Modelagem e simulação de células a combustível de etanol direto

Detalhes bibliográficos
Ano de defesa: 2016
Autor(a) principal: Maia, Leonardo Kenji Komay
Orientador(a): Sousa Júnior, Ruy de lattes
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de São Carlos
Câmpus São Carlos
Programa de Pós-Graduação: Programa de Pós-Graduação em Engenharia Química - PPGEQ
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
CFD
Palavras-chave em Inglês:
CFD
Área do conhecimento CNPq:
Link de acesso: https://repositorio.ufscar.br/handle/20.500.14289/7153
Resumo: Two mathematical models of a Direct Ethanol Fuel Cell (DEFC) considering both an ideal (complete ethanol oxidation) and a realistic behavior (partial oxidation with by-products) were implemented in 3D geometries, adapted from SOUSA et al. (2008), using ANSYS CFX. The ideal model considers the cleavage of the C-C bond in the ethanol molecule, leading to a complete oxidation with CO2 and water as products, whereas the realistic model leads to partially oxidized products (acetic acid and acetaldehyde) through a dissociative adsorption mechanism on the catalyst surface. Kinetic parameters of the realistic model were readjusted from the original work (SOUSA et al., 2008) by experimental data fitting in order to calculate surface coverages of the adsorbed species. Model assumptions are: laminar flow, steady-state, isothermal, homogeneous and isotropic porous materials. Analysis of velocity, pressure and concentration profiles were performed in five different anode flow designs: serpentine, double serpentine, parallel, interdigitated and spot. Results have shown that, within the anode flow designs evaluated, the DEFC containing the interdigitated design presented a better performance, measured by the current density vs. cell potential curve. Cell performance was evaluated between anode overpotentials of 0 to 0,5 V. Different inlet velocities were tested to assess how the solution permeates through the porous layers. A qualitative analysis was also performed with a non-isothermal ideal DEFC model to investigate how each anode flow design contributes to heat removal in the fuel cell. Results showed that heat was better removed in the double serpentine and serpentine anode flow designs.
id SCAR_77fa00edeaba166f1797a87c43c04fcf
oai_identifier_str oai:repositorio.ufscar.br:20.500.14289/7153
network_acronym_str SCAR
network_name_str Repositório Institucional da UFSCAR
repository_id_str
spelling Maia, Leonardo Kenji KomaySousa Júnior, Ruy dehttp://lattes.cnpq.br/1983482879541203http://lattes.cnpq.br/37760477951227369228e235-7e8f-4c7b-b637-f667e4d891a82016-09-15T13:25:36Z2016-09-15T13:25:36Z2016-03-04MAIA, Leonardo Kenji Komay. Modelagem e simulação de células a combustível de etanol direto. 2016. Dissertação (Mestrado em Engenharia Química) – Universidade Federal de São Carlos, São Carlos, 2016. Disponível em: https://repositorio.ufscar.br/handle/20.500.14289/7153.https://repositorio.ufscar.br/handle/20.500.14289/7153Two mathematical models of a Direct Ethanol Fuel Cell (DEFC) considering both an ideal (complete ethanol oxidation) and a realistic behavior (partial oxidation with by-products) were implemented in 3D geometries, adapted from SOUSA et al. (2008), using ANSYS CFX. The ideal model considers the cleavage of the C-C bond in the ethanol molecule, leading to a complete oxidation with CO2 and water as products, whereas the realistic model leads to partially oxidized products (acetic acid and acetaldehyde) through a dissociative adsorption mechanism on the catalyst surface. Kinetic parameters of the realistic model were readjusted from the original work (SOUSA et al., 2008) by experimental data fitting in order to calculate surface coverages of the adsorbed species. Model assumptions are: laminar flow, steady-state, isothermal, homogeneous and isotropic porous materials. Analysis of velocity, pressure and concentration profiles were performed in five different anode flow designs: serpentine, double serpentine, parallel, interdigitated and spot. Results have shown that, within the anode flow designs evaluated, the DEFC containing the interdigitated design presented a better performance, measured by the current density vs. cell potential curve. Cell performance was evaluated between anode overpotentials of 0 to 0,5 V. Different inlet velocities were tested to assess how the solution permeates through the porous layers. A qualitative analysis was also performed with a non-isothermal ideal DEFC model to investigate how each anode flow design contributes to heat removal in the fuel cell. Results showed that heat was better removed in the double serpentine and serpentine anode flow designs.Dois modelos matemáticos de células a combustível de etanol direto (DEFCs), considerando tanto o comportamento ideal (oxidação completa do etanol) quanto o realístico (oxidação parcial, com formação de subprodutos) foram implementados em geometrias 3D, adaptados de SOUSA et al. (2008), utilizando o software ANSYS CFX. O modelo realístico leva em consideração a oxidação parcial devido à dificuldade na quebra da ligação C-C do etanol em catalisadores mistos de Pt, levando à formação de acetaldeído e ácido acético como subprodutos através de um mecanismo de adsorção dissociativa na superfície catalítica. Alguns dos parâmetros foram reajustados dos seus valores originais ao ser empregada uma maior precisão numérica no método de solução do sistema de equações das frações de cobertura. Foram adotadas as hipóteses de escoamento laminar, estado estacionário, condições isotérmicas e materiais porosos isotrópicos e homogêneos. Através da análise de perfis de velocidade, pressão e concentração na célula, foram investigadas diferentes geometrias dos canais de escoamento: serpentina, dupla serpentina, paralelo, interdigitado e grade. Resultados mostraram que, dentre as geometrias avaliadas, a célula contendo a geometria interdigitada apresentou melhor desempenho nos dois modelos empregados. O desempenho foi determinado pelos valores de densidade de corrente obtidos entre 0 e 0,5 V do sobrepotencial anódico. Adicionalmente, foram realizadas avaliação qualitativa da distribuição de temperatura através do modelo ideal e testes com diferentes velocidades de entrada. Resultados apontaram remoção de calor mais eficiente nas geometrias dupla-serpentina e serpentina.Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)porUniversidade Federal de São CarlosCâmpus São CarlosPrograma de Pós-Graduação em Engenharia Química - PPGEQUFSCarCélula a combustível a etanol diretoModelagem matemáticaCFDSimulaçãoEletrooxidaçãoDirect ethanol fuel cellMathematical modellingCFDSimulationENGENHARIAS::ENGENHARIA QUIMICA::PROCESSOS INDUSTRIAIS DE ENGENHARIA QUIMICAModelagem e simulação de células a combustível de etanol diretoModeling and simulation of direct ethanol fuel cellsinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisOnline600600ab69fa78-14aa-4e78-beb8-e23c9aefadecinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFSCARinstname:Universidade Federal de São Carlos (UFSCAR)instacron:UFSCARORIGINALDissLKKM.pdfDissLKKM.pdfapplication/pdf7338947https://repositorio.ufscar.br/bitstreams/7e9712cc-8d65-45c9-9801-f5021109d9fa/download70c85b6c9b1fe86fc7445b6006cfd2a9MD51trueAnonymousREADLICENSElicense.txtlicense.txttext/plain; charset=utf-81957https://repositorio.ufscar.br/bitstreams/30e6b576-914e-48fd-992c-c47d9f91060d/downloadae0398b6f8b235e40ad82cba6c50031dMD52falseAnonymousREADTEXTDissLKKM.pdf.txtDissLKKM.pdf.txtExtracted texttext/plain123266https://repositorio.ufscar.br/bitstreams/ee7f9161-4309-4bfb-bb50-53bdad8ba564/downloadd103bebde70370422e05f0d93e2aab01MD55falseAnonymousREADTHUMBNAILDissLKKM.pdf.jpgDissLKKM.pdf.jpgIM Thumbnailimage/jpeg3499https://repositorio.ufscar.br/bitstreams/5a0c33d5-83ba-4f4c-bb6c-8ab9520cb4b0/downloadf914e612575da683731d7bf960de669cMD56falseAnonymousREAD20.500.14289/71532025-02-05 17:09:13.906Acesso abertoopen.accessoai:repositorio.ufscar.br:20.500.14289/7153https://repositorio.ufscar.brRepositório InstitucionalPUBhttps://repositorio.ufscar.br/oai/requestrepositorio.sibi@ufscar.bropendoar:43222025-02-05T20:09:13Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)falseTElDRU7Dh0EgREUgRElTVFJJQlVJw4fDg08gTsODTy1FWENMVVNJVkEKCkNvbSBhIGFwcmVzZW50YcOnw6NvIGRlc3RhIGxpY2Vuw6dhLCB2b2PDqiAobyBhdXRvciAoZXMpIG91IG8gdGl0dWxhciBkb3MgZGlyZWl0b3MgZGUgYXV0b3IpIGNvbmNlZGUgw6AgVW5pdmVyc2lkYWRlCkZlZGVyYWwgZGUgU8OjbyBDYXJsb3MgbyBkaXJlaXRvIG7Do28tZXhjbHVzaXZvIGRlIHJlcHJvZHV6aXIsICB0cmFkdXppciAoY29uZm9ybWUgZGVmaW5pZG8gYWJhaXhvKSwgZS9vdQpkaXN0cmlidWlyIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyAoaW5jbHVpbmRvIG8gcmVzdW1vKSBwb3IgdG9kbyBvIG11bmRvIG5vIGZvcm1hdG8gaW1wcmVzc28gZSBlbGV0csO0bmljbyBlCmVtIHF1YWxxdWVyIG1laW8sIGluY2x1aW5kbyBvcyBmb3JtYXRvcyDDoXVkaW8gb3UgdsOtZGVvLgoKVm9jw6ogY29uY29yZGEgcXVlIGEgVUZTQ2FyIHBvZGUsIHNlbSBhbHRlcmFyIG8gY29udGXDumRvLCB0cmFuc3BvciBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28KcGFyYSBxdWFscXVlciBtZWlvIG91IGZvcm1hdG8gcGFyYSBmaW5zIGRlIHByZXNlcnZhw6fDo28uCgpWb2PDqiB0YW1iw6ltIGNvbmNvcmRhIHF1ZSBhIFVGU0NhciBwb2RlIG1hbnRlciBtYWlzIGRlIHVtYSBjw7NwaWEgYSBzdWEgdGVzZSBvdQpkaXNzZXJ0YcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcwpuZXN0YSBsaWNlbsOnYS4gVm9jw6ogdGFtYsOpbSBkZWNsYXJhIHF1ZSBvIGRlcMOzc2l0byBkYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIG7Do28sIHF1ZSBzZWphIGRlIHNldQpjb25oZWNpbWVudG8sIGluZnJpbmdlIGRpcmVpdG9zIGF1dG9yYWlzIGRlIG5pbmd1w6ltLgoKQ2FzbyBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gY29udGVuaGEgbWF0ZXJpYWwgcXVlIHZvY8OqIG7Do28gcG9zc3VpIGEgdGl0dWxhcmlkYWRlIGRvcyBkaXJlaXRvcyBhdXRvcmFpcywgdm9jw6oKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIMOgIFVGU0NhcgpvcyBkaXJlaXRvcyBhcHJlc2VudGFkb3MgbmVzdGEgbGljZW7Dp2EsIGUgcXVlIGVzc2UgbWF0ZXJpYWwgZGUgcHJvcHJpZWRhZGUgZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUKaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3Ugbm8gY29udGXDumRvIGRhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBvcmEgZGVwb3NpdGFkYS4KCkNBU08gQSBURVNFIE9VIERJU1NFUlRBw4fDg08gT1JBIERFUE9TSVRBREEgVEVOSEEgU0lETyBSRVNVTFRBRE8gREUgVU0gUEFUUk9Dw41OSU8gT1UKQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBVRlNDYXIsClZPQ8OKIERFQ0xBUkEgUVVFIFJFU1BFSVRPVSBUT0RPUyBFIFFVQUlTUVVFUiBESVJFSVRPUyBERSBSRVZJU8ODTyBDT01PClRBTULDiU0gQVMgREVNQUlTIE9CUklHQcOHw5VFUyBFWElHSURBUyBQT1IgQ09OVFJBVE8gT1UgQUNPUkRPLgoKQSBVRlNDYXIgc2UgY29tcHJvbWV0ZSBhIGlkZW50aWZpY2FyIGNsYXJhbWVudGUgbyBzZXUgbm9tZSAocykgb3UgbyhzKSBub21lKHMpIGRvKHMpCmRldGVudG9yKGVzKSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzCmNvbmNlZGlkYXMgcG9yIGVzdGEgbGljZW7Dp2EuCg==
dc.title.por.fl_str_mv Modelagem e simulação de células a combustível de etanol direto
dc.title.alternative.eng.fl_str_mv Modeling and simulation of direct ethanol fuel cells
title Modelagem e simulação de células a combustível de etanol direto
spellingShingle Modelagem e simulação de células a combustível de etanol direto
Maia, Leonardo Kenji Komay
Célula a combustível a etanol direto
Modelagem matemática
CFD
Simulação
Eletrooxidação
Direct ethanol fuel cell
Mathematical modelling
CFD
Simulation
ENGENHARIAS::ENGENHARIA QUIMICA::PROCESSOS INDUSTRIAIS DE ENGENHARIA QUIMICA
title_short Modelagem e simulação de células a combustível de etanol direto
title_full Modelagem e simulação de células a combustível de etanol direto
title_fullStr Modelagem e simulação de células a combustível de etanol direto
title_full_unstemmed Modelagem e simulação de células a combustível de etanol direto
title_sort Modelagem e simulação de células a combustível de etanol direto
author Maia, Leonardo Kenji Komay
author_facet Maia, Leonardo Kenji Komay
author_role author
dc.contributor.authorlattes.por.fl_str_mv http://lattes.cnpq.br/3776047795122736
dc.contributor.author.fl_str_mv Maia, Leonardo Kenji Komay
dc.contributor.advisor1.fl_str_mv Sousa Júnior, Ruy de
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/1983482879541203
dc.contributor.authorID.fl_str_mv 9228e235-7e8f-4c7b-b637-f667e4d891a8
contributor_str_mv Sousa Júnior, Ruy de
dc.subject.por.fl_str_mv Célula a combustível a etanol direto
Modelagem matemática
CFD
Simulação
Eletrooxidação
topic Célula a combustível a etanol direto
Modelagem matemática
CFD
Simulação
Eletrooxidação
Direct ethanol fuel cell
Mathematical modelling
CFD
Simulation
ENGENHARIAS::ENGENHARIA QUIMICA::PROCESSOS INDUSTRIAIS DE ENGENHARIA QUIMICA
dc.subject.eng.fl_str_mv Direct ethanol fuel cell
Mathematical modelling
CFD
Simulation
dc.subject.cnpq.fl_str_mv ENGENHARIAS::ENGENHARIA QUIMICA::PROCESSOS INDUSTRIAIS DE ENGENHARIA QUIMICA
description Two mathematical models of a Direct Ethanol Fuel Cell (DEFC) considering both an ideal (complete ethanol oxidation) and a realistic behavior (partial oxidation with by-products) were implemented in 3D geometries, adapted from SOUSA et al. (2008), using ANSYS CFX. The ideal model considers the cleavage of the C-C bond in the ethanol molecule, leading to a complete oxidation with CO2 and water as products, whereas the realistic model leads to partially oxidized products (acetic acid and acetaldehyde) through a dissociative adsorption mechanism on the catalyst surface. Kinetic parameters of the realistic model were readjusted from the original work (SOUSA et al., 2008) by experimental data fitting in order to calculate surface coverages of the adsorbed species. Model assumptions are: laminar flow, steady-state, isothermal, homogeneous and isotropic porous materials. Analysis of velocity, pressure and concentration profiles were performed in five different anode flow designs: serpentine, double serpentine, parallel, interdigitated and spot. Results have shown that, within the anode flow designs evaluated, the DEFC containing the interdigitated design presented a better performance, measured by the current density vs. cell potential curve. Cell performance was evaluated between anode overpotentials of 0 to 0,5 V. Different inlet velocities were tested to assess how the solution permeates through the porous layers. A qualitative analysis was also performed with a non-isothermal ideal DEFC model to investigate how each anode flow design contributes to heat removal in the fuel cell. Results showed that heat was better removed in the double serpentine and serpentine anode flow designs.
publishDate 2016
dc.date.accessioned.fl_str_mv 2016-09-15T13:25:36Z
dc.date.available.fl_str_mv 2016-09-15T13:25:36Z
dc.date.issued.fl_str_mv 2016-03-04
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv MAIA, Leonardo Kenji Komay. Modelagem e simulação de células a combustível de etanol direto. 2016. Dissertação (Mestrado em Engenharia Química) – Universidade Federal de São Carlos, São Carlos, 2016. Disponível em: https://repositorio.ufscar.br/handle/20.500.14289/7153.
dc.identifier.uri.fl_str_mv https://repositorio.ufscar.br/handle/20.500.14289/7153
identifier_str_mv MAIA, Leonardo Kenji Komay. Modelagem e simulação de células a combustível de etanol direto. 2016. Dissertação (Mestrado em Engenharia Química) – Universidade Federal de São Carlos, São Carlos, 2016. Disponível em: https://repositorio.ufscar.br/handle/20.500.14289/7153.
url https://repositorio.ufscar.br/handle/20.500.14289/7153
dc.language.iso.fl_str_mv por
language por
dc.relation.confidence.fl_str_mv 600
600
dc.relation.authority.fl_str_mv ab69fa78-14aa-4e78-beb8-e23c9aefadec
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal de São Carlos
Câmpus São Carlos
dc.publisher.program.fl_str_mv Programa de Pós-Graduação em Engenharia Química - PPGEQ
dc.publisher.initials.fl_str_mv UFSCar
publisher.none.fl_str_mv Universidade Federal de São Carlos
Câmpus São Carlos
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFSCAR
instname:Universidade Federal de São Carlos (UFSCAR)
instacron:UFSCAR
instname_str Universidade Federal de São Carlos (UFSCAR)
instacron_str UFSCAR
institution UFSCAR
reponame_str Repositório Institucional da UFSCAR
collection Repositório Institucional da UFSCAR
bitstream.url.fl_str_mv https://repositorio.ufscar.br/bitstreams/7e9712cc-8d65-45c9-9801-f5021109d9fa/download
https://repositorio.ufscar.br/bitstreams/30e6b576-914e-48fd-992c-c47d9f91060d/download
https://repositorio.ufscar.br/bitstreams/ee7f9161-4309-4bfb-bb50-53bdad8ba564/download
https://repositorio.ufscar.br/bitstreams/5a0c33d5-83ba-4f4c-bb6c-8ab9520cb4b0/download
bitstream.checksum.fl_str_mv 70c85b6c9b1fe86fc7445b6006cfd2a9
ae0398b6f8b235e40ad82cba6c50031d
d103bebde70370422e05f0d93e2aab01
f914e612575da683731d7bf960de669c
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)
repository.mail.fl_str_mv repositorio.sibi@ufscar.br
_version_ 1851688889056493568