Reabilitação de vigas de concreto armado em escala real com reforço à flexão com laminados de CFRP passivos e protendidos

Detalhes bibliográficos
Ano de defesa: 2024
Autor(a) principal: Pereira, Marcelo Fernandes
Orientador(a): Dalfré, Gláucia Maria lattes
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de São Carlos
Câmpus São Carlos
Programa de Pós-Graduação: Programa de Pós-Graduação em Engenharia Civil - PPGECiv
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Palavras-chave em Inglês:
Área do conhecimento CNPq:
Link de acesso: https://repositorio.ufscar.br/handle/20.500.14289/21083
Resumo: Among the possible methods of structural strengthening which can be highlighted are: the section enlargement, reinforcement with composite materials, metallic profiles, use of metal plates, and external prestressing. Of these mentioned methods, the use of Fiber Reinforced Polymers (FRP) stands out due to their quick and practical application and good mechanical properties. The effectiveness and structural performance of the use of FRP laminates, and/or sheets, in passive flexural strengthening systems of reinforced concrete elements has been proven by different studies. In passive FRP strengthening systems, the failure modes of the elements are commonly characterized by the detachment of the strengthening material under loads corresponding to only 20 to 50% of the ultimate capacity of the FRP. To improve the use of the FRP systems based on externally bonded materials, different studies have analyzed the behavior of structures with prestressed FRP laminates over the past decade. These studies indicate greater increases in the load-carrying of strengthened elements and higher utilization levels in the strengthening material compared to the passive bonding technique. In this context, the present work aims to analyze, through an experimental program, the mechanical behavior of full-scale reinforced concrete beams, either pre-cracked or not, flexurally strengthened with prestressed and passive CFRP laminates. The work also proposes and evaluates design models with the experimental obtained results. For this purpose, an experimental program was carried out with five reinforced concrete beams subjected to four-point bending tests until failure, one unstrengthened beam (reference), two beams flexurally strengthened with externally bonded passive CFRP laminates, and two beams flexurally strengthened with externally bonded prestressed CFRP laminates. One beam of each trengthening type was subjected to pre-cracking. The results showed that the passive strengthening increased the yielding load of up to 16.9% compared to the unstrengthened beam. An increase of up to 23.3% was observed at the ultimate load compared to the reference beam. The use of prestressed strengthening promoted an increase of up to 37.9% and 41.9% in the loads at the yielding of the steel reinforcement and at the ultimate load, respectively, compared to the reference beam. The use of prestressed laminate is more effective to increase the loadcarrying of the elements. Regarding the strains in the strengthening material, considering that the CFRP laminate showed an estimated maximum strain of approximately 14.61‰, an effectiveness of up to 44.4% and 68.4% was obtained for passive and prestressed strengthening, respectively. Thus, the ability of the prestressed strengthening system to attain higher strain levels for the strengthening material compared to passive strengthening is highlighted. Furthermore, the ability of the prestressed CFRP laminate strengthening system to reduce vertical displacements and pre-existing crack openings in structural elements was verified. The simplified analytical model herein proposed for determining the load-bearing capacity of reinforced concrete elements flexurally strengthened with prestressed CFRP laminates proved to be effective for estimating the load-carrying capacity of beams subject to flexure. However, it is important to highlight the need for the correct definition of the strain to be attributed to the strengthening material in determining the ultimate resistant moment of the cross-section.
id SCAR_bdb0cb5fb40a389835c769dd15da49bf
oai_identifier_str oai:repositorio.ufscar.br:20.500.14289/21083
network_acronym_str SCAR
network_name_str Repositório Institucional da UFSCAR
repository_id_str
spelling Pereira, Marcelo FernandesDalfré, Gláucia Mariahttp://lattes.cnpq.br/0066111999826468Ferreira, Marcelo de Araujohttp://lattes.cnpq.br/4199122391532470http://lattes.cnpq.br/9273595435003810https://orcid.org/0000-0002-7303-811Xhttps://orcid.org/0000-0003-3623-5103https://orcid.org/0000-0001-5175-21712024-11-29T14:10:39Z2024-11-29T14:10:39Z2024-08-01PEREIRA, Marcelo Fernandes. Reabilitação de vigas de concreto armado em escala real com reforço à flexão com laminados de CFRP passivos e protendidos. 2024. Dissertação (Mestrado em Engenharia Civil) – Universidade Federal de São Carlos, São Carlos, 2024. Disponível em: https://repositorio.ufscar.br/handle/20.500.14289/21083.https://repositorio.ufscar.br/handle/20.500.14289/21083Among the possible methods of structural strengthening which can be highlighted are: the section enlargement, reinforcement with composite materials, metallic profiles, use of metal plates, and external prestressing. Of these mentioned methods, the use of Fiber Reinforced Polymers (FRP) stands out due to their quick and practical application and good mechanical properties. The effectiveness and structural performance of the use of FRP laminates, and/or sheets, in passive flexural strengthening systems of reinforced concrete elements has been proven by different studies. In passive FRP strengthening systems, the failure modes of the elements are commonly characterized by the detachment of the strengthening material under loads corresponding to only 20 to 50% of the ultimate capacity of the FRP. To improve the use of the FRP systems based on externally bonded materials, different studies have analyzed the behavior of structures with prestressed FRP laminates over the past decade. These studies indicate greater increases in the load-carrying of strengthened elements and higher utilization levels in the strengthening material compared to the passive bonding technique. In this context, the present work aims to analyze, through an experimental program, the mechanical behavior of full-scale reinforced concrete beams, either pre-cracked or not, flexurally strengthened with prestressed and passive CFRP laminates. The work also proposes and evaluates design models with the experimental obtained results. For this purpose, an experimental program was carried out with five reinforced concrete beams subjected to four-point bending tests until failure, one unstrengthened beam (reference), two beams flexurally strengthened with externally bonded passive CFRP laminates, and two beams flexurally strengthened with externally bonded prestressed CFRP laminates. One beam of each trengthening type was subjected to pre-cracking. The results showed that the passive strengthening increased the yielding load of up to 16.9% compared to the unstrengthened beam. An increase of up to 23.3% was observed at the ultimate load compared to the reference beam. The use of prestressed strengthening promoted an increase of up to 37.9% and 41.9% in the loads at the yielding of the steel reinforcement and at the ultimate load, respectively, compared to the reference beam. The use of prestressed laminate is more effective to increase the loadcarrying of the elements. Regarding the strains in the strengthening material, considering that the CFRP laminate showed an estimated maximum strain of approximately 14.61‰, an effectiveness of up to 44.4% and 68.4% was obtained for passive and prestressed strengthening, respectively. Thus, the ability of the prestressed strengthening system to attain higher strain levels for the strengthening material compared to passive strengthening is highlighted. Furthermore, the ability of the prestressed CFRP laminate strengthening system to reduce vertical displacements and pre-existing crack openings in structural elements was verified. The simplified analytical model herein proposed for determining the load-bearing capacity of reinforced concrete elements flexurally strengthened with prestressed CFRP laminates proved to be effective for estimating the load-carrying capacity of beams subject to flexure. However, it is important to highlight the need for the correct definition of the strain to be attributed to the strengthening material in determining the ultimate resistant moment of the cross-section.Entre os possíveis métodos de reforço estrutural, pode-se destacar aumento de seção transversal, reforço com materiais compósitos, perfis metálicos, colagem de chapas metálicas e protensão externa. Dos métodos citados, destaca-se o uso compósitos de FRP (Fiber Reinforced Polymers, em língua inglesa) face a sua rápida e prática aplicação e boas propriedades mecânicas. A eficácia e desempenho estrutural da aplicação de laminados e/ou mantas de FRP em sistemas de reforço passivos à flexão de elementos de concreto armado é comprovada por diferentes estudos. Em sistemas de reforço com FRP passivo, os modos de ruptura dos elementos são comumente caracterizados pelo destacamento do material de reforço sob solicitações de apenas 20 a 50% da capacidade última do FRP. Com o objetivo de melhorar o aproveitamento dos materiais utilizados nos sistemas de reforço baseados na colagem externa de FRP, na última década, diferentes estudos passaram a analisar o comportamento de estruturas com laminados de FRP protendidos. Tais estudos indicam maiores incrementos de capacidade resistentes nos elementos reforçados e melhor aproveitamento do material de reforço, quando comparados com a técnica de colagem passiva. Neste sentido, o presente trabalho tem como objetivo analisar, por meio de um programa experimental, o comportamento mecânico de vigas de concreto armado em escala real, pré-fissuradas ou não, reforçadas à flexão com laminados de CFRP protendidos e passivos, como também, propor e avaliar modelos de dimensionamento com os resultados experimentais obtidos. Para tanto, realizou-se programa experimental com cinco vigas de concreto armado submetidas à ensaio de flexão de quatro pontos até sua ruptura, sendo uma viga não reforçada (referência), duas vigas reforçadas à flexão com colagem externa de laminado de CFRP passivo e duas vigas reforçadas à flexão colagem externa de laminado de CFRP protendido, sendo uma viga de cada tipo de reforço submetida à pré-fissuração. Os resultados demonstraram que o reforço passivo permitiu aumento da força no momento do escoamento da armadura de até 16,9 % quando comparada à viga sem reforço. Um aumento de até 23,3 % foi verificado na força máxima em comparação à viga de referência. O uso do reforço protendido promoveu aumento de até 37,9 % e 41,9% nas forças de início de escoamento e máxima do elemento, respectivamente, quando comparado à viga de referência. Verifica-se a maior efetividade do uso do laminado protendido no aumento da capacidade resistente dos elementos. Com relação às deformações no material de reforço, considerando-se que o laminado de CFRP apresentou deformação estimada na ruptura de aproximadamente 14,61 ‰, um aproveitamento de até 44,4 e 68,4 % foi obtido para o reforço passivo e protendido, respectivamente. Assim, é evidenciada a capacidade do sistema de reforço protendido em conferir maiores níveis de solicitação ao material de reforço quando comparado ao reforço passivo. Ainda, verificou-se a capacidade do sistema de reforço com laminado de CFRP protendido em reduzir deslocamentos verticais e aberturas de fissuras préexistentes em elementos estruturais. O modelo analítico simplificado para determinação da capacidade resistente de elementos de concreto armado reforçados à flexão com laminados de CFRP protendido aqui proposto se mostrou eficaz para a estimativa da capacidade resistente das vigas à flexão. Entretanto, é importante destacar a necessidade da correta definição da deformação a ser atribuída ao material de reforço para a determinação do momento resistente último da seção transversal.Não recebi financiamentoporUniversidade Federal de São CarlosCâmpus São CarlosPrograma de Pós-Graduação em Engenharia Civil - PPGECivUFSCarAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessLaminadoCFRP protendidoCFRP passivoReforço estruturalConcreto armadoEscala realLaminatePrestressed CFRPPassive CFRPStructural strengtheningReinforced concreteReal scaleENGENHARIAS::ENGENHARIA CIVIL::ESTRUTURASENGENHARIAS::ENGENHARIA CIVILReabilitação de vigas de concreto armado em escala real com reforço à flexão com laminados de CFRP passivos e protendidosRehabilitation of full-scale reinforced concrete beams flexurally strengthened with passive and prestressed CFRP laminatesinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisreponame:Repositório Institucional da UFSCARinstname:Universidade Federal de São Carlos (UFSCAR)instacron:UFSCARTEXTDissertação - final.pdf.txtDissertação - final.pdf.txtExtracted texttext/plain102864https://repositorio.ufscar.br/bitstreams/dae9805c-31ae-47b9-ab84-ee69d44fee07/downloadf106f4793d2c55984d8c9f9fe905f814MD53falseAnonymousREADTHUMBNAILDissertação - final.pdf.jpgDissertação - final.pdf.jpgGenerated Thumbnailimage/jpeg4857https://repositorio.ufscar.br/bitstreams/a388a63c-561c-4ca2-ac79-cf98e1466496/downloadb9c4dd4e14e5fb3392d0c93de2253bffMD54falseAnonymousREADCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8810https://repositorio.ufscar.br/bitstreams/eedaa5f3-31e6-4eff-98a7-ebfeeb85380c/downloadf337d95da1fce0a22c77480e5e9a7aecMD52falseAnonymousREADORIGINALDissertação - final.pdfDissertação - final.pdfDissertação de Mestrado - Versão Finalapplication/pdf14758391https://repositorio.ufscar.br/bitstreams/496d434d-87dd-4286-a7d0-38b395cfa290/downloadf6c81c3c10ca3da2fe0e1c3576f62204MD51trueAnonymousREAD20.500.14289/210832025-03-14 14:48:53.556http://creativecommons.org/licenses/by-nc-nd/3.0/br/Attribution-NonCommercial-NoDerivs 3.0 Brazilopen.accessoai:repositorio.ufscar.br:20.500.14289/21083https://repositorio.ufscar.brRepositório InstitucionalPUBhttps://repositorio.ufscar.br/oai/requestrepositorio.sibi@ufscar.bropendoar:43222025-03-14T17:48:53Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)false
dc.title.por.fl_str_mv Reabilitação de vigas de concreto armado em escala real com reforço à flexão com laminados de CFRP passivos e protendidos
dc.title.alternative.eng.fl_str_mv Rehabilitation of full-scale reinforced concrete beams flexurally strengthened with passive and prestressed CFRP laminates
title Reabilitação de vigas de concreto armado em escala real com reforço à flexão com laminados de CFRP passivos e protendidos
spellingShingle Reabilitação de vigas de concreto armado em escala real com reforço à flexão com laminados de CFRP passivos e protendidos
Pereira, Marcelo Fernandes
Laminado
CFRP protendido
CFRP passivo
Reforço estrutural
Concreto armado
Escala real
Laminate
Prestressed CFRP
Passive CFRP
Structural strengthening
Reinforced concrete
Real scale
ENGENHARIAS::ENGENHARIA CIVIL::ESTRUTURAS
ENGENHARIAS::ENGENHARIA CIVIL
title_short Reabilitação de vigas de concreto armado em escala real com reforço à flexão com laminados de CFRP passivos e protendidos
title_full Reabilitação de vigas de concreto armado em escala real com reforço à flexão com laminados de CFRP passivos e protendidos
title_fullStr Reabilitação de vigas de concreto armado em escala real com reforço à flexão com laminados de CFRP passivos e protendidos
title_full_unstemmed Reabilitação de vigas de concreto armado em escala real com reforço à flexão com laminados de CFRP passivos e protendidos
title_sort Reabilitação de vigas de concreto armado em escala real com reforço à flexão com laminados de CFRP passivos e protendidos
author Pereira, Marcelo Fernandes
author_facet Pereira, Marcelo Fernandes
author_role author
dc.contributor.authorlattes.por.fl_str_mv http://lattes.cnpq.br/9273595435003810
dc.contributor.authororcid.por.fl_str_mv https://orcid.org/0000-0002-7303-811X
dc.contributor.advisor1orcid.por.fl_str_mv https://orcid.org/0000-0003-3623-5103
dc.contributor.advisor-co1orcid.por.fl_str_mv https://orcid.org/0000-0001-5175-2171
dc.contributor.author.fl_str_mv Pereira, Marcelo Fernandes
dc.contributor.advisor1.fl_str_mv Dalfré, Gláucia Maria
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/0066111999826468
dc.contributor.advisor-co1.fl_str_mv Ferreira, Marcelo de Araujo
dc.contributor.advisor-co1Lattes.fl_str_mv http://lattes.cnpq.br/4199122391532470
contributor_str_mv Dalfré, Gláucia Maria
Ferreira, Marcelo de Araujo
dc.subject.por.fl_str_mv Laminado
CFRP protendido
CFRP passivo
Reforço estrutural
Concreto armado
Escala real
topic Laminado
CFRP protendido
CFRP passivo
Reforço estrutural
Concreto armado
Escala real
Laminate
Prestressed CFRP
Passive CFRP
Structural strengthening
Reinforced concrete
Real scale
ENGENHARIAS::ENGENHARIA CIVIL::ESTRUTURAS
ENGENHARIAS::ENGENHARIA CIVIL
dc.subject.eng.fl_str_mv Laminate
Prestressed CFRP
Passive CFRP
Structural strengthening
Reinforced concrete
Real scale
dc.subject.cnpq.fl_str_mv ENGENHARIAS::ENGENHARIA CIVIL::ESTRUTURAS
ENGENHARIAS::ENGENHARIA CIVIL
description Among the possible methods of structural strengthening which can be highlighted are: the section enlargement, reinforcement with composite materials, metallic profiles, use of metal plates, and external prestressing. Of these mentioned methods, the use of Fiber Reinforced Polymers (FRP) stands out due to their quick and practical application and good mechanical properties. The effectiveness and structural performance of the use of FRP laminates, and/or sheets, in passive flexural strengthening systems of reinforced concrete elements has been proven by different studies. In passive FRP strengthening systems, the failure modes of the elements are commonly characterized by the detachment of the strengthening material under loads corresponding to only 20 to 50% of the ultimate capacity of the FRP. To improve the use of the FRP systems based on externally bonded materials, different studies have analyzed the behavior of structures with prestressed FRP laminates over the past decade. These studies indicate greater increases in the load-carrying of strengthened elements and higher utilization levels in the strengthening material compared to the passive bonding technique. In this context, the present work aims to analyze, through an experimental program, the mechanical behavior of full-scale reinforced concrete beams, either pre-cracked or not, flexurally strengthened with prestressed and passive CFRP laminates. The work also proposes and evaluates design models with the experimental obtained results. For this purpose, an experimental program was carried out with five reinforced concrete beams subjected to four-point bending tests until failure, one unstrengthened beam (reference), two beams flexurally strengthened with externally bonded passive CFRP laminates, and two beams flexurally strengthened with externally bonded prestressed CFRP laminates. One beam of each trengthening type was subjected to pre-cracking. The results showed that the passive strengthening increased the yielding load of up to 16.9% compared to the unstrengthened beam. An increase of up to 23.3% was observed at the ultimate load compared to the reference beam. The use of prestressed strengthening promoted an increase of up to 37.9% and 41.9% in the loads at the yielding of the steel reinforcement and at the ultimate load, respectively, compared to the reference beam. The use of prestressed laminate is more effective to increase the loadcarrying of the elements. Regarding the strains in the strengthening material, considering that the CFRP laminate showed an estimated maximum strain of approximately 14.61‰, an effectiveness of up to 44.4% and 68.4% was obtained for passive and prestressed strengthening, respectively. Thus, the ability of the prestressed strengthening system to attain higher strain levels for the strengthening material compared to passive strengthening is highlighted. Furthermore, the ability of the prestressed CFRP laminate strengthening system to reduce vertical displacements and pre-existing crack openings in structural elements was verified. The simplified analytical model herein proposed for determining the load-bearing capacity of reinforced concrete elements flexurally strengthened with prestressed CFRP laminates proved to be effective for estimating the load-carrying capacity of beams subject to flexure. However, it is important to highlight the need for the correct definition of the strain to be attributed to the strengthening material in determining the ultimate resistant moment of the cross-section.
publishDate 2024
dc.date.accessioned.fl_str_mv 2024-11-29T14:10:39Z
dc.date.available.fl_str_mv 2024-11-29T14:10:39Z
dc.date.issued.fl_str_mv 2024-08-01
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv PEREIRA, Marcelo Fernandes. Reabilitação de vigas de concreto armado em escala real com reforço à flexão com laminados de CFRP passivos e protendidos. 2024. Dissertação (Mestrado em Engenharia Civil) – Universidade Federal de São Carlos, São Carlos, 2024. Disponível em: https://repositorio.ufscar.br/handle/20.500.14289/21083.
dc.identifier.uri.fl_str_mv https://repositorio.ufscar.br/handle/20.500.14289/21083
identifier_str_mv PEREIRA, Marcelo Fernandes. Reabilitação de vigas de concreto armado em escala real com reforço à flexão com laminados de CFRP passivos e protendidos. 2024. Dissertação (Mestrado em Engenharia Civil) – Universidade Federal de São Carlos, São Carlos, 2024. Disponível em: https://repositorio.ufscar.br/handle/20.500.14289/21083.
url https://repositorio.ufscar.br/handle/20.500.14289/21083
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal de São Carlos
Câmpus São Carlos
dc.publisher.program.fl_str_mv Programa de Pós-Graduação em Engenharia Civil - PPGECiv
dc.publisher.initials.fl_str_mv UFSCar
publisher.none.fl_str_mv Universidade Federal de São Carlos
Câmpus São Carlos
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFSCAR
instname:Universidade Federal de São Carlos (UFSCAR)
instacron:UFSCAR
instname_str Universidade Federal de São Carlos (UFSCAR)
instacron_str UFSCAR
institution UFSCAR
reponame_str Repositório Institucional da UFSCAR
collection Repositório Institucional da UFSCAR
bitstream.url.fl_str_mv https://repositorio.ufscar.br/bitstreams/dae9805c-31ae-47b9-ab84-ee69d44fee07/download
https://repositorio.ufscar.br/bitstreams/a388a63c-561c-4ca2-ac79-cf98e1466496/download
https://repositorio.ufscar.br/bitstreams/eedaa5f3-31e6-4eff-98a7-ebfeeb85380c/download
https://repositorio.ufscar.br/bitstreams/496d434d-87dd-4286-a7d0-38b395cfa290/download
bitstream.checksum.fl_str_mv f106f4793d2c55984d8c9f9fe905f814
b9c4dd4e14e5fb3392d0c93de2253bff
f337d95da1fce0a22c77480e5e9a7aec
f6c81c3c10ca3da2fe0e1c3576f62204
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)
repository.mail.fl_str_mv repositorio.sibi@ufscar.br
_version_ 1851688917871362048