Um novo método Wrapper multiobjetivo para seleção de bandas de Imagens Hiperspectrais
| Ano de defesa: | 2020 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | |
| Tipo de documento: | Tese |
| Tipo de acesso: | Acesso aberto |
| Idioma: | por |
| Instituição de defesa: |
Universidade Federal de São Carlos
Câmpus São Carlos |
| Programa de Pós-Graduação: |
Programa de Pós-Graduação em Ciência da Computação - PPGCC
|
| Departamento: |
Não Informado pela instituição
|
| País: |
Não Informado pela instituição
|
| Palavras-chave em Português: | |
| Palavras-chave em Inglês: | |
| Área do conhecimento CNPq: | |
| Link de acesso: | https://repositorio.ufscar.br/handle/20.500.14289/12308 |
Resumo: | Hyperspectral images (HIs) are characterized by higher spectral resolution than other kind of images, having applications in areas such as medicine, mining, and especially in agriculture. These images in conjunction with remote sensing have become a useful tool for precision farming, enabling identification and analysis of health conditions in agricultural areas. For this identification it is necessary to segment the images that can be obtained through classification. An intrinsic problem with HIs is the volume of data that can pose a challenge in terms of transmission, storage, processing and also the performance of classification algorithms (caused by the curse of dimensionality). Techniques that reduce dimensionality are promising for HIs, but many of them are designed to deal with a single objective and cannot assure a balance between conflicting objectives. Examples of conflicting objectives can be based on improving the pixel classification and reducing the number of HIs bands simultaneously, the latter being related to the dimensionality of these images. To try to deal with solutions for conflicting objectives, it can be applied multiobjective algorithms that are designed for this purpose. Band selection methods based on multiobjective algorithms have recently been proposed in the literature, but many strategies have not yet been explored or properly combined. Based on different approaches from the literature, in this research it was developed a multiobjective band selection method called Wrapper Multiobjective Evolutionary Band Selection (WMoEBS) composed of strategies that were experimentally tested. WMoEBS is based on the Wrapper strategy incorporating the Support Vector Machine (SVM) classifier, using spatial and spectral information as input, it makes an initial selection to narrow down correlated bands, being a multiobjective algorithm dealing with classification results and number of bands simultaneously and a decision maker to return a single final solution. WMoEBS has been compared with state-of-the-art methods in the classification improvement criteria for different metrics and bandwidth reduction capability. Experiments have shown that WMoEBS presents superior results to most cases tested for classification metrics, including when applying statistical tests, and it is also advantageous in reducing the number of bands. |
| id |
SCAR_b1f79d40777bfbb0377418e9614c7d5b |
|---|---|
| oai_identifier_str |
oai:repositorio.ufscar.br:20.500.14289/12308 |
| network_acronym_str |
SCAR |
| network_name_str |
Repositório Institucional da UFSCAR |
| repository_id_str |
|
| spelling |
Saqui, DiegoSaito, José Hirokihttp://lattes.cnpq.br/7065615446493390http://lattes.cnpq.br/4408364907687419565a01a2-3622-44df-8a78-4cbc036723252020-03-10T18:18:44Z2020-03-10T18:18:44Z2020-02-19SAQUI, Diego. Um novo método Wrapper multiobjetivo para seleção de bandas de Imagens Hiperspectrais. 2020. Tese (Doutorado em Ciência da Computação) – Universidade Federal de São Carlos, São Carlos, 2020. Disponível em: https://repositorio.ufscar.br/handle/20.500.14289/12308.https://repositorio.ufscar.br/handle/20.500.14289/12308Hyperspectral images (HIs) are characterized by higher spectral resolution than other kind of images, having applications in areas such as medicine, mining, and especially in agriculture. These images in conjunction with remote sensing have become a useful tool for precision farming, enabling identification and analysis of health conditions in agricultural areas. For this identification it is necessary to segment the images that can be obtained through classification. An intrinsic problem with HIs is the volume of data that can pose a challenge in terms of transmission, storage, processing and also the performance of classification algorithms (caused by the curse of dimensionality). Techniques that reduce dimensionality are promising for HIs, but many of them are designed to deal with a single objective and cannot assure a balance between conflicting objectives. Examples of conflicting objectives can be based on improving the pixel classification and reducing the number of HIs bands simultaneously, the latter being related to the dimensionality of these images. To try to deal with solutions for conflicting objectives, it can be applied multiobjective algorithms that are designed for this purpose. Band selection methods based on multiobjective algorithms have recently been proposed in the literature, but many strategies have not yet been explored or properly combined. Based on different approaches from the literature, in this research it was developed a multiobjective band selection method called Wrapper Multiobjective Evolutionary Band Selection (WMoEBS) composed of strategies that were experimentally tested. WMoEBS is based on the Wrapper strategy incorporating the Support Vector Machine (SVM) classifier, using spatial and spectral information as input, it makes an initial selection to narrow down correlated bands, being a multiobjective algorithm dealing with classification results and number of bands simultaneously and a decision maker to return a single final solution. WMoEBS has been compared with state-of-the-art methods in the classification improvement criteria for different metrics and bandwidth reduction capability. Experiments have shown that WMoEBS presents superior results to most cases tested for classification metrics, including when applying statistical tests, and it is also advantageous in reducing the number of bands.Imagens hiperspectrais (IHs) são caracterizadas pela resolução espectral maior que outros tipos de imagens, tendo aplicações em áreas como medicina, mineração e, principalmente, na agricultura. Essas imagens em conjunto com sensoriamento remoto tornaram-se uma ferramenta útil para agricultura de precisão, possibilitando tarefas de identificação e análise de condições de saúde de áreas agrícolas. Para essa identificação se faz necessária a segmentação de imagens, que pode ser obtida por meio de classificação. Um problema intrínseco às IHs é o volume de dados que pode representar um desafio em termos de transmissão, armazenamento, processamento e, também, no desempenho de algoritmos de classificação (causados pela maldição da dimensionalidade). Técnicas de redução da dimensionalidade de IHs são promissoras, mas muitas delas foram projetadas para lidar com um único objetivo e não podem assegurar um equilíbrio entre objetivos conflitantes. Exemplos de objetivos conflitantes podem ser baseados na melhora da classificação de pixels e redução da quantidade de bandas de IHs simultaneamente, sendo este último relacionado a dimensionalidade dessas imagens. Para tentar lidar com soluções com múltiplos objetivos conflitantes podem ser aplicados algoritmos multiobjetivos que são projetados para essa finalidade. Métodos de seleção de bandas baseados em algoritmos multiobjetivos têm sido propostos recentemente na literatura, porém muitas estratégias ainda não foram exploradas ou combinadas adequadamente. Baseado em diferentes abordagens da literatura, nesta pesquisa foi elaborado um método de seleção de bandas multiobjetivo chamado Wrapper Multiobjective Evolutionary Band Selecion (WMoEBS) composto por estratégias que foram testadas experimentalmente. O WMoEBS é baseado na estratégia Wrapper incorporando o classificador Support Vector Machine (SVM), que utiliza informação espacial e espectral, e realiza uma seleção inicial para diminuir as bandas correlacionadas, consistindo num algoritmo multiobjetivo para lidar com resultados da classificação e quantidade de bandas simultaneamente e um tomador de decisão para retornar uma única solução final. O WMoEBS foi comparado com os métodos estado-da-arte da literatura em critérios de melhoria de classificação em diferentes métricas e capacidade de redução da quantidade de bandas. Experimentos demonstraram que o WMoEBS apresenta resultados superiores à maioria dos casos testados para métricas de classificação, incluindo testes estatísticos, além de também ser vantajoso na redução da quantidade de bandas.Não recebi financiamentoporUniversidade Federal de São CarlosCâmpus São CarlosPrograma de Pós-Graduação em Ciência da Computação - PPGCCUFSCarAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessSeleção de bandasAlgoritmos multiobjetivosImagens hiperespectraisSensoriamento remotoestratégia WrapperBand SelectionMultiobjective algorithmsHyperspectral imagesRemote sensingWrapper methodSupport vector machineCIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO::METODOLOGIA E TECNICAS DA COMPUTACAOUm novo método Wrapper multiobjetivo para seleção de bandas de Imagens HiperspectraisA new multiobjective Wrapper method for band selection for Hyperspectral Imagesinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesis60060051b9675e-5744-4345-98e1-2c5caead4a56reponame:Repositório Institucional da UFSCARinstname:Universidade Federal de São Carlos (UFSCAR)instacron:UFSCARORIGINALTese_Final.pdfTese_Final.pdfArquivo Teseapplication/pdf3356617https://repositorio.ufscar.br/bitstreams/a27fc111-782b-4b88-b750-b339ae64d02c/download6e811f4070b80de26be101ab307913fcMD51trueAnonymousREADCartaOrientador.pdfCartaOrientador.pdfCarta Comprovanteapplication/pdf118016https://repositorio.ufscar.br/bitstreams/c9b29178-6206-475a-b20d-63a330511dc4/downloade5a608fa5982a9abe87c29141ba735e2MD52falseAnonymousREADCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8811https://repositorio.ufscar.br/bitstreams/0dc15843-a65d-4218-a3b6-345f6bb0dbb3/downloade39d27027a6cc9cb039ad269a5db8e34MD53falseAnonymousREADTEXTTese_Final.pdf.txtTese_Final.pdf.txtExtracted texttext/plain512815https://repositorio.ufscar.br/bitstreams/d58eda22-7fea-43f2-a83c-6ef965b319fa/download94302c1fb6452e854db5fabcd399fc71MD58falseAnonymousREADCartaOrientador.pdf.txtCartaOrientador.pdf.txtExtracted texttext/plain2https://repositorio.ufscar.br/bitstreams/b5c4b167-421b-4976-b31c-4b109e21ffe4/downloadd784fa8b6d98d27699781bd9a7cf19f0MD510falseAnonymousREADTHUMBNAILTese_Final.pdf.jpgTese_Final.pdf.jpgIM Thumbnailimage/jpeg7779https://repositorio.ufscar.br/bitstreams/72484ee3-e3c0-4c01-86ea-cb4ace6c7fb7/downloada34e9ee12b03f8b2116ac5f012a301e0MD59falseAnonymousREADCartaOrientador.pdf.jpgCartaOrientador.pdf.jpgIM Thumbnailimage/jpeg10769https://repositorio.ufscar.br/bitstreams/279abd13-ad01-4a71-842d-e146a61e7025/download97ee7e48aeb100872e57c848f4cafdb6MD511falseAnonymousREAD20.500.14289/123082025-02-05 19:23:54.591http://creativecommons.org/licenses/by-nc-nd/3.0/br/Attribution-NonCommercial-NoDerivs 3.0 Brazilopen.accessoai:repositorio.ufscar.br:20.500.14289/12308https://repositorio.ufscar.brRepositório InstitucionalPUBhttps://repositorio.ufscar.br/oai/requestrepositorio.sibi@ufscar.bropendoar:43222025-02-05T22:23:54Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)false |
| dc.title.por.fl_str_mv |
Um novo método Wrapper multiobjetivo para seleção de bandas de Imagens Hiperspectrais |
| dc.title.alternative.eng.fl_str_mv |
A new multiobjective Wrapper method for band selection for Hyperspectral Images |
| title |
Um novo método Wrapper multiobjetivo para seleção de bandas de Imagens Hiperspectrais |
| spellingShingle |
Um novo método Wrapper multiobjetivo para seleção de bandas de Imagens Hiperspectrais Saqui, Diego Seleção de bandas Algoritmos multiobjetivos Imagens hiperespectrais Sensoriamento remoto estratégia Wrapper Band Selection Multiobjective algorithms Hyperspectral images Remote sensing Wrapper method Support vector machine CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO::METODOLOGIA E TECNICAS DA COMPUTACAO |
| title_short |
Um novo método Wrapper multiobjetivo para seleção de bandas de Imagens Hiperspectrais |
| title_full |
Um novo método Wrapper multiobjetivo para seleção de bandas de Imagens Hiperspectrais |
| title_fullStr |
Um novo método Wrapper multiobjetivo para seleção de bandas de Imagens Hiperspectrais |
| title_full_unstemmed |
Um novo método Wrapper multiobjetivo para seleção de bandas de Imagens Hiperspectrais |
| title_sort |
Um novo método Wrapper multiobjetivo para seleção de bandas de Imagens Hiperspectrais |
| author |
Saqui, Diego |
| author_facet |
Saqui, Diego |
| author_role |
author |
| dc.contributor.authorlattes.por.fl_str_mv |
http://lattes.cnpq.br/4408364907687419 |
| dc.contributor.author.fl_str_mv |
Saqui, Diego |
| dc.contributor.advisor1.fl_str_mv |
Saito, José Hiroki |
| dc.contributor.advisor1Lattes.fl_str_mv |
http://lattes.cnpq.br/7065615446493390 |
| dc.contributor.authorID.fl_str_mv |
565a01a2-3622-44df-8a78-4cbc03672325 |
| contributor_str_mv |
Saito, José Hiroki |
| dc.subject.por.fl_str_mv |
Seleção de bandas Algoritmos multiobjetivos Imagens hiperespectrais Sensoriamento remoto estratégia Wrapper |
| topic |
Seleção de bandas Algoritmos multiobjetivos Imagens hiperespectrais Sensoriamento remoto estratégia Wrapper Band Selection Multiobjective algorithms Hyperspectral images Remote sensing Wrapper method Support vector machine CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO::METODOLOGIA E TECNICAS DA COMPUTACAO |
| dc.subject.eng.fl_str_mv |
Band Selection Multiobjective algorithms Hyperspectral images Remote sensing Wrapper method Support vector machine |
| dc.subject.cnpq.fl_str_mv |
CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO::METODOLOGIA E TECNICAS DA COMPUTACAO |
| description |
Hyperspectral images (HIs) are characterized by higher spectral resolution than other kind of images, having applications in areas such as medicine, mining, and especially in agriculture. These images in conjunction with remote sensing have become a useful tool for precision farming, enabling identification and analysis of health conditions in agricultural areas. For this identification it is necessary to segment the images that can be obtained through classification. An intrinsic problem with HIs is the volume of data that can pose a challenge in terms of transmission, storage, processing and also the performance of classification algorithms (caused by the curse of dimensionality). Techniques that reduce dimensionality are promising for HIs, but many of them are designed to deal with a single objective and cannot assure a balance between conflicting objectives. Examples of conflicting objectives can be based on improving the pixel classification and reducing the number of HIs bands simultaneously, the latter being related to the dimensionality of these images. To try to deal with solutions for conflicting objectives, it can be applied multiobjective algorithms that are designed for this purpose. Band selection methods based on multiobjective algorithms have recently been proposed in the literature, but many strategies have not yet been explored or properly combined. Based on different approaches from the literature, in this research it was developed a multiobjective band selection method called Wrapper Multiobjective Evolutionary Band Selection (WMoEBS) composed of strategies that were experimentally tested. WMoEBS is based on the Wrapper strategy incorporating the Support Vector Machine (SVM) classifier, using spatial and spectral information as input, it makes an initial selection to narrow down correlated bands, being a multiobjective algorithm dealing with classification results and number of bands simultaneously and a decision maker to return a single final solution. WMoEBS has been compared with state-of-the-art methods in the classification improvement criteria for different metrics and bandwidth reduction capability. Experiments have shown that WMoEBS presents superior results to most cases tested for classification metrics, including when applying statistical tests, and it is also advantageous in reducing the number of bands. |
| publishDate |
2020 |
| dc.date.accessioned.fl_str_mv |
2020-03-10T18:18:44Z |
| dc.date.available.fl_str_mv |
2020-03-10T18:18:44Z |
| dc.date.issued.fl_str_mv |
2020-02-19 |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
| format |
doctoralThesis |
| status_str |
publishedVersion |
| dc.identifier.citation.fl_str_mv |
SAQUI, Diego. Um novo método Wrapper multiobjetivo para seleção de bandas de Imagens Hiperspectrais. 2020. Tese (Doutorado em Ciência da Computação) – Universidade Federal de São Carlos, São Carlos, 2020. Disponível em: https://repositorio.ufscar.br/handle/20.500.14289/12308. |
| dc.identifier.uri.fl_str_mv |
https://repositorio.ufscar.br/handle/20.500.14289/12308 |
| identifier_str_mv |
SAQUI, Diego. Um novo método Wrapper multiobjetivo para seleção de bandas de Imagens Hiperspectrais. 2020. Tese (Doutorado em Ciência da Computação) – Universidade Federal de São Carlos, São Carlos, 2020. Disponível em: https://repositorio.ufscar.br/handle/20.500.14289/12308. |
| url |
https://repositorio.ufscar.br/handle/20.500.14289/12308 |
| dc.language.iso.fl_str_mv |
por |
| language |
por |
| dc.relation.confidence.fl_str_mv |
600 600 |
| dc.relation.authority.fl_str_mv |
51b9675e-5744-4345-98e1-2c5caead4a56 |
| dc.rights.driver.fl_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ info:eu-repo/semantics/openAccess |
| rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ |
| eu_rights_str_mv |
openAccess |
| dc.publisher.none.fl_str_mv |
Universidade Federal de São Carlos Câmpus São Carlos |
| dc.publisher.program.fl_str_mv |
Programa de Pós-Graduação em Ciência da Computação - PPGCC |
| dc.publisher.initials.fl_str_mv |
UFSCar |
| publisher.none.fl_str_mv |
Universidade Federal de São Carlos Câmpus São Carlos |
| dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFSCAR instname:Universidade Federal de São Carlos (UFSCAR) instacron:UFSCAR |
| instname_str |
Universidade Federal de São Carlos (UFSCAR) |
| instacron_str |
UFSCAR |
| institution |
UFSCAR |
| reponame_str |
Repositório Institucional da UFSCAR |
| collection |
Repositório Institucional da UFSCAR |
| bitstream.url.fl_str_mv |
https://repositorio.ufscar.br/bitstreams/a27fc111-782b-4b88-b750-b339ae64d02c/download https://repositorio.ufscar.br/bitstreams/c9b29178-6206-475a-b20d-63a330511dc4/download https://repositorio.ufscar.br/bitstreams/0dc15843-a65d-4218-a3b6-345f6bb0dbb3/download https://repositorio.ufscar.br/bitstreams/d58eda22-7fea-43f2-a83c-6ef965b319fa/download https://repositorio.ufscar.br/bitstreams/b5c4b167-421b-4976-b31c-4b109e21ffe4/download https://repositorio.ufscar.br/bitstreams/72484ee3-e3c0-4c01-86ea-cb4ace6c7fb7/download https://repositorio.ufscar.br/bitstreams/279abd13-ad01-4a71-842d-e146a61e7025/download |
| bitstream.checksum.fl_str_mv |
6e811f4070b80de26be101ab307913fc e5a608fa5982a9abe87c29141ba735e2 e39d27027a6cc9cb039ad269a5db8e34 94302c1fb6452e854db5fabcd399fc71 d784fa8b6d98d27699781bd9a7cf19f0 a34e9ee12b03f8b2116ac5f012a301e0 97ee7e48aeb100872e57c848f4cafdb6 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR) |
| repository.mail.fl_str_mv |
repositorio.sibi@ufscar.br |
| _version_ |
1851688846425587712 |