A bayesian nonparametric approach for the two-sample problem

Detalhes bibliográficos
Ano de defesa: 2018
Autor(a) principal: Console, Rafael de Carvalho Ceregatti de
Orientador(a): Salasar, Luis Ernesto Bueno lattes
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Universidade Federal de São Carlos
Câmpus São Carlos
Programa de Pós-Graduação: Programa Interinstitucional de Pós-Graduação em Estatística - PIPGEs
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Palavras-chave em Inglês:
Área do conhecimento CNPq:
Link de acesso: https://repositorio.ufscar.br/handle/20.500.14289/11579
Resumo: In this work, we discuss the so-called two-sample problem (PEARSON; NEYMAN, 1930) assuming a nonparametric Bayesian approach. Considering X 1 ,...,X n and Y 1 ,...,Y m two inde- pendent i.i.d samples generated from P 1 and P 2 , respectively, the two-sample problem consists in deciding if P 1 and P 2 are equal. Assuming a nonparametric prior, we propose an evidence index for the null hypothesis H 0 : P 1 = P 2 based on the posterior distribution of the distance d(P 1 ,P 2 ) between P 1 and P 2 . This evidence index has easy computation, intuitive interpretation and can also be justified in the Bayesian decision-theoretic context. Further, in a Monte Carlo simulation study, our method presented good performance when compared to the well known Kolmogorov-Smirnov test, the Wilcoxon test as well as a recent testing procedure based on Polya tree process proposed by Holmes (HOLMES et al., 2015). Finally, we applied our method to a data set about scale measurements of three different groups of patients submitted to a questionnaire for Alzheimer’s disease diagnostic.
id SCAR_b03d02a975a931e0e6a0ce4e9a5530a2
oai_identifier_str oai:repositorio.ufscar.br:20.500.14289/11579
network_acronym_str SCAR
network_name_str Repositório Institucional da UFSCAR
repository_id_str
spelling Console, Rafael de Carvalho Ceregatti deSalasar, Luis Ernesto Buenohttp://lattes.cnpq.br/5464564215528609http://lattes.cnpq.br/5405464055196044ea80e7c7-b7ab-4912-835b-a1a67dcd3d3a2019-08-01T16:13:01Z2019-08-01T16:13:01Z2018-11-19CONSOLE, Rafael de Carvalho Ceregatti de. A bayesian nonparametric approach for the two-sample problem. 2018. Dissertação (Mestrado em Estatística) – Universidade Federal de São Carlos, São Carlos, 2018. Disponível em: https://repositorio.ufscar.br/handle/20.500.14289/11579.https://repositorio.ufscar.br/handle/20.500.14289/11579In this work, we discuss the so-called two-sample problem (PEARSON; NEYMAN, 1930) assuming a nonparametric Bayesian approach. Considering X 1 ,...,X n and Y 1 ,...,Y m two inde- pendent i.i.d samples generated from P 1 and P 2 , respectively, the two-sample problem consists in deciding if P 1 and P 2 are equal. Assuming a nonparametric prior, we propose an evidence index for the null hypothesis H 0 : P 1 = P 2 based on the posterior distribution of the distance d(P 1 ,P 2 ) between P 1 and P 2 . This evidence index has easy computation, intuitive interpretation and can also be justified in the Bayesian decision-theoretic context. Further, in a Monte Carlo simulation study, our method presented good performance when compared to the well known Kolmogorov-Smirnov test, the Wilcoxon test as well as a recent testing procedure based on Polya tree process proposed by Holmes (HOLMES et al., 2015). Finally, we applied our method to a data set about scale measurements of three different groups of patients submitted to a questionnaire for Alzheimer’s disease diagnostic.Neste trabalho, discutimos o problema conhecido como problema de duas amostras utilizando uma abordagem bayesiana não-paramétrica. Considere X 1 ,...,X n e Y 1 ,...,Y m duas amostras independentes, geradas por P1 e P2, respectivamente, o problema de duas amostras consiste em decidir se P 1 e P 2 são iguais. Assumindo uma priori não-paramétrica, propomos um índice de evidência para a hipótese nula H 0 : P 1 = P 2 baseado na distribuição a posteriori da distância d(P 1 ,P 2 ) entre P 1 e P 2 . O índice de evidência é de fácil implementação, tem uma interpretação intuitiva e também pode ser justificada no contexto da teoria da decisão bayesiana. Além disso, em um estudo de simulação de Monte Carlo, nosso método apresentou bom desempenho quando comparado com o teste de Kolmogorov-Smirnov, com o teste de Wilcoxon e com o método de Holmes. Finalmente, aplicamos nosso método em um conjunto de dados sobre medidas de escala de três grupos diferentes de pacientes submetidos a um questionário para diagnóstico de doença de Alzheimer.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)engUniversidade Federal de São CarlosCâmpus São CarlosPrograma Interinstitucional de Pós-Graduação em Estatística - PIPGEsUFSCarBayesiano não-paramétricoProcesso de DirichletTeste de hipóteseProblema de duas amostrasBayesian nonparametricsDirichlet process priorHypothesis testingTwo-sample problemCIENCIAS EXATAS E DA TERRA::PROBABILIDADE E ESTATISTICA::ESTATISTICA::INFERENCIA NAO-PARAMETRICAA bayesian nonparametric approach for the two-sample problemUma abordagem bayesiana não paramétrica para o problema de duas amostrasinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisOnline600600d18bde29-0b98-43e9-ae00-55c68009667ainfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFSCARinstname:Universidade Federal de São Carlos (UFSCAR)instacron:UFSCARORIGINALVersao_Final_Autorizada.pdfVersao_Final_Autorizada.pdfapplication/pdf1283750https://repositorio.ufscar.br/bitstreams/dd853a23-1328-4828-95cc-064ac2422859/download9f77e5dc6d3d0ef4f584187de3676315MD51trueAnonymousREADLICENSElicense.txtlicense.txttext/plain; charset=utf-81957https://repositorio.ufscar.br/bitstreams/7c1e59ed-5938-4adf-a3d0-7b172f48f6c7/downloadae0398b6f8b235e40ad82cba6c50031dMD53falseAnonymousREADTEXTVersao_Final_Autorizada.pdf.txtVersao_Final_Autorizada.pdf.txtExtracted texttext/plain48994https://repositorio.ufscar.br/bitstreams/71f81153-9222-41d6-bd36-1af9a46fbb73/downloadc01ec577822321c0cc33421a5efcfcb5MD56falseAnonymousREADTHUMBNAILVersao_Final_Autorizada.pdf.jpgVersao_Final_Autorizada.pdf.jpgIM Thumbnailimage/jpeg6078https://repositorio.ufscar.br/bitstreams/9f078d4e-c446-417f-8f6a-4860e5fb870e/download35af77e8310d177d03c1391b4f5983d2MD57falseAnonymousREAD20.500.14289/115792025-02-05 18:13:22.014Acesso abertoopen.accessoai:repositorio.ufscar.br:20.500.14289/11579https://repositorio.ufscar.brRepositório InstitucionalPUBhttps://repositorio.ufscar.br/oai/requestrepositorio.sibi@ufscar.bropendoar:43222025-02-05T21:13:22Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)falseTElDRU7Dh0EgREUgRElTVFJJQlVJw4fDg08gTsODTy1FWENMVVNJVkEKCkNvbSBhIGFwcmVzZW50YcOnw6NvIGRlc3RhIGxpY2Vuw6dhLCB2b2PDqiAobyBhdXRvciAoZXMpIG91IG8gdGl0dWxhciBkb3MgZGlyZWl0b3MgZGUgYXV0b3IpIGNvbmNlZGUgw6AgVW5pdmVyc2lkYWRlCkZlZGVyYWwgZGUgU8OjbyBDYXJsb3MgbyBkaXJlaXRvIG7Do28tZXhjbHVzaXZvIGRlIHJlcHJvZHV6aXIsICB0cmFkdXppciAoY29uZm9ybWUgZGVmaW5pZG8gYWJhaXhvKSwgZS9vdQpkaXN0cmlidWlyIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyAoaW5jbHVpbmRvIG8gcmVzdW1vKSBwb3IgdG9kbyBvIG11bmRvIG5vIGZvcm1hdG8gaW1wcmVzc28gZSBlbGV0csO0bmljbyBlCmVtIHF1YWxxdWVyIG1laW8sIGluY2x1aW5kbyBvcyBmb3JtYXRvcyDDoXVkaW8gb3UgdsOtZGVvLgoKVm9jw6ogY29uY29yZGEgcXVlIGEgVUZTQ2FyIHBvZGUsIHNlbSBhbHRlcmFyIG8gY29udGXDumRvLCB0cmFuc3BvciBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28KcGFyYSBxdWFscXVlciBtZWlvIG91IGZvcm1hdG8gcGFyYSBmaW5zIGRlIHByZXNlcnZhw6fDo28uCgpWb2PDqiB0YW1iw6ltIGNvbmNvcmRhIHF1ZSBhIFVGU0NhciBwb2RlIG1hbnRlciBtYWlzIGRlIHVtYSBjw7NwaWEgYSBzdWEgdGVzZSBvdQpkaXNzZXJ0YcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcwpuZXN0YSBsaWNlbsOnYS4gVm9jw6ogdGFtYsOpbSBkZWNsYXJhIHF1ZSBvIGRlcMOzc2l0byBkYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIG7Do28sIHF1ZSBzZWphIGRlIHNldQpjb25oZWNpbWVudG8sIGluZnJpbmdlIGRpcmVpdG9zIGF1dG9yYWlzIGRlIG5pbmd1w6ltLgoKQ2FzbyBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gY29udGVuaGEgbWF0ZXJpYWwgcXVlIHZvY8OqIG7Do28gcG9zc3VpIGEgdGl0dWxhcmlkYWRlIGRvcyBkaXJlaXRvcyBhdXRvcmFpcywgdm9jw6oKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIMOgIFVGU0NhcgpvcyBkaXJlaXRvcyBhcHJlc2VudGFkb3MgbmVzdGEgbGljZW7Dp2EsIGUgcXVlIGVzc2UgbWF0ZXJpYWwgZGUgcHJvcHJpZWRhZGUgZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUKaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3Ugbm8gY29udGXDumRvIGRhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBvcmEgZGVwb3NpdGFkYS4KCkNBU08gQSBURVNFIE9VIERJU1NFUlRBw4fDg08gT1JBIERFUE9TSVRBREEgVEVOSEEgU0lETyBSRVNVTFRBRE8gREUgVU0gUEFUUk9Dw41OSU8gT1UKQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBVRlNDYXIsClZPQ8OKIERFQ0xBUkEgUVVFIFJFU1BFSVRPVSBUT0RPUyBFIFFVQUlTUVVFUiBESVJFSVRPUyBERSBSRVZJU8ODTyBDT01PClRBTULDiU0gQVMgREVNQUlTIE9CUklHQcOHw5VFUyBFWElHSURBUyBQT1IgQ09OVFJBVE8gT1UgQUNPUkRPLgoKQSBVRlNDYXIgc2UgY29tcHJvbWV0ZSBhIGlkZW50aWZpY2FyIGNsYXJhbWVudGUgbyBzZXUgbm9tZSAocykgb3UgbyhzKSBub21lKHMpIGRvKHMpCmRldGVudG9yKGVzKSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzCmNvbmNlZGlkYXMgcG9yIGVzdGEgbGljZW7Dp2EuCg==
dc.title.eng.fl_str_mv A bayesian nonparametric approach for the two-sample problem
dc.title.alternative.por.fl_str_mv Uma abordagem bayesiana não paramétrica para o problema de duas amostras
title A bayesian nonparametric approach for the two-sample problem
spellingShingle A bayesian nonparametric approach for the two-sample problem
Console, Rafael de Carvalho Ceregatti de
Bayesiano não-paramétrico
Processo de Dirichlet
Teste de hipótese
Problema de duas amostras
Bayesian nonparametrics
Dirichlet process prior
Hypothesis testing
Two-sample problem
CIENCIAS EXATAS E DA TERRA::PROBABILIDADE E ESTATISTICA::ESTATISTICA::INFERENCIA NAO-PARAMETRICA
title_short A bayesian nonparametric approach for the two-sample problem
title_full A bayesian nonparametric approach for the two-sample problem
title_fullStr A bayesian nonparametric approach for the two-sample problem
title_full_unstemmed A bayesian nonparametric approach for the two-sample problem
title_sort A bayesian nonparametric approach for the two-sample problem
author Console, Rafael de Carvalho Ceregatti de
author_facet Console, Rafael de Carvalho Ceregatti de
author_role author
dc.contributor.authorlattes.por.fl_str_mv http://lattes.cnpq.br/5405464055196044
dc.contributor.author.fl_str_mv Console, Rafael de Carvalho Ceregatti de
dc.contributor.advisor1.fl_str_mv Salasar, Luis Ernesto Bueno
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/5464564215528609
dc.contributor.authorID.fl_str_mv ea80e7c7-b7ab-4912-835b-a1a67dcd3d3a
contributor_str_mv Salasar, Luis Ernesto Bueno
dc.subject.por.fl_str_mv Bayesiano não-paramétrico
Processo de Dirichlet
Teste de hipótese
Problema de duas amostras
topic Bayesiano não-paramétrico
Processo de Dirichlet
Teste de hipótese
Problema de duas amostras
Bayesian nonparametrics
Dirichlet process prior
Hypothesis testing
Two-sample problem
CIENCIAS EXATAS E DA TERRA::PROBABILIDADE E ESTATISTICA::ESTATISTICA::INFERENCIA NAO-PARAMETRICA
dc.subject.eng.fl_str_mv Bayesian nonparametrics
Dirichlet process prior
Hypothesis testing
Two-sample problem
dc.subject.cnpq.fl_str_mv CIENCIAS EXATAS E DA TERRA::PROBABILIDADE E ESTATISTICA::ESTATISTICA::INFERENCIA NAO-PARAMETRICA
description In this work, we discuss the so-called two-sample problem (PEARSON; NEYMAN, 1930) assuming a nonparametric Bayesian approach. Considering X 1 ,...,X n and Y 1 ,...,Y m two inde- pendent i.i.d samples generated from P 1 and P 2 , respectively, the two-sample problem consists in deciding if P 1 and P 2 are equal. Assuming a nonparametric prior, we propose an evidence index for the null hypothesis H 0 : P 1 = P 2 based on the posterior distribution of the distance d(P 1 ,P 2 ) between P 1 and P 2 . This evidence index has easy computation, intuitive interpretation and can also be justified in the Bayesian decision-theoretic context. Further, in a Monte Carlo simulation study, our method presented good performance when compared to the well known Kolmogorov-Smirnov test, the Wilcoxon test as well as a recent testing procedure based on Polya tree process proposed by Holmes (HOLMES et al., 2015). Finally, we applied our method to a data set about scale measurements of three different groups of patients submitted to a questionnaire for Alzheimer’s disease diagnostic.
publishDate 2018
dc.date.issued.fl_str_mv 2018-11-19
dc.date.accessioned.fl_str_mv 2019-08-01T16:13:01Z
dc.date.available.fl_str_mv 2019-08-01T16:13:01Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv CONSOLE, Rafael de Carvalho Ceregatti de. A bayesian nonparametric approach for the two-sample problem. 2018. Dissertação (Mestrado em Estatística) – Universidade Federal de São Carlos, São Carlos, 2018. Disponível em: https://repositorio.ufscar.br/handle/20.500.14289/11579.
dc.identifier.uri.fl_str_mv https://repositorio.ufscar.br/handle/20.500.14289/11579
identifier_str_mv CONSOLE, Rafael de Carvalho Ceregatti de. A bayesian nonparametric approach for the two-sample problem. 2018. Dissertação (Mestrado em Estatística) – Universidade Federal de São Carlos, São Carlos, 2018. Disponível em: https://repositorio.ufscar.br/handle/20.500.14289/11579.
url https://repositorio.ufscar.br/handle/20.500.14289/11579
dc.language.iso.fl_str_mv eng
language eng
dc.relation.confidence.fl_str_mv 600
600
dc.relation.authority.fl_str_mv d18bde29-0b98-43e9-ae00-55c68009667a
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal de São Carlos
Câmpus São Carlos
dc.publisher.program.fl_str_mv Programa Interinstitucional de Pós-Graduação em Estatística - PIPGEs
dc.publisher.initials.fl_str_mv UFSCar
publisher.none.fl_str_mv Universidade Federal de São Carlos
Câmpus São Carlos
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFSCAR
instname:Universidade Federal de São Carlos (UFSCAR)
instacron:UFSCAR
instname_str Universidade Federal de São Carlos (UFSCAR)
instacron_str UFSCAR
institution UFSCAR
reponame_str Repositório Institucional da UFSCAR
collection Repositório Institucional da UFSCAR
bitstream.url.fl_str_mv https://repositorio.ufscar.br/bitstreams/dd853a23-1328-4828-95cc-064ac2422859/download
https://repositorio.ufscar.br/bitstreams/7c1e59ed-5938-4adf-a3d0-7b172f48f6c7/download
https://repositorio.ufscar.br/bitstreams/71f81153-9222-41d6-bd36-1af9a46fbb73/download
https://repositorio.ufscar.br/bitstreams/9f078d4e-c446-417f-8f6a-4860e5fb870e/download
bitstream.checksum.fl_str_mv 9f77e5dc6d3d0ef4f584187de3676315
ae0398b6f8b235e40ad82cba6c50031d
c01ec577822321c0cc33421a5efcfcb5
35af77e8310d177d03c1391b4f5983d2
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)
repository.mail.fl_str_mv repositorio.sibi@ufscar.br
_version_ 1851688897193443328