCAOAnálise do desempenho de gráficos de controle X-Bar considerando diferentes estimadores do desvio padrãoPerformance analysis of X-bar control charts considering different standard deviation estimatorsinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisOnline600600de92d2f0-73e9-4496-a431-c252ce3e9a12info:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFSCARinstname:Universidade Federal de São Carlos (UFSCAR)instacron:UFSCARORIGINALSOBUE_Cassio Eduardo Faria_2018_carta.pdfSOBUE_Cassio Eduardo Faria_2018_carta.pdfapplication/pdf100036https://repositorio.ufscar.br/bitstreams/7989e626-7476-4dfa-8e30-fee6c7b94388/download27f86b9e2680b7821342e8dd5518748bMD52trueAnonymousREADSOBUE_Cassio Eduardo Faria_2018.pdfSOBUE_Cassio Eduardo Faria_2018.pdfapplication/pdf1598347https://repositorio.ufscar.br/bitstreams/963a6c50-c055-4fcb-8fe4-f76eb8bef014/download17a4631cfb262c0972f17c2d28194dbdMD53falseAnonymousREADLICENSElicense.txtlicense.txttext/plain; charset=utf-81957https://repositorio.ufscar.br/bitstreams/d1f774e8-1bb0-4e0a-a816-6713094e2e37/downloadae0398b6f8b235e40ad82cba6c50031dMD54falseAnonymousREADTEXTSOBUE_Cassio Eduardo Faria_2018_carta.pdf.txtSOBUE_Cassio Eduardo Faria_2018_carta.pdf.txtExtracted texttext/plain1https://repositorio.ufscar.br/bitstreams/1723bc14-d70b-4ddc-b3c9-f0aaad3a9973/download68b329da9893e34099c7d8ad5cb9c940MD59falseAnonymousREADSOBUE_Cassio Eduardo Faria_2018.pdf.txtSOBUE_Cassio Eduardo Faria_2018.pdf.txtExtracted texttext/plain212815https://repositorio.ufscar.br/bitstreams/e295d27f-b87c-4b25-b771-5ee7e1ebc09b/download940bc6608c1fa2e50fde75b90b3afcc4MD511falseAnonymousREADTHUMBNAILSOBUE_Cassio Eduardo Faria_2018_carta.pdf.jpgSOBUE_Cassio Eduardo Faria_2018_carta.pdf.jpgIM Thumbnailimage/jpeg11852https://repositorio.ufscar.br/bitstreams/6cb88da6-595a-4af0-b408-e3b9ce76c5f0/downloada1ef23d424faf042bcdcf07ac64b02f7MD510falseAnonymousREADSOBUE_Cassio Eduardo Faria_2018.pdf.jpgSOBUE_Cassio Eduardo Faria_2018.pdf.jpgIM Thumbnailimage/jpeg7003https://repositorio.ufscar.br/bitstreams/8e933e34-b36c-49ee-a790-b349ca38152c/download835953038c3d8a2aeae82b367ed37764MD512falseAnonymousREAD20.500.14289/100022025-02-05 17:49:36.258Acesso abertoopen.accessoai:repositorio.ufscar.br:20.500.14289/10002https://repositorio.ufscar.brRepositório InstitucionalPUBhttps://repositorio.ufscar.br/oai/requestrepositorio.sibi@ufscar.bropendoar:43222025-02-05T20:49:36Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)falseTElDRU7Dh0EgREUgRElTVFJJQlVJw4fDg08gTsODTy1FWENMVVNJVkEKCkNvbSBhIGFwcmVzZW50YcOnw6NvIGRlc3RhIGxpY2Vuw6dhLCB2b2PDqiAobyBhdXRvciAoZXMpIG91IG8gdGl0dWxhciBkb3MgZGlyZWl0b3MgZGUgYXV0b3IpIGNvbmNlZGUgw6AgVW5pdmVyc2lkYWRlCkZlZGVyYWwgZGUgU8OjbyBDYXJsb3MgbyBkaXJlaXRvIG7Do28tZXhjbHVzaXZvIGRlIHJlcHJvZHV6aXIsICB0cmFkdXppciAoY29uZm9ybWUgZGVmaW5pZG8gYWJhaXhvKSwgZS9vdQpkaXN0cmlidWlyIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyAoaW5jbHVpbmRvIG8gcmVzdW1vKSBwb3IgdG9kbyBvIG11bmRvIG5vIGZvcm1hdG8gaW1wcmVzc28gZSBlbGV0csO0bmljbyBlCmVtIHF1YWxxdWVyIG1laW8sIGluY2x1aW5kbyBvcyBmb3JtYXRvcyDDoXVkaW8gb3UgdsOtZGVvLgoKVm9jw6ogY29uY29yZGEgcXVlIGEgVUZTQ2FyIHBvZGUsIHNlbSBhbHRlcmFyIG8gY29udGXDumRvLCB0cmFuc3BvciBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28KcGFyYSBxdWFscXVlciBtZWlvIG91IGZvcm1hdG8gcGFyYSBmaW5zIGRlIHByZXNlcnZhw6fDo28uCgpWb2PDqiB0YW1iw6ltIGNvbmNvcmRhIHF1ZSBhIFVGU0NhciBwb2RlIG1hbnRlciBtYWlzIGRlIHVtYSBjw7NwaWEgYSBzdWEgdGVzZSBvdQpkaXNzZXJ0YcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcwpuZXN0YSBsaWNlbsOnYS4gVm9jw6ogdGFtYsOpbSBkZWNsYXJhIHF1ZSBvIGRlcMOzc2l0byBkYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIG7Do28sIHF1ZSBzZWphIGRlIHNldQpjb25oZWNpbWVudG8sIGluZnJpbmdlIGRpcmVpdG9zIGF1dG9yYWlzIGRlIG5pbmd1w6ltLgoKQ2FzbyBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gY29udGVuaGEgbWF0ZXJpYWwgcXVlIHZvY8OqIG7Do28gcG9zc3VpIGEgdGl0dWxhcmlkYWRlIGRvcyBkaXJlaXRvcyBhdXRvcmFpcywgdm9jw6oKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIMOgIFVGU0NhcgpvcyBkaXJlaXRvcyBhcHJlc2VudGFkb3MgbmVzdGEgbGljZW7Dp2EsIGUgcXVlIGVzc2UgbWF0ZXJpYWwgZGUgcHJvcHJpZWRhZGUgZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUKaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3Ugbm8gY29udGXDumRvIGRhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBvcmEgZGVwb3NpdGFkYS4KCkNBU08gQSBURVNFIE9VIERJU1NFUlRBw4fDg08gT1JBIERFUE9TSVRBREEgVEVOSEEgU0lETyBSRVNVTFRBRE8gREUgVU0gUEFUUk9Dw41OSU8gT1UKQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBVRlNDYXIsClZPQ8OKIERFQ0xBUkEgUVVFIFJFU1BFSVRPVSBUT0RPUyBFIFFVQUlTUVVFUiBESVJFSVRPUyBERSBSRVZJU8ODTyBDT01PClRBTULDiU0gQVMgREVNQUlTIE9CUklHQcOHw5VFUyBFWElHSURBUyBQT1IgQ09OVFJBVE8gT1UgQUNPUkRPLgoKQSBVRlNDYXIgc2UgY29tcHJvbWV0ZSBhIGlkZW50aWZpY2FyIGNsYXJhbWVudGUgbyBzZXUgbm9tZSAocykgb3UgbyhzKSBub21lKHMpIGRvKHMpCmRldGVudG9yKGVzKSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzCmNvbmNlZGlkYXMgcG9yIGVzdGEgbGljZW7Dp2EuCg==
dc.title.por.fl_str_mv Análise do desempenho de gráficos de controle X-Bar considerando diferentes estimadores do desvio padrão
dc.title.alternative.eng.fl_str_mv Performance analysis of X-bar control charts considering different standard deviation estimators
title Análise do desempenho de gráficos de controle X-Bar considerando diferentes estimadores do desvio padrão
spellingShingle Análise do desempenho de gráficos de controle X-Bar considerando diferentes estimadores do desvio padrão
Sobue, Cássio Eduardo Faria
Gráfico de controle
Simulação
Estimadores de desvio-padrão
Desempenho
Control chart
Simulation
Standard deviation estimator
Performance
ENGENHARIAS::ENGENHARIA DE PRODUCAO::GERENCIA DE PRODUCAO
title_short Análise do desempenho de gráficos de controle X-Bar considerando diferentes estimadores do desvio padrão
title_full Análise do desempenho de gráficos de controle X-Bar considerando diferentes estimadores do desvio padrão
title_fullStr Análise do desempenho de gráficos de controle X-Bar considerando diferentes estimadores do desvio padrão
title_full_unstemmed Análise do desempenho de gráficos de controle X-Bar considerando diferentes estimadores do desvio padrão
title_sort Análise do desempenho de gráficos de controle X-Bar considerando diferentes estimadores do desvio padrão
author Sobue, Cássio Eduardo Faria
author_facet Sobue, Cássio Eduardo Faria
author_role author
dc.contributor.authorlattes.por.fl_str_mv http://lattes.cnpq.br/0615356356531238
dc.contributor.author.fl_str_mv Sobue, Cássio Eduardo Faria
dc.contributor.advisor1.fl_str_mv Oprime, Pedro Carlos
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/9291517431456908
dc.contributor.authorID.fl_str_mv 7ccf68bb-6bc1-4194-8a36-125fbefb2d8c
contributor_str_mv Oprime, Pedro Carlos
dc.subject.por.fl_str_mv Gráfico de controle
Simulação
Estimadores de desvio-padrão
Desempenho
topic Gráfico de controle
Simulação
Estimadores de desvio-padrão
Desempenho
Control chart
Simulation
Standard deviation estimator
Performance
ENGENHARIAS::ENGENHARIA DE PRODUCAO::GERENCIA DE PRODUCAO
dc.subject.eng.fl_str_mv Control chart
Simulation
Standard deviation estimator
Performance
dc.subject.cnpq.fl_str_mv ENGENHARIAS::ENGENHARIA DE PRODUCAO::GERENCIA DE PRODUCAO
description The reference works about control charts consider the statistical parameters as known to calculate the control limits. However, in the last decades, the literature about SPC (Statistical Process Control) has indicated a difference between the theoretical and the real performance of control charts which use estimated statistical parameters, increasing the incidence of false alarms. Reference researchers in SPC, as Castagliola and Chakraborti, propose new designs of control charts, improving the performance of Shewhart’s control charts. This work aims to compare the X-bar control charts performance, using five standard deviation estimators, based on the analysis of proportion of ARL values (Average Run Length, the average number of samples until the incidence of a false alarm) in the interval between 0 and 200 of the ARL distribution and varying the sample size and the number of the samples. The five estimators are: the estimator calculated from the average sample range; the estimator calculated from the average sample standard deviation; the estimator calculated from the pooled standard deviation divided by the result of c4 (constant influenced by the sample size) in function of ν (number of degrees of freedom, resultant from the number of samples times the sample size minus one); the estimator calculated from the pooled standard deviation times the result of the constant c4 in function of ν; and the estimator based only on the pooled standard deviation. The method applied is the simulation, developing five programs to simulate productive in-control processes, each one for each standard deviation estimator. After the comparison of proportions, the third estimator is indicated for the situation with the lowest samples values tested (m=20 and n=5 and n=10), and the first estimator is indicated for the situation with the highest samples values tested (m=200 and n=5 and n=10). Only for m=100 and n=10, there is no evidence that proves an estimator has a better performance than another. This work also proved that the sample size and the number of samples influence the performance of the control charts.
publishDate 2018
dc.date.accessioned.fl_str_mv 2018-05-14T19:58:46Z
dc.date.available.fl_str_mv 2018-05-14T19:58:46Z
dc.date.issued.fl_str_mv 2018-02-16
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv SOBUE, Cássio Eduardo Faria. Análise do desempenho de gráficos de controle X-Bar considerando diferentes estimadores do desvio padrão. 2018. Dissertação (Mestrado em Engenharia de Produção) – Universidade Federal de São Carlos, São Carlos, 2018. Disponível em: https://repositorio.ufscar.br/handle/20.500.14289/10002.
dc.identifier.uri.fl_str_mv https://repositorio.ufscar.br/handle/20.500.14289/10002
identifier_str_mv SOBUE, Cássio Eduardo Faria. Análise do desempenho de gráficos de controle X-Bar considerando diferentes estimadores do desvio padrão. 2018. Dissertação (Mestrado em Engenharia de Produção) – Universidade Federal de São Carlos, São Carlos, 2018. Disponível em: https://repositorio.ufscar.br/handle/20.500.14289/10002.
url https://repositorio.ufscar.br/handle/20.500.14289/10002
dc.language.iso.fl_str_mv por
language por
dc.relation.confidence.fl_str_mv 600
600
dc.relation.authority.fl_str_mv de92d2f0-73e9-4496-a431-c252ce3e9a12
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal de São Carlos
Câmpus São Carlos
dc.publisher.program.fl_str_mv Programa de Pós-Graduação em Engenharia de Produção - PPGEP
dc.publisher.initials.fl_str_mv UFSCar
publisher.none.fl_str_mv Universidade Federal de São Carlos
Câmpus São Carlos
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFSCAR
instname:Universidade Federal de São Carlos (UFSCAR)
instacron:UFSCAR
instname_str Universidade Federal de São Carlos (UFSCAR)
instacron_str UFSCAR
institution UFSCAR
reponame_str Repositório Institucional da UFSCAR
collection Repositório Institucional da UFSCAR
bitstream.url.fl_str_mv https://repositorio.ufscar.br/bitstreams/7989e626-7476-4dfa-8e30-fee6c7b94388/download
https://repositorio.ufscar.br/bitstreams/963a6c50-c055-4fcb-8fe4-f76eb8bef014/download
https://repositorio.ufscar.br/bitstreams/d1f774e8-1bb0-4e0a-a816-6713094e2e37/download
https://repositorio.ufscar.br/bitstreams/1723bc14-d70b-4ddc-b3c9-f0aaad3a9973/download
https://repositorio.ufscar.br/bitstreams/e295d27f-b87c-4b25-b771-5ee7e1ebc09b/download
https://repositorio.ufscar.br/bitstreams/6cb88da6-595a-4af0-b408-e3b9ce76c5f0/download
https://repositorio.ufscar.br/bitstreams/8e933e34-b36c-49ee-a790-b349ca38152c/download
bitstream.checksum.fl_str_mv 27f86b9e2680b7821342e8dd5518748b
17a4631cfb262c0972f17c2d28194dbd
ae0398b6f8b235e40ad82cba6c50031d
68b329da9893e34099c7d8ad5cb9c940
940bc6608c1fa2e50fde75b90b3afcc4
a1ef23d424faf042bcdcf07ac64b02f7
835953038c3d8a2aeae82b367ed37764
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)
repository.mail.fl_str_mv repositorio.sibi@ufscar.br
_version_ 1851688889295568896