A bayesian nonparametric approach for the two-sample problem
| Ano de defesa: | 2018 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | |
| Tipo de documento: | Dissertação |
| Tipo de acesso: | Acesso aberto |
| Idioma: | eng |
| Instituição de defesa: |
Universidade Federal de São Carlos
Câmpus São Carlos |
| Programa de Pós-Graduação: |
Programa Interinstitucional de Pós-Graduação em Estatística - PIPGEs
|
| Departamento: |
Não Informado pela instituição
|
| País: |
Não Informado pela instituição
|
| Palavras-chave em Português: | |
| Palavras-chave em Inglês: | |
| Área do conhecimento CNPq: | |
| Link de acesso: | https://repositorio.ufscar.br/handle/20.500.14289/11579 |
Resumo: | In this work, we discuss the so-called two-sample problem (PEARSON; NEYMAN, 1930) assuming a nonparametric Bayesian approach. Considering X 1 ,...,X n and Y 1 ,...,Y m two inde- pendent i.i.d samples generated from P 1 and P 2 , respectively, the two-sample problem consists in deciding if P 1 and P 2 are equal. Assuming a nonparametric prior, we propose an evidence index for the null hypothesis H 0 : P 1 = P 2 based on the posterior distribution of the distance d(P 1 ,P 2 ) between P 1 and P 2 . This evidence index has easy computation, intuitive interpretation and can also be justified in the Bayesian decision-theoretic context. Further, in a Monte Carlo simulation study, our method presented good performance when compared to the well known Kolmogorov-Smirnov test, the Wilcoxon test as well as a recent testing procedure based on Polya tree process proposed by Holmes (HOLMES et al., 2015). Finally, we applied our method to a data set about scale measurements of three different groups of patients submitted to a questionnaire for Alzheimer’s disease diagnostic. |
| id |
SCAR_b03d02a975a931e0e6a0ce4e9a5530a2 |
|---|---|
| oai_identifier_str |
oai:repositorio.ufscar.br:20.500.14289/11579 |
| network_acronym_str |
SCAR |
| network_name_str |
Repositório Institucional da UFSCAR |
| repository_id_str |
|
| spelling |
Console, Rafael de Carvalho Ceregatti deSalasar, Luis Ernesto Buenohttp://lattes.cnpq.br/5464564215528609http://lattes.cnpq.br/5405464055196044ea80e7c7-b7ab-4912-835b-a1a67dcd3d3a2019-08-01T16:13:01Z2019-08-01T16:13:01Z2018-11-19CONSOLE, Rafael de Carvalho Ceregatti de. A bayesian nonparametric approach for the two-sample problem. 2018. Dissertação (Mestrado em Estatística) – Universidade Federal de São Carlos, São Carlos, 2018. Disponível em: https://repositorio.ufscar.br/handle/20.500.14289/11579.https://repositorio.ufscar.br/handle/20.500.14289/11579In this work, we discuss the so-called two-sample problem (PEARSON; NEYMAN, 1930) assuming a nonparametric Bayesian approach. Considering X 1 ,...,X n and Y 1 ,...,Y m two inde- pendent i.i.d samples generated from P 1 and P 2 , respectively, the two-sample problem consists in deciding if P 1 and P 2 are equal. Assuming a nonparametric prior, we propose an evidence index for the null hypothesis H 0 : P 1 = P 2 based on the posterior distribution of the distance d(P 1 ,P 2 ) between P 1 and P 2 . This evidence index has easy computation, intuitive interpretation and can also be justified in the Bayesian decision-theoretic context. Further, in a Monte Carlo simulation study, our method presented good performance when compared to the well known Kolmogorov-Smirnov test, the Wilcoxon test as well as a recent testing procedure based on Polya tree process proposed by Holmes (HOLMES et al., 2015). Finally, we applied our method to a data set about scale measurements of three different groups of patients submitted to a questionnaire for Alzheimer’s disease diagnostic.Neste trabalho, discutimos o problema conhecido como problema de duas amostras utilizando uma abordagem bayesiana não-paramétrica. Considere X 1 ,...,X n e Y 1 ,...,Y m duas amostras independentes, geradas por P1 e P2, respectivamente, o problema de duas amostras consiste em decidir se P 1 e P 2 são iguais. Assumindo uma priori não-paramétrica, propomos um índice de evidência para a hipótese nula H 0 : P 1 = P 2 baseado na distribuição a posteriori da distância d(P 1 ,P 2 ) entre P 1 e P 2 . O índice de evidência é de fácil implementação, tem uma interpretação intuitiva e também pode ser justificada no contexto da teoria da decisão bayesiana. Além disso, em um estudo de simulação de Monte Carlo, nosso método apresentou bom desempenho quando comparado com o teste de Kolmogorov-Smirnov, com o teste de Wilcoxon e com o método de Holmes. Finalmente, aplicamos nosso método em um conjunto de dados sobre medidas de escala de três grupos diferentes de pacientes submetidos a um questionário para diagnóstico de doença de Alzheimer.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)engUniversidade Federal de São CarlosCâmpus São CarlosPrograma Interinstitucional de Pós-Graduação em Estatística - PIPGEsUFSCarBayesiano não-paramétricoProcesso de DirichletTeste de hipóteseProblema de duas amostrasBayesian nonparametricsDirichlet process priorHypothesis testingTwo-sample problemCIENCIAS EXATAS E DA TERRA::PROBABILIDADE E ESTATISTICA::ESTATISTICA::INFERENCIA NAO-PARAMETRICAA bayesian nonparametric approach for the two-sample problemUma abordagem bayesiana não paramétrica para o problema de duas amostrasinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisOnline600600d18bde29-0b98-43e9-ae00-55c68009667ainfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFSCARinstname:Universidade Federal de São Carlos (UFSCAR)instacron:UFSCARORIGINALVersao_Final_Autorizada.pdfVersao_Final_Autorizada.pdfapplication/pdf1283750https://repositorio.ufscar.br/bitstreams/dd853a23-1328-4828-95cc-064ac2422859/download9f77e5dc6d3d0ef4f584187de3676315MD51trueAnonymousREADLICENSElicense.txtlicense.txttext/plain; charset=utf-81957https://repositorio.ufscar.br/bitstreams/7c1e59ed-5938-4adf-a3d0-7b172f48f6c7/downloadae0398b6f8b235e40ad82cba6c50031dMD53falseAnonymousREADTEXTVersao_Final_Autorizada.pdf.txtVersao_Final_Autorizada.pdf.txtExtracted texttext/plain48994https://repositorio.ufscar.br/bitstreams/71f81153-9222-41d6-bd36-1af9a46fbb73/downloadc01ec577822321c0cc33421a5efcfcb5MD56falseAnonymousREADTHUMBNAILVersao_Final_Autorizada.pdf.jpgVersao_Final_Autorizada.pdf.jpgIM Thumbnailimage/jpeg6078https://repositorio.ufscar.br/bitstreams/9f078d4e-c446-417f-8f6a-4860e5fb870e/download35af77e8310d177d03c1391b4f5983d2MD57falseAnonymousREAD20.500.14289/115792025-02-05 18:13:22.014Acesso abertoopen.accessoai:repositorio.ufscar.br:20.500.14289/11579https://repositorio.ufscar.brRepositório InstitucionalPUBhttps://repositorio.ufscar.br/oai/requestrepositorio.sibi@ufscar.bropendoar:43222025-02-05T21:13:22Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)falseTElDRU7Dh0EgREUgRElTVFJJQlVJw4fDg08gTsODTy1FWENMVVNJVkEKCkNvbSBhIGFwcmVzZW50YcOnw6NvIGRlc3RhIGxpY2Vuw6dhLCB2b2PDqiAobyBhdXRvciAoZXMpIG91IG8gdGl0dWxhciBkb3MgZGlyZWl0b3MgZGUgYXV0b3IpIGNvbmNlZGUgw6AgVW5pdmVyc2lkYWRlCkZlZGVyYWwgZGUgU8OjbyBDYXJsb3MgbyBkaXJlaXRvIG7Do28tZXhjbHVzaXZvIGRlIHJlcHJvZHV6aXIsICB0cmFkdXppciAoY29uZm9ybWUgZGVmaW5pZG8gYWJhaXhvKSwgZS9vdQpkaXN0cmlidWlyIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyAoaW5jbHVpbmRvIG8gcmVzdW1vKSBwb3IgdG9kbyBvIG11bmRvIG5vIGZvcm1hdG8gaW1wcmVzc28gZSBlbGV0csO0bmljbyBlCmVtIHF1YWxxdWVyIG1laW8sIGluY2x1aW5kbyBvcyBmb3JtYXRvcyDDoXVkaW8gb3UgdsOtZGVvLgoKVm9jw6ogY29uY29yZGEgcXVlIGEgVUZTQ2FyIHBvZGUsIHNlbSBhbHRlcmFyIG8gY29udGXDumRvLCB0cmFuc3BvciBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28KcGFyYSBxdWFscXVlciBtZWlvIG91IGZvcm1hdG8gcGFyYSBmaW5zIGRlIHByZXNlcnZhw6fDo28uCgpWb2PDqiB0YW1iw6ltIGNvbmNvcmRhIHF1ZSBhIFVGU0NhciBwb2RlIG1hbnRlciBtYWlzIGRlIHVtYSBjw7NwaWEgYSBzdWEgdGVzZSBvdQpkaXNzZXJ0YcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcwpuZXN0YSBsaWNlbsOnYS4gVm9jw6ogdGFtYsOpbSBkZWNsYXJhIHF1ZSBvIGRlcMOzc2l0byBkYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIG7Do28sIHF1ZSBzZWphIGRlIHNldQpjb25oZWNpbWVudG8sIGluZnJpbmdlIGRpcmVpdG9zIGF1dG9yYWlzIGRlIG5pbmd1w6ltLgoKQ2FzbyBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gY29udGVuaGEgbWF0ZXJpYWwgcXVlIHZvY8OqIG7Do28gcG9zc3VpIGEgdGl0dWxhcmlkYWRlIGRvcyBkaXJlaXRvcyBhdXRvcmFpcywgdm9jw6oKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIMOgIFVGU0NhcgpvcyBkaXJlaXRvcyBhcHJlc2VudGFkb3MgbmVzdGEgbGljZW7Dp2EsIGUgcXVlIGVzc2UgbWF0ZXJpYWwgZGUgcHJvcHJpZWRhZGUgZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUKaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3Ugbm8gY29udGXDumRvIGRhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBvcmEgZGVwb3NpdGFkYS4KCkNBU08gQSBURVNFIE9VIERJU1NFUlRBw4fDg08gT1JBIERFUE9TSVRBREEgVEVOSEEgU0lETyBSRVNVTFRBRE8gREUgVU0gUEFUUk9Dw41OSU8gT1UKQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBVRlNDYXIsClZPQ8OKIERFQ0xBUkEgUVVFIFJFU1BFSVRPVSBUT0RPUyBFIFFVQUlTUVVFUiBESVJFSVRPUyBERSBSRVZJU8ODTyBDT01PClRBTULDiU0gQVMgREVNQUlTIE9CUklHQcOHw5VFUyBFWElHSURBUyBQT1IgQ09OVFJBVE8gT1UgQUNPUkRPLgoKQSBVRlNDYXIgc2UgY29tcHJvbWV0ZSBhIGlkZW50aWZpY2FyIGNsYXJhbWVudGUgbyBzZXUgbm9tZSAocykgb3UgbyhzKSBub21lKHMpIGRvKHMpCmRldGVudG9yKGVzKSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzCmNvbmNlZGlkYXMgcG9yIGVzdGEgbGljZW7Dp2EuCg== |
| dc.title.eng.fl_str_mv |
A bayesian nonparametric approach for the two-sample problem |
| dc.title.alternative.por.fl_str_mv |
Uma abordagem bayesiana não paramétrica para o problema de duas amostras |
| title |
A bayesian nonparametric approach for the two-sample problem |
| spellingShingle |
A bayesian nonparametric approach for the two-sample problem Console, Rafael de Carvalho Ceregatti de Bayesiano não-paramétrico Processo de Dirichlet Teste de hipótese Problema de duas amostras Bayesian nonparametrics Dirichlet process prior Hypothesis testing Two-sample problem CIENCIAS EXATAS E DA TERRA::PROBABILIDADE E ESTATISTICA::ESTATISTICA::INFERENCIA NAO-PARAMETRICA |
| title_short |
A bayesian nonparametric approach for the two-sample problem |
| title_full |
A bayesian nonparametric approach for the two-sample problem |
| title_fullStr |
A bayesian nonparametric approach for the two-sample problem |
| title_full_unstemmed |
A bayesian nonparametric approach for the two-sample problem |
| title_sort |
A bayesian nonparametric approach for the two-sample problem |
| author |
Console, Rafael de Carvalho Ceregatti de |
| author_facet |
Console, Rafael de Carvalho Ceregatti de |
| author_role |
author |
| dc.contributor.authorlattes.por.fl_str_mv |
http://lattes.cnpq.br/5405464055196044 |
| dc.contributor.author.fl_str_mv |
Console, Rafael de Carvalho Ceregatti de |
| dc.contributor.advisor1.fl_str_mv |
Salasar, Luis Ernesto Bueno |
| dc.contributor.advisor1Lattes.fl_str_mv |
http://lattes.cnpq.br/5464564215528609 |
| dc.contributor.authorID.fl_str_mv |
ea80e7c7-b7ab-4912-835b-a1a67dcd3d3a |
| contributor_str_mv |
Salasar, Luis Ernesto Bueno |
| dc.subject.por.fl_str_mv |
Bayesiano não-paramétrico Processo de Dirichlet Teste de hipótese Problema de duas amostras |
| topic |
Bayesiano não-paramétrico Processo de Dirichlet Teste de hipótese Problema de duas amostras Bayesian nonparametrics Dirichlet process prior Hypothesis testing Two-sample problem CIENCIAS EXATAS E DA TERRA::PROBABILIDADE E ESTATISTICA::ESTATISTICA::INFERENCIA NAO-PARAMETRICA |
| dc.subject.eng.fl_str_mv |
Bayesian nonparametrics Dirichlet process prior Hypothesis testing Two-sample problem |
| dc.subject.cnpq.fl_str_mv |
CIENCIAS EXATAS E DA TERRA::PROBABILIDADE E ESTATISTICA::ESTATISTICA::INFERENCIA NAO-PARAMETRICA |
| description |
In this work, we discuss the so-called two-sample problem (PEARSON; NEYMAN, 1930) assuming a nonparametric Bayesian approach. Considering X 1 ,...,X n and Y 1 ,...,Y m two inde- pendent i.i.d samples generated from P 1 and P 2 , respectively, the two-sample problem consists in deciding if P 1 and P 2 are equal. Assuming a nonparametric prior, we propose an evidence index for the null hypothesis H 0 : P 1 = P 2 based on the posterior distribution of the distance d(P 1 ,P 2 ) between P 1 and P 2 . This evidence index has easy computation, intuitive interpretation and can also be justified in the Bayesian decision-theoretic context. Further, in a Monte Carlo simulation study, our method presented good performance when compared to the well known Kolmogorov-Smirnov test, the Wilcoxon test as well as a recent testing procedure based on Polya tree process proposed by Holmes (HOLMES et al., 2015). Finally, we applied our method to a data set about scale measurements of three different groups of patients submitted to a questionnaire for Alzheimer’s disease diagnostic. |
| publishDate |
2018 |
| dc.date.issued.fl_str_mv |
2018-11-19 |
| dc.date.accessioned.fl_str_mv |
2019-08-01T16:13:01Z |
| dc.date.available.fl_str_mv |
2019-08-01T16:13:01Z |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
| format |
masterThesis |
| status_str |
publishedVersion |
| dc.identifier.citation.fl_str_mv |
CONSOLE, Rafael de Carvalho Ceregatti de. A bayesian nonparametric approach for the two-sample problem. 2018. Dissertação (Mestrado em Estatística) – Universidade Federal de São Carlos, São Carlos, 2018. Disponível em: https://repositorio.ufscar.br/handle/20.500.14289/11579. |
| dc.identifier.uri.fl_str_mv |
https://repositorio.ufscar.br/handle/20.500.14289/11579 |
| identifier_str_mv |
CONSOLE, Rafael de Carvalho Ceregatti de. A bayesian nonparametric approach for the two-sample problem. 2018. Dissertação (Mestrado em Estatística) – Universidade Federal de São Carlos, São Carlos, 2018. Disponível em: https://repositorio.ufscar.br/handle/20.500.14289/11579. |
| url |
https://repositorio.ufscar.br/handle/20.500.14289/11579 |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.relation.confidence.fl_str_mv |
600 600 |
| dc.relation.authority.fl_str_mv |
d18bde29-0b98-43e9-ae00-55c68009667a |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.publisher.none.fl_str_mv |
Universidade Federal de São Carlos Câmpus São Carlos |
| dc.publisher.program.fl_str_mv |
Programa Interinstitucional de Pós-Graduação em Estatística - PIPGEs |
| dc.publisher.initials.fl_str_mv |
UFSCar |
| publisher.none.fl_str_mv |
Universidade Federal de São Carlos Câmpus São Carlos |
| dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFSCAR instname:Universidade Federal de São Carlos (UFSCAR) instacron:UFSCAR |
| instname_str |
Universidade Federal de São Carlos (UFSCAR) |
| instacron_str |
UFSCAR |
| institution |
UFSCAR |
| reponame_str |
Repositório Institucional da UFSCAR |
| collection |
Repositório Institucional da UFSCAR |
| bitstream.url.fl_str_mv |
https://repositorio.ufscar.br/bitstreams/dd853a23-1328-4828-95cc-064ac2422859/download https://repositorio.ufscar.br/bitstreams/7c1e59ed-5938-4adf-a3d0-7b172f48f6c7/download https://repositorio.ufscar.br/bitstreams/71f81153-9222-41d6-bd36-1af9a46fbb73/download https://repositorio.ufscar.br/bitstreams/9f078d4e-c446-417f-8f6a-4860e5fb870e/download |
| bitstream.checksum.fl_str_mv |
9f77e5dc6d3d0ef4f584187de3676315 ae0398b6f8b235e40ad82cba6c50031d c01ec577822321c0cc33421a5efcfcb5 35af77e8310d177d03c1391b4f5983d2 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR) |
| repository.mail.fl_str_mv |
repositorio.sibi@ufscar.br |
| _version_ |
1851688897193443328 |