Propriedades físicas de modelos integráveis
| Ano de defesa: | 2017 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | |
| Tipo de documento: | Tese |
| Tipo de acesso: | Acesso aberto |
| Idioma: | por |
| Instituição de defesa: |
Universidade Federal de São Carlos
Câmpus São Carlos |
| Programa de Pós-Graduação: |
Programa de Pós-Graduação em Física - PPGF
|
| Departamento: |
Não Informado pela instituição
|
| País: |
Não Informado pela instituição
|
| Palavras-chave em Português: | |
| Área do conhecimento CNPq: | |
| Link de acesso: | https://repositorio.ufscar.br/handle/20.500.14289/9216 |
Resumo: | In this thesis we tackled two di erent problems of quantum integrability. We derived nite sets of non-linear integral equations to describe physical properties of quantum chains invariant under the super-algebras su(2|1) and osp(1|2); and we also studied the in uence of boundary conditions on the bulk properties of the six-vertex model. The su(2|1) invariant model is a multi-chain generalization of the super-symmetric t-J model. Using the quantum transfer matrix method we obtained the phase diagram. For the osp(1|2) invariant model we could also rewrite the Hamiltonian in the language of itinerant fermions interacting through exchange, although the Hamiltonian itself is not hermitian, which corresponds to a non-unitary eld theory. We analytically computed the (e ective) central charge of this theory, corroborating numerical results of the literature. These results point towards the possibility of generalization of such non linear integral equations for models of di erent symmetries. Concerning the problem of the in uence of boundary conditions on the six-vertex model, we showed the existence of in nitely many boundaries whose intensive properties disagree with the standard periodic boundary condition SPBC = 32 ln(43). We also proved that by a suitable choice of boundary conditionsany entropy value in the interval [0, 12 ln(3324)] is accessible. We conjectured that the sameis true for the interval [ 1 2 ln(3324), SPBC]. The number of configurations of the six-vertex model with fixed boundary condition amounts to the enumeration problem of generalized alternating sign matrices. |
| id |
SCAR_85eb8d53e21c9faba07cebe372d487fd |
|---|---|
| oai_identifier_str |
oai:repositorio.ufscar.br:20.500.14289/9216 |
| network_acronym_str |
SCAR |
| network_name_str |
Repositório Institucional da UFSCAR |
| repository_id_str |
|
| spelling |
Tavares, Thiago SilvaRibeiro, Giuliano Augustus Pavanhttp://lattes.cnpq.br/7955854896355856http://lattes.cnpq.br/0662651860802736afff33af-05a2-4948-a5c5-ae897c2789042017-11-29T16:44:13Z2017-11-29T16:44:13Z2017-08-16TAVARES, Thiago Silva. Propriedades físicas de modelos integráveis. 2017. Tese (Doutorado em Física) – Universidade Federal de São Carlos, São Carlos, 2017. Disponível em: https://repositorio.ufscar.br/handle/20.500.14289/9216.https://repositorio.ufscar.br/handle/20.500.14289/9216In this thesis we tackled two di erent problems of quantum integrability. We derived nite sets of non-linear integral equations to describe physical properties of quantum chains invariant under the super-algebras su(2|1) and osp(1|2); and we also studied the in uence of boundary conditions on the bulk properties of the six-vertex model. The su(2|1) invariant model is a multi-chain generalization of the super-symmetric t-J model. Using the quantum transfer matrix method we obtained the phase diagram. For the osp(1|2) invariant model we could also rewrite the Hamiltonian in the language of itinerant fermions interacting through exchange, although the Hamiltonian itself is not hermitian, which corresponds to a non-unitary eld theory. We analytically computed the (e ective) central charge of this theory, corroborating numerical results of the literature. These results point towards the possibility of generalization of such non linear integral equations for models of di erent symmetries. Concerning the problem of the in uence of boundary conditions on the six-vertex model, we showed the existence of in nitely many boundaries whose intensive properties disagree with the standard periodic boundary condition SPBC = 32 ln(43). We also proved that by a suitable choice of boundary conditionsany entropy value in the interval [0, 12 ln(3324)] is accessible. We conjectured that the sameis true for the interval [ 1 2 ln(3324), SPBC]. The number of configurations of the six-vertex model with fixed boundary condition amounts to the enumeration problem of generalized alternating sign matrices.Nesta tese nós abordamos dois problemas inseridos no contexto dos modelos integráveis. Nós formulamos sistemas nitos de equações integrais não-lineares para descrição de propriedades físicas das cadeias quânticas invariantes pelas super-álgebras su(2|1) e osp(1|2); e estudamos a influência das condições de contorno no modelo de seis-vértices simétrico. O modelo invariante pela super-álgebra su(2|1) é uma generalização de multicadeias do modelo t-J, do qual pudemos extrair o diagrama de fases a partir do método da matriz de transferência quântica. O modelo invariante pela super-álgebra osp(1|2) também pode ser descrito em termos de férmions itinerantes com interação de troca, embora o Hamiltoniano não seja hermitiano, o que corresponde a uma teoria de campos subjacente não unitária. Para este modelo nós obtivemos a carga central e a carga central efetiva de forma analítica, corroborando os resultados numéricos da literatura. Ambos os resultados demonstram a eficiência do sistema de equações integrais e apontam para possibilidade de generalização para modelos de diferentes simetrias. No que diz respeito à influência das condições de contorno no modelo de seis-vértices, nós demonstramos a existência de uma infinidade de condições de contorno que produzem propriedades intensivas diferentes do caso periódico SPBC= 3/2 ln(4/3). Provamos que todos os valores de entropia no intervalo [0, 12 ln(3324)] são acessíveis através de uma escolha adequada do contorno, e conjecturamos que todos os valores no intervalo [ 12 ln(3324), SPBC] também o são. O número de configurações do modelo de seis-vértices sob condições fixas de contorno corresponde ao número de matrizes de sinais alternados generalizadas.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)FAPESP: 2013/17338-4porUniversidade Federal de São CarlosCâmpus São CarlosPrograma de Pós-Graduação em Física - PPGFUFSCarModelos integráveisPropriedades físicasEquações integrais não-linearesCIENCIAS EXATAS E DA TERRA::FISICAPropriedades físicas de modelos integráveisinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisOnline600600a35b6b4f-e955-4cd8-9bc2-c92bfd07a511info:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFSCARinstname:Universidade Federal de São Carlos (UFSCAR)instacron:UFSCARORIGINALTeseTST.pdfTeseTST.pdfapplication/pdf2326628https://repositorio.ufscar.br/bitstreams/8bc8b732-ecb6-4bbc-b294-9ff53843fd03/download8799aa8701b16d7425058250bbe70db1MD51trueAnonymousREADLICENSElicense.txtlicense.txttext/plain; charset=utf-81957https://repositorio.ufscar.br/bitstreams/c794b51b-ccae-4427-bab2-b86ffbf58660/downloadae0398b6f8b235e40ad82cba6c50031dMD52falseAnonymousREADTEXTTeseTST.pdf.txtTeseTST.pdf.txtExtracted texttext/plain258123https://repositorio.ufscar.br/bitstreams/c7eaef4e-77b6-4729-9706-ea69d809a686/download0237365a856b330face035d26d8690a2MD57falseAnonymousREADTHUMBNAILTeseTST.pdf.jpgTeseTST.pdf.jpgIM Thumbnailimage/jpeg4902https://repositorio.ufscar.br/bitstreams/32a8f4f1-5553-412a-b03c-cf464f8cd82c/download0989cda7f1ea92b23143eda97fb55d46MD58falseAnonymousREAD20.500.14289/92162025-02-05 19:02:14.064Acesso abertoopen.accessoai:repositorio.ufscar.br:20.500.14289/9216https://repositorio.ufscar.brRepositório InstitucionalPUBhttps://repositorio.ufscar.br/oai/requestrepositorio.sibi@ufscar.bropendoar:43222025-02-05T22:02:14Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)falseTElDRU7Dh0EgREUgRElTVFJJQlVJw4fDg08gTsODTy1FWENMVVNJVkEKCkNvbSBhIGFwcmVzZW50YcOnw6NvIGRlc3RhIGxpY2Vuw6dhLCB2b2PDqiAobyBhdXRvciAoZXMpIG91IG8gdGl0dWxhciBkb3MgZGlyZWl0b3MgZGUgYXV0b3IpIGNvbmNlZGUgw6AgVW5pdmVyc2lkYWRlCkZlZGVyYWwgZGUgU8OjbyBDYXJsb3MgbyBkaXJlaXRvIG7Do28tZXhjbHVzaXZvIGRlIHJlcHJvZHV6aXIsICB0cmFkdXppciAoY29uZm9ybWUgZGVmaW5pZG8gYWJhaXhvKSwgZS9vdQpkaXN0cmlidWlyIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyAoaW5jbHVpbmRvIG8gcmVzdW1vKSBwb3IgdG9kbyBvIG11bmRvIG5vIGZvcm1hdG8gaW1wcmVzc28gZSBlbGV0csO0bmljbyBlCmVtIHF1YWxxdWVyIG1laW8sIGluY2x1aW5kbyBvcyBmb3JtYXRvcyDDoXVkaW8gb3UgdsOtZGVvLgoKVm9jw6ogY29uY29yZGEgcXVlIGEgVUZTQ2FyIHBvZGUsIHNlbSBhbHRlcmFyIG8gY29udGXDumRvLCB0cmFuc3BvciBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28KcGFyYSBxdWFscXVlciBtZWlvIG91IGZvcm1hdG8gcGFyYSBmaW5zIGRlIHByZXNlcnZhw6fDo28uCgpWb2PDqiB0YW1iw6ltIGNvbmNvcmRhIHF1ZSBhIFVGU0NhciBwb2RlIG1hbnRlciBtYWlzIGRlIHVtYSBjw7NwaWEgYSBzdWEgdGVzZSBvdQpkaXNzZXJ0YcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcwpuZXN0YSBsaWNlbsOnYS4gVm9jw6ogdGFtYsOpbSBkZWNsYXJhIHF1ZSBvIGRlcMOzc2l0byBkYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIG7Do28sIHF1ZSBzZWphIGRlIHNldQpjb25oZWNpbWVudG8sIGluZnJpbmdlIGRpcmVpdG9zIGF1dG9yYWlzIGRlIG5pbmd1w6ltLgoKQ2FzbyBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gY29udGVuaGEgbWF0ZXJpYWwgcXVlIHZvY8OqIG7Do28gcG9zc3VpIGEgdGl0dWxhcmlkYWRlIGRvcyBkaXJlaXRvcyBhdXRvcmFpcywgdm9jw6oKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIMOgIFVGU0NhcgpvcyBkaXJlaXRvcyBhcHJlc2VudGFkb3MgbmVzdGEgbGljZW7Dp2EsIGUgcXVlIGVzc2UgbWF0ZXJpYWwgZGUgcHJvcHJpZWRhZGUgZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUKaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3Ugbm8gY29udGXDumRvIGRhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBvcmEgZGVwb3NpdGFkYS4KCkNBU08gQSBURVNFIE9VIERJU1NFUlRBw4fDg08gT1JBIERFUE9TSVRBREEgVEVOSEEgU0lETyBSRVNVTFRBRE8gREUgVU0gUEFUUk9Dw41OSU8gT1UKQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBVRlNDYXIsClZPQ8OKIERFQ0xBUkEgUVVFIFJFU1BFSVRPVSBUT0RPUyBFIFFVQUlTUVVFUiBESVJFSVRPUyBERSBSRVZJU8ODTyBDT01PClRBTULDiU0gQVMgREVNQUlTIE9CUklHQcOHw5VFUyBFWElHSURBUyBQT1IgQ09OVFJBVE8gT1UgQUNPUkRPLgoKQSBVRlNDYXIgc2UgY29tcHJvbWV0ZSBhIGlkZW50aWZpY2FyIGNsYXJhbWVudGUgbyBzZXUgbm9tZSAocykgb3UgbyhzKSBub21lKHMpIGRvKHMpCmRldGVudG9yKGVzKSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzCmNvbmNlZGlkYXMgcG9yIGVzdGEgbGljZW7Dp2EuCg== |
| dc.title.por.fl_str_mv |
Propriedades físicas de modelos integráveis |
| title |
Propriedades físicas de modelos integráveis |
| spellingShingle |
Propriedades físicas de modelos integráveis Tavares, Thiago Silva Modelos integráveis Propriedades físicas Equações integrais não-lineares CIENCIAS EXATAS E DA TERRA::FISICA |
| title_short |
Propriedades físicas de modelos integráveis |
| title_full |
Propriedades físicas de modelos integráveis |
| title_fullStr |
Propriedades físicas de modelos integráveis |
| title_full_unstemmed |
Propriedades físicas de modelos integráveis |
| title_sort |
Propriedades físicas de modelos integráveis |
| author |
Tavares, Thiago Silva |
| author_facet |
Tavares, Thiago Silva |
| author_role |
author |
| dc.contributor.authorlattes.por.fl_str_mv |
http://lattes.cnpq.br/0662651860802736 |
| dc.contributor.author.fl_str_mv |
Tavares, Thiago Silva |
| dc.contributor.advisor1.fl_str_mv |
Ribeiro, Giuliano Augustus Pavan |
| dc.contributor.advisor1Lattes.fl_str_mv |
http://lattes.cnpq.br/7955854896355856 |
| dc.contributor.authorID.fl_str_mv |
afff33af-05a2-4948-a5c5-ae897c278904 |
| contributor_str_mv |
Ribeiro, Giuliano Augustus Pavan |
| dc.subject.por.fl_str_mv |
Modelos integráveis Propriedades físicas Equações integrais não-lineares |
| topic |
Modelos integráveis Propriedades físicas Equações integrais não-lineares CIENCIAS EXATAS E DA TERRA::FISICA |
| dc.subject.cnpq.fl_str_mv |
CIENCIAS EXATAS E DA TERRA::FISICA |
| description |
In this thesis we tackled two di erent problems of quantum integrability. We derived nite sets of non-linear integral equations to describe physical properties of quantum chains invariant under the super-algebras su(2|1) and osp(1|2); and we also studied the in uence of boundary conditions on the bulk properties of the six-vertex model. The su(2|1) invariant model is a multi-chain generalization of the super-symmetric t-J model. Using the quantum transfer matrix method we obtained the phase diagram. For the osp(1|2) invariant model we could also rewrite the Hamiltonian in the language of itinerant fermions interacting through exchange, although the Hamiltonian itself is not hermitian, which corresponds to a non-unitary eld theory. We analytically computed the (e ective) central charge of this theory, corroborating numerical results of the literature. These results point towards the possibility of generalization of such non linear integral equations for models of di erent symmetries. Concerning the problem of the in uence of boundary conditions on the six-vertex model, we showed the existence of in nitely many boundaries whose intensive properties disagree with the standard periodic boundary condition SPBC = 32 ln(43). We also proved that by a suitable choice of boundary conditionsany entropy value in the interval [0, 12 ln(3324)] is accessible. We conjectured that the sameis true for the interval [ 1 2 ln(3324), SPBC]. The number of configurations of the six-vertex model with fixed boundary condition amounts to the enumeration problem of generalized alternating sign matrices. |
| publishDate |
2017 |
| dc.date.accessioned.fl_str_mv |
2017-11-29T16:44:13Z |
| dc.date.available.fl_str_mv |
2017-11-29T16:44:13Z |
| dc.date.issued.fl_str_mv |
2017-08-16 |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
| format |
doctoralThesis |
| status_str |
publishedVersion |
| dc.identifier.citation.fl_str_mv |
TAVARES, Thiago Silva. Propriedades físicas de modelos integráveis. 2017. Tese (Doutorado em Física) – Universidade Federal de São Carlos, São Carlos, 2017. Disponível em: https://repositorio.ufscar.br/handle/20.500.14289/9216. |
| dc.identifier.uri.fl_str_mv |
https://repositorio.ufscar.br/handle/20.500.14289/9216 |
| identifier_str_mv |
TAVARES, Thiago Silva. Propriedades físicas de modelos integráveis. 2017. Tese (Doutorado em Física) – Universidade Federal de São Carlos, São Carlos, 2017. Disponível em: https://repositorio.ufscar.br/handle/20.500.14289/9216. |
| url |
https://repositorio.ufscar.br/handle/20.500.14289/9216 |
| dc.language.iso.fl_str_mv |
por |
| language |
por |
| dc.relation.confidence.fl_str_mv |
600 600 |
| dc.relation.authority.fl_str_mv |
a35b6b4f-e955-4cd8-9bc2-c92bfd07a511 |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.publisher.none.fl_str_mv |
Universidade Federal de São Carlos Câmpus São Carlos |
| dc.publisher.program.fl_str_mv |
Programa de Pós-Graduação em Física - PPGF |
| dc.publisher.initials.fl_str_mv |
UFSCar |
| publisher.none.fl_str_mv |
Universidade Federal de São Carlos Câmpus São Carlos |
| dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFSCAR instname:Universidade Federal de São Carlos (UFSCAR) instacron:UFSCAR |
| instname_str |
Universidade Federal de São Carlos (UFSCAR) |
| instacron_str |
UFSCAR |
| institution |
UFSCAR |
| reponame_str |
Repositório Institucional da UFSCAR |
| collection |
Repositório Institucional da UFSCAR |
| bitstream.url.fl_str_mv |
https://repositorio.ufscar.br/bitstreams/8bc8b732-ecb6-4bbc-b294-9ff53843fd03/download https://repositorio.ufscar.br/bitstreams/c794b51b-ccae-4427-bab2-b86ffbf58660/download https://repositorio.ufscar.br/bitstreams/c7eaef4e-77b6-4729-9706-ea69d809a686/download https://repositorio.ufscar.br/bitstreams/32a8f4f1-5553-412a-b03c-cf464f8cd82c/download |
| bitstream.checksum.fl_str_mv |
8799aa8701b16d7425058250bbe70db1 ae0398b6f8b235e40ad82cba6c50031d 0237365a856b330face035d26d8690a2 0989cda7f1ea92b23143eda97fb55d46 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR) |
| repository.mail.fl_str_mv |
repositorio.sibi@ufscar.br |
| _version_ |
1851688812816629760 |