Grammar-based Neuroevolution of Fully Convolutional Networks
| Ano de defesa: | 2025 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | |
| Tipo de documento: | Tese |
| Tipo de acesso: | Acesso aberto |
| Idioma: | eng |
| Instituição de defesa: |
Universidade Federal de São Carlos
Câmpus São Carlos |
| Programa de Pós-Graduação: |
Programa de Pós-Graduação em Ciência da Computação - PPGCC
|
| Departamento: |
Não Informado pela instituição
|
| País: |
Não Informado pela instituição
|
| Palavras-chave em Inglês: | |
| Área do conhecimento CNPq: | |
| Link de acesso: | https://hdl.handle.net/20.500.14289/22897 |
Resumo: | The design of complex and deep neural networks is often performed by identifying and combining building blocks and progressively selecting the most promising combination. Neuroevolution automates this process by employing evolutionary algorithms to guide the search. Within this field, grammar-based evolutionary algorithms have been demonstrated to be powerful tools to describe and thus encode complex neural architectures effectively. In this context, this research proposes a novel grammar-based multi-objective neuroevolutionary approach for generating fully convolutional networks. The proposed method, named Multi-Objective gRammatical Evolution for FUlly convolutional Networks (MOREFUN), includes a new efficient way to encode skip-connections, facilitating the description of complex search spaces and the injection of domain knowledge in the search procedure, the generation of fully convolutional networks upsampling of lower-resolution inputs in multi-input layers, the usage of multi-objective fitness, and the inclusion of data augmentation and optimizer settings in the grammar. The best networks found by the algorithm outperformed those generated by previous grammar-based evolutionary algorithms, achieving 90% accuracy on CIFAR-10 without using transfer learning, ensembles, or test-time data augmentation, while having a relatively small number of parameters. |
| id |
SCAR_bdbac31be6829063714a261b47176c60 |
|---|---|
| oai_identifier_str |
oai:repositorio.ufscar.br:20.500.14289/22897 |
| network_acronym_str |
SCAR |
| network_name_str |
Repositório Institucional da UFSCAR |
| repository_id_str |
|
| spelling |
Miranda, Thiago ZafalonCerri, Ricardohttp://lattes.cnpq.br/6266519868438512http://lattes.cnpq.br/8405817043726890Cerri, RicardoCaseli, Helena de MedeirosAvila, Sandra Eliza Fontes dePappa, Gisele LoboBarros, Rodrigo Coelhohttp://lattes.cnpq.br/6266519868438512http://lattes.cnpq.br/6608582057810385http://lattes.cnpq.br/8343699060914150http://lattes.cnpq.br/5936682335701497http://lattes.cnpq.br/81721242417678282025-10-13T11:05:44Z2025-08-12MIRANDA, Thiago Zafalon. Grammar-based Neuroevolution of Fully Convolutional Networks. 2025. Tese (Doutorado em Ciência da Computação) – Universidade Federal de São Carlos, São Carlos, 2025. Disponível em: https://repositorio.ufscar.br/handle/20.500.14289/22897.https://hdl.handle.net/20.500.14289/22897The design of complex and deep neural networks is often performed by identifying and combining building blocks and progressively selecting the most promising combination. Neuroevolution automates this process by employing evolutionary algorithms to guide the search. Within this field, grammar-based evolutionary algorithms have been demonstrated to be powerful tools to describe and thus encode complex neural architectures effectively. In this context, this research proposes a novel grammar-based multi-objective neuroevolutionary approach for generating fully convolutional networks. The proposed method, named Multi-Objective gRammatical Evolution for FUlly convolutional Networks (MOREFUN), includes a new efficient way to encode skip-connections, facilitating the description of complex search spaces and the injection of domain knowledge in the search procedure, the generation of fully convolutional networks upsampling of lower-resolution inputs in multi-input layers, the usage of multi-objective fitness, and the inclusion of data augmentation and optimizer settings in the grammar. The best networks found by the algorithm outperformed those generated by previous grammar-based evolutionary algorithms, achieving 90% accuracy on CIFAR-10 without using transfer learning, ensembles, or test-time data augmentation, while having a relatively small number of parameters.O design de redes neurais complexas e profundas é frequentemente realizado por meio da identificação e combinação de blocos de construção e da seleção progressiva das combinações mais promissora. A neuroevolução automatiza esse processo utilizando algoritmos evolucionários para guiar a busca. Dentro desse campo, algoritmos evolucionários baseados em gramática têm se mostrado ferramentas poderosas para descrever e, portanto, codificar arquiteturas neurais complexas de forma eficaz. Nesse contexto, esta pesquisa propõe uma nova abordagem neuroevolutiva multiobjetivo baseada em gramática para a geração de redes convolucionais. O método proposto, denominado Multi-Objective gRammatical Evolution for FUlly convolutional Networks (MOREFUN), apresenta uma nova e eficiente forma de codificar skip-connections, facilitando a descrição de espaços de busca complexos e a injeção de conhecimento de domínio no processo de busca; a geração de redes convolucionais com upsampling de entradas de baixa resolução em camadas com múltiplas entradas; o uso de funções de fitness multiobjetivo; e a inclusão de técnicas de data augmentation e configurações de otimizadores na gramática. As melhores redes encontradas pelo algoritmo superaram aquelas geradas por algoritmos evolucionários baseados em gramática anteriores, atingindo 90% de acurácia no CIFAR-10 sem utilizar transfer learning, ensembles ou data augmentation em tempo de teste, ao mesmo tempo em que mantiveram um número relativamente pequeno de parâmetros.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)001engUniversidade Federal de São CarlosCâmpus São CarlosPrograma de Pós-Graduação em Ciência da Computação - PPGCCUFSCarhttps://www.sciencedirect.com/science/article/pii/S1568494623009857https://dl.acm.org/doi/abs/10.1145/3520304.3529025Attribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessevolutionary algorithmneural networkneuroevolutionmulti-objective optimizationgrammatical evolutionimage classificationCIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO::METODOLOGIA E TECNICAS DA COMPUTACAOGrammar-based Neuroevolution of Fully Convolutional NetworksGrammar-based Neuroevolution of Fully Convolutional Networksinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisreponame:Repositório Institucional da UFSCARinstname:Universidade Federal de São Carlos (UFSCAR)instacron:UFSCARORIGINALmain.pdfmain.pdfapplication/pdf919600https://repositorio.ufscar.br/bitstreams/9fd796eb-46d9-4c13-a325-a0c2dbba2760/downloadeb804c92c0c3d6de034086f53b6176d9MD51trueAnonymousREADTEXTmain.pdf.txtmain.pdf.txtExtracted texttext/plain100426https://repositorio.ufscar.br/bitstreams/dede31fa-4094-4356-ab2c-8cd5c214c576/downloadee8493f75885b6ca891f9a5584b52633MD53falseAnonymousREADTHUMBNAILmain.pdf.jpgmain.pdf.jpgGenerated Thumbnailimage/jpeg4529https://repositorio.ufscar.br/bitstreams/2eef80fe-e1e4-4f57-9bf2-917aaf3337ea/download2c6edc9f3179fdaaf67a6471a4e0705cMD54falseAnonymousREADCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8906https://repositorio.ufscar.br/bitstreams/461e86b3-7b9e-4671-9693-56cb8fec8123/downloadfba754f0467e45ac3862bc2533fb2736MD52falseAnonymousREAD20.500.14289/228972025-10-14T03:00:21.861868Zhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/Attribution-NonCommercial-NoDerivs 3.0 Brazilopen.accessoai:repositorio.ufscar.br:20.500.14289/22897https://repositorio.ufscar.brRepositório InstitucionalPUBhttps://repositorio.ufscar.br/oai/requestrepositorio.sibi@ufscar.bropendoar:43222025-10-14T03:00:21Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)false |
| dc.title.eng.fl_str_mv |
Grammar-based Neuroevolution of Fully Convolutional Networks |
| dc.title.alternative.eng.fl_str_mv |
Grammar-based Neuroevolution of Fully Convolutional Networks |
| title |
Grammar-based Neuroevolution of Fully Convolutional Networks |
| spellingShingle |
Grammar-based Neuroevolution of Fully Convolutional Networks Miranda, Thiago Zafalon evolutionary algorithm neural network neuroevolution multi-objective optimization grammatical evolution image classification CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO::METODOLOGIA E TECNICAS DA COMPUTACAO |
| title_short |
Grammar-based Neuroevolution of Fully Convolutional Networks |
| title_full |
Grammar-based Neuroevolution of Fully Convolutional Networks |
| title_fullStr |
Grammar-based Neuroevolution of Fully Convolutional Networks |
| title_full_unstemmed |
Grammar-based Neuroevolution of Fully Convolutional Networks |
| title_sort |
Grammar-based Neuroevolution of Fully Convolutional Networks |
| author |
Miranda, Thiago Zafalon |
| author_facet |
Miranda, Thiago Zafalon |
| author_role |
author |
| dc.contributor.authorlattes.none.fl_str_mv |
http://lattes.cnpq.br/8405817043726890 |
| dc.contributor.referee.none.fl_str_mv |
Cerri, Ricardo Caseli, Helena de Medeiros Avila, Sandra Eliza Fontes de Pappa, Gisele Lobo Barros, Rodrigo Coelho |
| dc.contributor.refereeLattes.none.fl_str_mv |
http://lattes.cnpq.br/6266519868438512 http://lattes.cnpq.br/6608582057810385 http://lattes.cnpq.br/8343699060914150 http://lattes.cnpq.br/5936682335701497 http://lattes.cnpq.br/8172124241767828 |
| dc.contributor.author.fl_str_mv |
Miranda, Thiago Zafalon |
| dc.contributor.advisor1.fl_str_mv |
Cerri, Ricardo |
| dc.contributor.advisor1Lattes.fl_str_mv |
http://lattes.cnpq.br/6266519868438512 |
| contributor_str_mv |
Cerri, Ricardo |
| dc.subject.eng.fl_str_mv |
evolutionary algorithm neural network neuroevolution multi-objective optimization grammatical evolution image classification |
| topic |
evolutionary algorithm neural network neuroevolution multi-objective optimization grammatical evolution image classification CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO::METODOLOGIA E TECNICAS DA COMPUTACAO |
| dc.subject.cnpq.fl_str_mv |
CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO::METODOLOGIA E TECNICAS DA COMPUTACAO |
| description |
The design of complex and deep neural networks is often performed by identifying and combining building blocks and progressively selecting the most promising combination. Neuroevolution automates this process by employing evolutionary algorithms to guide the search. Within this field, grammar-based evolutionary algorithms have been demonstrated to be powerful tools to describe and thus encode complex neural architectures effectively. In this context, this research proposes a novel grammar-based multi-objective neuroevolutionary approach for generating fully convolutional networks. The proposed method, named Multi-Objective gRammatical Evolution for FUlly convolutional Networks (MOREFUN), includes a new efficient way to encode skip-connections, facilitating the description of complex search spaces and the injection of domain knowledge in the search procedure, the generation of fully convolutional networks upsampling of lower-resolution inputs in multi-input layers, the usage of multi-objective fitness, and the inclusion of data augmentation and optimizer settings in the grammar. The best networks found by the algorithm outperformed those generated by previous grammar-based evolutionary algorithms, achieving 90% accuracy on CIFAR-10 without using transfer learning, ensembles, or test-time data augmentation, while having a relatively small number of parameters. |
| publishDate |
2025 |
| dc.date.accessioned.fl_str_mv |
2025-10-13T11:05:44Z |
| dc.date.issued.fl_str_mv |
2025-08-12 |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
| format |
doctoralThesis |
| status_str |
publishedVersion |
| dc.identifier.citation.fl_str_mv |
MIRANDA, Thiago Zafalon. Grammar-based Neuroevolution of Fully Convolutional Networks. 2025. Tese (Doutorado em Ciência da Computação) – Universidade Federal de São Carlos, São Carlos, 2025. Disponível em: https://repositorio.ufscar.br/handle/20.500.14289/22897. |
| dc.identifier.uri.fl_str_mv |
https://hdl.handle.net/20.500.14289/22897 |
| identifier_str_mv |
MIRANDA, Thiago Zafalon. Grammar-based Neuroevolution of Fully Convolutional Networks. 2025. Tese (Doutorado em Ciência da Computação) – Universidade Federal de São Carlos, São Carlos, 2025. Disponível em: https://repositorio.ufscar.br/handle/20.500.14289/22897. |
| url |
https://hdl.handle.net/20.500.14289/22897 |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.relation.uri.none.fl_str_mv |
https://www.sciencedirect.com/science/article/pii/S1568494623009857 https://dl.acm.org/doi/abs/10.1145/3520304.3529025 |
| dc.rights.driver.fl_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ info:eu-repo/semantics/openAccess |
| rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ |
| eu_rights_str_mv |
openAccess |
| dc.publisher.none.fl_str_mv |
Universidade Federal de São Carlos Câmpus São Carlos |
| dc.publisher.program.fl_str_mv |
Programa de Pós-Graduação em Ciência da Computação - PPGCC |
| dc.publisher.initials.fl_str_mv |
UFSCar |
| publisher.none.fl_str_mv |
Universidade Federal de São Carlos Câmpus São Carlos |
| dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFSCAR instname:Universidade Federal de São Carlos (UFSCAR) instacron:UFSCAR |
| instname_str |
Universidade Federal de São Carlos (UFSCAR) |
| instacron_str |
UFSCAR |
| institution |
UFSCAR |
| reponame_str |
Repositório Institucional da UFSCAR |
| collection |
Repositório Institucional da UFSCAR |
| bitstream.url.fl_str_mv |
https://repositorio.ufscar.br/bitstreams/9fd796eb-46d9-4c13-a325-a0c2dbba2760/download https://repositorio.ufscar.br/bitstreams/dede31fa-4094-4356-ab2c-8cd5c214c576/download https://repositorio.ufscar.br/bitstreams/2eef80fe-e1e4-4f57-9bf2-917aaf3337ea/download https://repositorio.ufscar.br/bitstreams/461e86b3-7b9e-4671-9693-56cb8fec8123/download |
| bitstream.checksum.fl_str_mv |
eb804c92c0c3d6de034086f53b6176d9 ee8493f75885b6ca891f9a5584b52633 2c6edc9f3179fdaaf67a6471a4e0705c fba754f0467e45ac3862bc2533fb2736 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR) |
| repository.mail.fl_str_mv |
repositorio.sibi@ufscar.br |
| _version_ |
1851688733643898880 |