Análise do desempenho de gráficos de controle X-Bar considerando diferentes estimadores do desvio padrão
| Ano de defesa: | 2018 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | |
| Tipo de documento: | Dissertação |
| Tipo de acesso: | Acesso aberto |
| Idioma: | por |
| Instituição de defesa: |
Universidade Federal de São Carlos
Câmpus São Carlos |
| Programa de Pós-Graduação: |
Programa de Pós-Graduação em Engenharia de Produção - PPGEP
|
| Departamento: |
Não Informado pela instituição
|
| País: |
Não Informado pela instituição
|
| Palavras-chave em Português: | |
| Palavras-chave em Inglês: | |
| Área do conhecimento CNPq: | |
| Link de acesso: | https://repositorio.ufscar.br/handle/20.500.14289/10002 |
Resumo: | The reference works about control charts consider the statistical parameters as known to calculate the control limits. However, in the last decades, the literature about SPC (Statistical Process Control) has indicated a difference between the theoretical and the real performance of control charts which use estimated statistical parameters, increasing the incidence of false alarms. Reference researchers in SPC, as Castagliola and Chakraborti, propose new designs of control charts, improving the performance of Shewhart’s control charts. This work aims to compare the X-bar control charts performance, using five standard deviation estimators, based on the analysis of proportion of ARL values (Average Run Length, the average number of samples until the incidence of a false alarm) in the interval between 0 and 200 of the ARL distribution and varying the sample size and the number of the samples. The five estimators are: the estimator calculated from the average sample range; the estimator calculated from the average sample standard deviation; the estimator calculated from the pooled standard deviation divided by the result of c4 (constant influenced by the sample size) in function of ν (number of degrees of freedom, resultant from the number of samples times the sample size minus one); the estimator calculated from the pooled standard deviation times the result of the constant c4 in function of ν; and the estimator based only on the pooled standard deviation. The method applied is the simulation, developing five programs to simulate productive in-control processes, each one for each standard deviation estimator. After the comparison of proportions, the third estimator is indicated for the situation with the lowest samples values tested (m=20 and n=5 and n=10), and the first estimator is indicated for the situation with the highest samples values tested (m=200 and n=5 and n=10). Only for m=100 and n=10, there is no evidence that proves an estimator has a better performance than another. This work also proved that the sample size and the number of samples influence the performance of the control charts. |
| id |
SCAR_723f0d4f92ca62207640c2506f34b8c2 |
|---|---|
| oai_identifier_str |
oai:repositorio.ufscar.br:20.500.14289/10002 |
| network_acronym_str |
SCAR |
| network_name_str |
Repositório Institucional da UFSCAR |
| repository_id_str |
|
| spelling |
Sobue, Cássio Eduardo FariaOprime, Pedro Carloshttp://lattes.cnpq.br/9291517431456908http://lattes.cnpq.br/06153563565312387ccf68bb-6bc1-4194-8a36-125fbefb2d8c2018-05-14T19:58:46Z2018-05-14T19:58:46Z2018-02-16SOBUE, Cássio Eduardo Faria. Análise do desempenho de gráficos de controle X-Bar considerando diferentes estimadores do desvio padrão. 2018. Dissertação (Mestrado em Engenharia de Produção) – Universidade Federal de São Carlos, São Carlos, 2018. Disponível em: https://repositorio.ufscar.br/handle/20.500.14289/10002.https://repositorio.ufscar.br/handle/20.500.14289/10002The reference works about control charts consider the statistical parameters as known to calculate the control limits. However, in the last decades, the literature about SPC (Statistical Process Control) has indicated a difference between the theoretical and the real performance of control charts which use estimated statistical parameters, increasing the incidence of false alarms. Reference researchers in SPC, as Castagliola and Chakraborti, propose new designs of control charts, improving the performance of Shewhart’s control charts. This work aims to compare the X-bar control charts performance, using five standard deviation estimators, based on the analysis of proportion of ARL values (Average Run Length, the average number of samples until the incidence of a false alarm) in the interval between 0 and 200 of the ARL distribution and varying the sample size and the number of the samples. The five estimators are: the estimator calculated from the average sample range; the estimator calculated from the average sample standard deviation; the estimator calculated from the pooled standard deviation divided by the result of c4 (constant influenced by the sample size) in function of ν (number of degrees of freedom, resultant from the number of samples times the sample size minus one); the estimator calculated from the pooled standard deviation times the result of the constant c4 in function of ν; and the estimator based only on the pooled standard deviation. The method applied is the simulation, developing five programs to simulate productive in-control processes, each one for each standard deviation estimator. After the comparison of proportions, the third estimator is indicated for the situation with the lowest samples values tested (m=20 and n=5 and n=10), and the first estimator is indicated for the situation with the highest samples values tested (m=200 and n=5 and n=10). Only for m=100 and n=10, there is no evidence that proves an estimator has a better performance than another. This work also proved that the sample size and the number of samples influence the performance of the control charts.Os textos de referência sobre gráficos de controle tratam os parâmetros estatísticos como supostamente conhecidos nos cálculos dos limites estatísticos de controle. Entretanto, nas últimas décadas, a literatura referente ao CEP (Controle Estatístico de Processo) tem mostrado que há diferença entre o desempenho teórico e o real, havendo um aumento na incidência de falsos alarmes nos gráficos de controle que utilizam parâmetros estatísticos estimados. Importantes pesquisadores, como Castagliola e Chakraborti, propõem novos designs de gráficos, visando a melhoria do desempenho do gráfico de controle de Shewhart. Sob essa perspectiva, o objetivo desta dissertação é comparar o desempenho dos gráficos de controle X-bar, utilizando-se cinco estimadores do desvio-padrão, com base na análise da proporção de valores do ARL (Average Run Length, número médio de amostras até a ocorrência de um falso alarme) concentrados no intervalo entre 0 e 200 da distribuição do ARL, variando-se o tamanho (n) e a quantidade amostral (m) disponível. Os cinco estimadores de desvio-padrão utilizados são: estimador calculado com base na amplitude amostral média; estimador calculado com base no desvio-padrão amostral médio; estimador calculado com base no desvio-padrão agrupado, dividido pelo produto de c4 (constante tabelada, de acordo com o tamanho amostral) em função de ν (número de graus de liberdade, calculado a partir do produto do número de amostras pelo tamanho amostral menos um); estimador calculado com base no desvio-padrão agrupado, multiplicado pelo produto de c4 em função de ν; e, por fim, o estimador calculado com base apenas no desvio-padrão agrupado. O método utilizado é a simulação, na qual foram desenvolvidos cinco programas que simulam processos produtivos sob controle, para cada um dos estimadores do desvio-padrão. Verifica-se que há diferença de desempenho entre os cinco estimadores do desvio-padrão, sendo o terceiro estimador mais indicado na situação simulada com menor quantidade amostral (m=20 e n=5 e n=10), e o primeiro estimador mais indicado na situação com maior quantidade amostral disponível (m=200, e n=5 e n=10). Apenas para m=100 e n=10, não houve diferença no desempenho entre os cinco estimadores. Verifica-se também que a quantidade amostral e o tamanho da amostra influenciam no desempenho dos gráficos de controle.Não recebi financiamentoporUniversidade Federal de São CarlosCâmpus São CarlosPrograma de Pós-Graduação em Engenharia de Produção - PPGEPUFSCarGráfico de controleSimulaçãoEstimadores de desvio-padrãoDesempenhoControl chartSimulationStandard deviation estimatorPerformanceENGENHARIAS::ENGENHARIA DE PRODUCAO::GERENCIA DE PRODUCAOAnálise do desempenho de gráficos de controle X-Bar considerando diferentes estimadores do desvio padrãoPerformance analysis of X-bar control charts considering different standard deviation estimatorsinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisOnline600600de92d2f0-73e9-4496-a431-c252ce3e9a12info:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFSCARinstname:Universidade Federal de São Carlos (UFSCAR)instacron:UFSCARORIGINALSOBUE_Cassio Eduardo Faria_2018_carta.pdfSOBUE_Cassio Eduardo Faria_2018_carta.pdfapplication/pdf100036https://repositorio.ufscar.br/bitstreams/7989e626-7476-4dfa-8e30-fee6c7b94388/download27f86b9e2680b7821342e8dd5518748bMD52trueAnonymousREADSOBUE_Cassio Eduardo Faria_2018.pdfSOBUE_Cassio Eduardo Faria_2018.pdfapplication/pdf1598347https://repositorio.ufscar.br/bitstreams/963a6c50-c055-4fcb-8fe4-f76eb8bef014/download17a4631cfb262c0972f17c2d28194dbdMD53falseAnonymousREADLICENSElicense.txtlicense.txttext/plain; charset=utf-81957https://repositorio.ufscar.br/bitstreams/d1f774e8-1bb0-4e0a-a816-6713094e2e37/downloadae0398b6f8b235e40ad82cba6c50031dMD54falseAnonymousREADTEXTSOBUE_Cassio Eduardo Faria_2018_carta.pdf.txtSOBUE_Cassio Eduardo Faria_2018_carta.pdf.txtExtracted texttext/plain1https://repositorio.ufscar.br/bitstreams/1723bc14-d70b-4ddc-b3c9-f0aaad3a9973/download68b329da9893e34099c7d8ad5cb9c940MD59falseAnonymousREADSOBUE_Cassio Eduardo Faria_2018.pdf.txtSOBUE_Cassio Eduardo Faria_2018.pdf.txtExtracted texttext/plain212815https://repositorio.ufscar.br/bitstreams/e295d27f-b87c-4b25-b771-5ee7e1ebc09b/download940bc6608c1fa2e50fde75b90b3afcc4MD511falseAnonymousREADTHUMBNAILSOBUE_Cassio Eduardo Faria_2018_carta.pdf.jpgSOBUE_Cassio Eduardo Faria_2018_carta.pdf.jpgIM Thumbnailimage/jpeg11852https://repositorio.ufscar.br/bitstreams/6cb88da6-595a-4af0-b408-e3b9ce76c5f0/downloada1ef23d424faf042bcdcf07ac64b02f7MD510falseAnonymousREADSOBUE_Cassio Eduardo Faria_2018.pdf.jpgSOBUE_Cassio Eduardo Faria_2018.pdf.jpgIM Thumbnailimage/jpeg7003https://repositorio.ufscar.br/bitstreams/8e933e34-b36c-49ee-a790-b349ca38152c/download835953038c3d8a2aeae82b367ed37764MD512falseAnonymousREAD20.500.14289/100022025-02-05 17:49:36.258Acesso abertoopen.accessoai:repositorio.ufscar.br:20.500.14289/10002https://repositorio.ufscar.brRepositório InstitucionalPUBhttps://repositorio.ufscar.br/oai/requestrepositorio.sibi@ufscar.bropendoar:43222025-02-05T20:49:36Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)falseTElDRU7Dh0EgREUgRElTVFJJQlVJw4fDg08gTsODTy1FWENMVVNJVkEKCkNvbSBhIGFwcmVzZW50YcOnw6NvIGRlc3RhIGxpY2Vuw6dhLCB2b2PDqiAobyBhdXRvciAoZXMpIG91IG8gdGl0dWxhciBkb3MgZGlyZWl0b3MgZGUgYXV0b3IpIGNvbmNlZGUgw6AgVW5pdmVyc2lkYWRlCkZlZGVyYWwgZGUgU8OjbyBDYXJsb3MgbyBkaXJlaXRvIG7Do28tZXhjbHVzaXZvIGRlIHJlcHJvZHV6aXIsICB0cmFkdXppciAoY29uZm9ybWUgZGVmaW5pZG8gYWJhaXhvKSwgZS9vdQpkaXN0cmlidWlyIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyAoaW5jbHVpbmRvIG8gcmVzdW1vKSBwb3IgdG9kbyBvIG11bmRvIG5vIGZvcm1hdG8gaW1wcmVzc28gZSBlbGV0csO0bmljbyBlCmVtIHF1YWxxdWVyIG1laW8sIGluY2x1aW5kbyBvcyBmb3JtYXRvcyDDoXVkaW8gb3UgdsOtZGVvLgoKVm9jw6ogY29uY29yZGEgcXVlIGEgVUZTQ2FyIHBvZGUsIHNlbSBhbHRlcmFyIG8gY29udGXDumRvLCB0cmFuc3BvciBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28KcGFyYSBxdWFscXVlciBtZWlvIG91IGZvcm1hdG8gcGFyYSBmaW5zIGRlIHByZXNlcnZhw6fDo28uCgpWb2PDqiB0YW1iw6ltIGNvbmNvcmRhIHF1ZSBhIFVGU0NhciBwb2RlIG1hbnRlciBtYWlzIGRlIHVtYSBjw7NwaWEgYSBzdWEgdGVzZSBvdQpkaXNzZXJ0YcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcwpuZXN0YSBsaWNlbsOnYS4gVm9jw6ogdGFtYsOpbSBkZWNsYXJhIHF1ZSBvIGRlcMOzc2l0byBkYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIG7Do28sIHF1ZSBzZWphIGRlIHNldQpjb25oZWNpbWVudG8sIGluZnJpbmdlIGRpcmVpdG9zIGF1dG9yYWlzIGRlIG5pbmd1w6ltLgoKQ2FzbyBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gY29udGVuaGEgbWF0ZXJpYWwgcXVlIHZvY8OqIG7Do28gcG9zc3VpIGEgdGl0dWxhcmlkYWRlIGRvcyBkaXJlaXRvcyBhdXRvcmFpcywgdm9jw6oKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIMOgIFVGU0NhcgpvcyBkaXJlaXRvcyBhcHJlc2VudGFkb3MgbmVzdGEgbGljZW7Dp2EsIGUgcXVlIGVzc2UgbWF0ZXJpYWwgZGUgcHJvcHJpZWRhZGUgZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUKaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3Ugbm8gY29udGXDumRvIGRhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBvcmEgZGVwb3NpdGFkYS4KCkNBU08gQSBURVNFIE9VIERJU1NFUlRBw4fDg08gT1JBIERFUE9TSVRBREEgVEVOSEEgU0lETyBSRVNVTFRBRE8gREUgVU0gUEFUUk9Dw41OSU8gT1UKQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBVRlNDYXIsClZPQ8OKIERFQ0xBUkEgUVVFIFJFU1BFSVRPVSBUT0RPUyBFIFFVQUlTUVVFUiBESVJFSVRPUyBERSBSRVZJU8ODTyBDT01PClRBTULDiU0gQVMgREVNQUlTIE9CUklHQcOHw5VFUyBFWElHSURBUyBQT1IgQ09OVFJBVE8gT1UgQUNPUkRPLgoKQSBVRlNDYXIgc2UgY29tcHJvbWV0ZSBhIGlkZW50aWZpY2FyIGNsYXJhbWVudGUgbyBzZXUgbm9tZSAocykgb3UgbyhzKSBub21lKHMpIGRvKHMpCmRldGVudG9yKGVzKSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzCmNvbmNlZGlkYXMgcG9yIGVzdGEgbGljZW7Dp2EuCg== |
| dc.title.por.fl_str_mv |
Análise do desempenho de gráficos de controle X-Bar considerando diferentes estimadores do desvio padrão |
| dc.title.alternative.eng.fl_str_mv |
Performance analysis of X-bar control charts considering different standard deviation estimators |
| title |
Análise do desempenho de gráficos de controle X-Bar considerando diferentes estimadores do desvio padrão |
| spellingShingle |
Análise do desempenho de gráficos de controle X-Bar considerando diferentes estimadores do desvio padrão Sobue, Cássio Eduardo Faria Gráfico de controle Simulação Estimadores de desvio-padrão Desempenho Control chart Simulation Standard deviation estimator Performance ENGENHARIAS::ENGENHARIA DE PRODUCAO::GERENCIA DE PRODUCAO |
| title_short |
Análise do desempenho de gráficos de controle X-Bar considerando diferentes estimadores do desvio padrão |
| title_full |
Análise do desempenho de gráficos de controle X-Bar considerando diferentes estimadores do desvio padrão |
| title_fullStr |
Análise do desempenho de gráficos de controle X-Bar considerando diferentes estimadores do desvio padrão |
| title_full_unstemmed |
Análise do desempenho de gráficos de controle X-Bar considerando diferentes estimadores do desvio padrão |
| title_sort |
Análise do desempenho de gráficos de controle X-Bar considerando diferentes estimadores do desvio padrão |
| author |
Sobue, Cássio Eduardo Faria |
| author_facet |
Sobue, Cássio Eduardo Faria |
| author_role |
author |
| dc.contributor.authorlattes.por.fl_str_mv |
http://lattes.cnpq.br/0615356356531238 |
| dc.contributor.author.fl_str_mv |
Sobue, Cássio Eduardo Faria |
| dc.contributor.advisor1.fl_str_mv |
Oprime, Pedro Carlos |
| dc.contributor.advisor1Lattes.fl_str_mv |
http://lattes.cnpq.br/9291517431456908 |
| dc.contributor.authorID.fl_str_mv |
7ccf68bb-6bc1-4194-8a36-125fbefb2d8c |
| contributor_str_mv |
Oprime, Pedro Carlos |
| dc.subject.por.fl_str_mv |
Gráfico de controle Simulação Estimadores de desvio-padrão Desempenho |
| topic |
Gráfico de controle Simulação Estimadores de desvio-padrão Desempenho Control chart Simulation Standard deviation estimator Performance ENGENHARIAS::ENGENHARIA DE PRODUCAO::GERENCIA DE PRODUCAO |
| dc.subject.eng.fl_str_mv |
Control chart Simulation Standard deviation estimator Performance |
| dc.subject.cnpq.fl_str_mv |
ENGENHARIAS::ENGENHARIA DE PRODUCAO::GERENCIA DE PRODUCAO |
| description |
The reference works about control charts consider the statistical parameters as known to calculate the control limits. However, in the last decades, the literature about SPC (Statistical Process Control) has indicated a difference between the theoretical and the real performance of control charts which use estimated statistical parameters, increasing the incidence of false alarms. Reference researchers in SPC, as Castagliola and Chakraborti, propose new designs of control charts, improving the performance of Shewhart’s control charts. This work aims to compare the X-bar control charts performance, using five standard deviation estimators, based on the analysis of proportion of ARL values (Average Run Length, the average number of samples until the incidence of a false alarm) in the interval between 0 and 200 of the ARL distribution and varying the sample size and the number of the samples. The five estimators are: the estimator calculated from the average sample range; the estimator calculated from the average sample standard deviation; the estimator calculated from the pooled standard deviation divided by the result of c4 (constant influenced by the sample size) in function of ν (number of degrees of freedom, resultant from the number of samples times the sample size minus one); the estimator calculated from the pooled standard deviation times the result of the constant c4 in function of ν; and the estimator based only on the pooled standard deviation. The method applied is the simulation, developing five programs to simulate productive in-control processes, each one for each standard deviation estimator. After the comparison of proportions, the third estimator is indicated for the situation with the lowest samples values tested (m=20 and n=5 and n=10), and the first estimator is indicated for the situation with the highest samples values tested (m=200 and n=5 and n=10). Only for m=100 and n=10, there is no evidence that proves an estimator has a better performance than another. This work also proved that the sample size and the number of samples influence the performance of the control charts. |
| publishDate |
2018 |
| dc.date.accessioned.fl_str_mv |
2018-05-14T19:58:46Z |
| dc.date.available.fl_str_mv |
2018-05-14T19:58:46Z |
| dc.date.issued.fl_str_mv |
2018-02-16 |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
| format |
masterThesis |
| status_str |
publishedVersion |
| dc.identifier.citation.fl_str_mv |
SOBUE, Cássio Eduardo Faria. Análise do desempenho de gráficos de controle X-Bar considerando diferentes estimadores do desvio padrão. 2018. Dissertação (Mestrado em Engenharia de Produção) – Universidade Federal de São Carlos, São Carlos, 2018. Disponível em: https://repositorio.ufscar.br/handle/20.500.14289/10002. |
| dc.identifier.uri.fl_str_mv |
https://repositorio.ufscar.br/handle/20.500.14289/10002 |
| identifier_str_mv |
SOBUE, Cássio Eduardo Faria. Análise do desempenho de gráficos de controle X-Bar considerando diferentes estimadores do desvio padrão. 2018. Dissertação (Mestrado em Engenharia de Produção) – Universidade Federal de São Carlos, São Carlos, 2018. Disponível em: https://repositorio.ufscar.br/handle/20.500.14289/10002. |
| url |
https://repositorio.ufscar.br/handle/20.500.14289/10002 |
| dc.language.iso.fl_str_mv |
por |
| language |
por |
| dc.relation.confidence.fl_str_mv |
600 600 |
| dc.relation.authority.fl_str_mv |
de92d2f0-73e9-4496-a431-c252ce3e9a12 |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.publisher.none.fl_str_mv |
Universidade Federal de São Carlos Câmpus São Carlos |
| dc.publisher.program.fl_str_mv |
Programa de Pós-Graduação em Engenharia de Produção - PPGEP |
| dc.publisher.initials.fl_str_mv |
UFSCar |
| publisher.none.fl_str_mv |
Universidade Federal de São Carlos Câmpus São Carlos |
| dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFSCAR instname:Universidade Federal de São Carlos (UFSCAR) instacron:UFSCAR |
| instname_str |
Universidade Federal de São Carlos (UFSCAR) |
| instacron_str |
UFSCAR |
| institution |
UFSCAR |
| reponame_str |
Repositório Institucional da UFSCAR |
| collection |
Repositório Institucional da UFSCAR |
| bitstream.url.fl_str_mv |
https://repositorio.ufscar.br/bitstreams/7989e626-7476-4dfa-8e30-fee6c7b94388/download https://repositorio.ufscar.br/bitstreams/963a6c50-c055-4fcb-8fe4-f76eb8bef014/download https://repositorio.ufscar.br/bitstreams/d1f774e8-1bb0-4e0a-a816-6713094e2e37/download https://repositorio.ufscar.br/bitstreams/1723bc14-d70b-4ddc-b3c9-f0aaad3a9973/download https://repositorio.ufscar.br/bitstreams/e295d27f-b87c-4b25-b771-5ee7e1ebc09b/download https://repositorio.ufscar.br/bitstreams/6cb88da6-595a-4af0-b408-e3b9ce76c5f0/download https://repositorio.ufscar.br/bitstreams/8e933e34-b36c-49ee-a790-b349ca38152c/download |
| bitstream.checksum.fl_str_mv |
27f86b9e2680b7821342e8dd5518748b 17a4631cfb262c0972f17c2d28194dbd ae0398b6f8b235e40ad82cba6c50031d 68b329da9893e34099c7d8ad5cb9c940 940bc6608c1fa2e50fde75b90b3afcc4 a1ef23d424faf042bcdcf07ac64b02f7 835953038c3d8a2aeae82b367ed37764 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR) |
| repository.mail.fl_str_mv |
repositorio.sibi@ufscar.br |
| _version_ |
1851688889295568896 |