Grammar-based Neuroevolution of Fully Convolutional Networks

Detalhes bibliográficos
Ano de defesa: 2025
Autor(a) principal: Miranda, Thiago Zafalon
Orientador(a): Cerri, Ricardo lattes
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Universidade Federal de São Carlos
Câmpus São Carlos
Programa de Pós-Graduação: Programa de Pós-Graduação em Ciência da Computação - PPGCC
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Inglês:
Área do conhecimento CNPq:
Link de acesso: https://hdl.handle.net/20.500.14289/22897
Resumo: The design of complex and deep neural networks is often performed by identifying and combining building blocks and progressively selecting the most promising combination. Neuroevolution automates this process by employing evolutionary algorithms to guide the search. Within this field, grammar-based evolutionary algorithms have been demonstrated to be powerful tools to describe and thus encode complex neural architectures effectively. In this context, this research proposes a novel grammar-based multi-objective neuroevolutionary approach for generating fully convolutional networks. The proposed method, named Multi-Objective gRammatical Evolution for FUlly convolutional Networks (MOREFUN), includes a new efficient way to encode skip-connections, facilitating the description of complex search spaces and the injection of domain knowledge in the search procedure, the generation of fully convolutional networks upsampling of lower-resolution inputs in multi-input layers, the usage of multi-objective fitness, and the inclusion of data augmentation and optimizer settings in the grammar. The best networks found by the algorithm outperformed those generated by previous grammar-based evolutionary algorithms, achieving 90% accuracy on CIFAR-10 without using transfer learning, ensembles, or test-time data augmentation, while having a relatively small number of parameters.
id SCAR_bdbac31be6829063714a261b47176c60
oai_identifier_str oai:repositorio.ufscar.br:20.500.14289/22897
network_acronym_str SCAR
network_name_str Repositório Institucional da UFSCAR
repository_id_str
spelling Miranda, Thiago ZafalonCerri, Ricardohttp://lattes.cnpq.br/6266519868438512http://lattes.cnpq.br/8405817043726890Cerri, RicardoCaseli, Helena de MedeirosAvila, Sandra Eliza Fontes dePappa, Gisele LoboBarros, Rodrigo Coelhohttp://lattes.cnpq.br/6266519868438512http://lattes.cnpq.br/6608582057810385http://lattes.cnpq.br/8343699060914150http://lattes.cnpq.br/5936682335701497http://lattes.cnpq.br/81721242417678282025-10-13T11:05:44Z2025-08-12MIRANDA, Thiago Zafalon. Grammar-based Neuroevolution of Fully Convolutional Networks. 2025. Tese (Doutorado em Ciência da Computação) – Universidade Federal de São Carlos, São Carlos, 2025. Disponível em: https://repositorio.ufscar.br/handle/20.500.14289/22897.https://hdl.handle.net/20.500.14289/22897The design of complex and deep neural networks is often performed by identifying and combining building blocks and progressively selecting the most promising combination. Neuroevolution automates this process by employing evolutionary algorithms to guide the search. Within this field, grammar-based evolutionary algorithms have been demonstrated to be powerful tools to describe and thus encode complex neural architectures effectively. In this context, this research proposes a novel grammar-based multi-objective neuroevolutionary approach for generating fully convolutional networks. The proposed method, named Multi-Objective gRammatical Evolution for FUlly convolutional Networks (MOREFUN), includes a new efficient way to encode skip-connections, facilitating the description of complex search spaces and the injection of domain knowledge in the search procedure, the generation of fully convolutional networks upsampling of lower-resolution inputs in multi-input layers, the usage of multi-objective fitness, and the inclusion of data augmentation and optimizer settings in the grammar. The best networks found by the algorithm outperformed those generated by previous grammar-based evolutionary algorithms, achieving 90% accuracy on CIFAR-10 without using transfer learning, ensembles, or test-time data augmentation, while having a relatively small number of parameters.O design de redes neurais complexas e profundas é frequentemente realizado por meio da identificação e combinação de blocos de construção e da seleção progressiva das combinações mais promissora. A neuroevolução automatiza esse processo utilizando algoritmos evolucionários para guiar a busca. Dentro desse campo, algoritmos evolucionários baseados em gramática têm se mostrado ferramentas poderosas para descrever e, portanto, codificar arquiteturas neurais complexas de forma eficaz. Nesse contexto, esta pesquisa propõe uma nova abordagem neuroevolutiva multiobjetivo baseada em gramática para a geração de redes convolucionais. O método proposto, denominado Multi-Objective gRammatical Evolution for FUlly convolutional Networks (MOREFUN), apresenta uma nova e eficiente forma de codificar skip-connections, facilitando a descrição de espaços de busca complexos e a injeção de conhecimento de domínio no processo de busca; a geração de redes convolucionais com upsampling de entradas de baixa resolução em camadas com múltiplas entradas; o uso de funções de fitness multiobjetivo; e a inclusão de técnicas de data augmentation e configurações de otimizadores na gramática. As melhores redes encontradas pelo algoritmo superaram aquelas geradas por algoritmos evolucionários baseados em gramática anteriores, atingindo 90% de acurácia no CIFAR-10 sem utilizar transfer learning, ensembles ou data augmentation em tempo de teste, ao mesmo tempo em que mantiveram um número relativamente pequeno de parâmetros.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)001engUniversidade Federal de São CarlosCâmpus São CarlosPrograma de Pós-Graduação em Ciência da Computação - PPGCCUFSCarhttps://www.sciencedirect.com/science/article/pii/S1568494623009857https://dl.acm.org/doi/abs/10.1145/3520304.3529025Attribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessevolutionary algorithmneural networkneuroevolutionmulti-objective optimizationgrammatical evolutionimage classificationCIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO::METODOLOGIA E TECNICAS DA COMPUTACAOGrammar-based Neuroevolution of Fully Convolutional NetworksGrammar-based Neuroevolution of Fully Convolutional Networksinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisreponame:Repositório Institucional da UFSCARinstname:Universidade Federal de São Carlos (UFSCAR)instacron:UFSCARORIGINALmain.pdfmain.pdfapplication/pdf919600https://repositorio.ufscar.br/bitstreams/9fd796eb-46d9-4c13-a325-a0c2dbba2760/downloadeb804c92c0c3d6de034086f53b6176d9MD51trueAnonymousREADTEXTmain.pdf.txtmain.pdf.txtExtracted texttext/plain100426https://repositorio.ufscar.br/bitstreams/dede31fa-4094-4356-ab2c-8cd5c214c576/downloadee8493f75885b6ca891f9a5584b52633MD53falseAnonymousREADTHUMBNAILmain.pdf.jpgmain.pdf.jpgGenerated Thumbnailimage/jpeg4529https://repositorio.ufscar.br/bitstreams/2eef80fe-e1e4-4f57-9bf2-917aaf3337ea/download2c6edc9f3179fdaaf67a6471a4e0705cMD54falseAnonymousREADCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8906https://repositorio.ufscar.br/bitstreams/461e86b3-7b9e-4671-9693-56cb8fec8123/downloadfba754f0467e45ac3862bc2533fb2736MD52falseAnonymousREAD20.500.14289/228972025-10-14T03:00:21.861868Zhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/Attribution-NonCommercial-NoDerivs 3.0 Brazilopen.accessoai:repositorio.ufscar.br:20.500.14289/22897https://repositorio.ufscar.brRepositório InstitucionalPUBhttps://repositorio.ufscar.br/oai/requestrepositorio.sibi@ufscar.bropendoar:43222025-10-14T03:00:21Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)false
dc.title.eng.fl_str_mv Grammar-based Neuroevolution of Fully Convolutional Networks
dc.title.alternative.eng.fl_str_mv Grammar-based Neuroevolution of Fully Convolutional Networks
title Grammar-based Neuroevolution of Fully Convolutional Networks
spellingShingle Grammar-based Neuroevolution of Fully Convolutional Networks
Miranda, Thiago Zafalon
evolutionary algorithm
neural network
neuroevolution
multi-objective optimization
grammatical evolution
image classification
CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO::METODOLOGIA E TECNICAS DA COMPUTACAO
title_short Grammar-based Neuroevolution of Fully Convolutional Networks
title_full Grammar-based Neuroevolution of Fully Convolutional Networks
title_fullStr Grammar-based Neuroevolution of Fully Convolutional Networks
title_full_unstemmed Grammar-based Neuroevolution of Fully Convolutional Networks
title_sort Grammar-based Neuroevolution of Fully Convolutional Networks
author Miranda, Thiago Zafalon
author_facet Miranda, Thiago Zafalon
author_role author
dc.contributor.authorlattes.none.fl_str_mv http://lattes.cnpq.br/8405817043726890
dc.contributor.referee.none.fl_str_mv Cerri, Ricardo
Caseli, Helena de Medeiros
Avila, Sandra Eliza Fontes de
Pappa, Gisele Lobo
Barros, Rodrigo Coelho
dc.contributor.refereeLattes.none.fl_str_mv http://lattes.cnpq.br/6266519868438512
http://lattes.cnpq.br/6608582057810385
http://lattes.cnpq.br/8343699060914150
http://lattes.cnpq.br/5936682335701497
http://lattes.cnpq.br/8172124241767828
dc.contributor.author.fl_str_mv Miranda, Thiago Zafalon
dc.contributor.advisor1.fl_str_mv Cerri, Ricardo
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/6266519868438512
contributor_str_mv Cerri, Ricardo
dc.subject.eng.fl_str_mv evolutionary algorithm
neural network
neuroevolution
multi-objective optimization
grammatical evolution
image classification
topic evolutionary algorithm
neural network
neuroevolution
multi-objective optimization
grammatical evolution
image classification
CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO::METODOLOGIA E TECNICAS DA COMPUTACAO
dc.subject.cnpq.fl_str_mv CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO::METODOLOGIA E TECNICAS DA COMPUTACAO
description The design of complex and deep neural networks is often performed by identifying and combining building blocks and progressively selecting the most promising combination. Neuroevolution automates this process by employing evolutionary algorithms to guide the search. Within this field, grammar-based evolutionary algorithms have been demonstrated to be powerful tools to describe and thus encode complex neural architectures effectively. In this context, this research proposes a novel grammar-based multi-objective neuroevolutionary approach for generating fully convolutional networks. The proposed method, named Multi-Objective gRammatical Evolution for FUlly convolutional Networks (MOREFUN), includes a new efficient way to encode skip-connections, facilitating the description of complex search spaces and the injection of domain knowledge in the search procedure, the generation of fully convolutional networks upsampling of lower-resolution inputs in multi-input layers, the usage of multi-objective fitness, and the inclusion of data augmentation and optimizer settings in the grammar. The best networks found by the algorithm outperformed those generated by previous grammar-based evolutionary algorithms, achieving 90% accuracy on CIFAR-10 without using transfer learning, ensembles, or test-time data augmentation, while having a relatively small number of parameters.
publishDate 2025
dc.date.accessioned.fl_str_mv 2025-10-13T11:05:44Z
dc.date.issued.fl_str_mv 2025-08-12
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv MIRANDA, Thiago Zafalon. Grammar-based Neuroevolution of Fully Convolutional Networks. 2025. Tese (Doutorado em Ciência da Computação) – Universidade Federal de São Carlos, São Carlos, 2025. Disponível em: https://repositorio.ufscar.br/handle/20.500.14289/22897.
dc.identifier.uri.fl_str_mv https://hdl.handle.net/20.500.14289/22897
identifier_str_mv MIRANDA, Thiago Zafalon. Grammar-based Neuroevolution of Fully Convolutional Networks. 2025. Tese (Doutorado em Ciência da Computação) – Universidade Federal de São Carlos, São Carlos, 2025. Disponível em: https://repositorio.ufscar.br/handle/20.500.14289/22897.
url https://hdl.handle.net/20.500.14289/22897
dc.language.iso.fl_str_mv eng
language eng
dc.relation.uri.none.fl_str_mv https://www.sciencedirect.com/science/article/pii/S1568494623009857
https://dl.acm.org/doi/abs/10.1145/3520304.3529025
dc.rights.driver.fl_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal de São Carlos
Câmpus São Carlos
dc.publisher.program.fl_str_mv Programa de Pós-Graduação em Ciência da Computação - PPGCC
dc.publisher.initials.fl_str_mv UFSCar
publisher.none.fl_str_mv Universidade Federal de São Carlos
Câmpus São Carlos
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFSCAR
instname:Universidade Federal de São Carlos (UFSCAR)
instacron:UFSCAR
instname_str Universidade Federal de São Carlos (UFSCAR)
instacron_str UFSCAR
institution UFSCAR
reponame_str Repositório Institucional da UFSCAR
collection Repositório Institucional da UFSCAR
bitstream.url.fl_str_mv https://repositorio.ufscar.br/bitstreams/9fd796eb-46d9-4c13-a325-a0c2dbba2760/download
https://repositorio.ufscar.br/bitstreams/dede31fa-4094-4356-ab2c-8cd5c214c576/download
https://repositorio.ufscar.br/bitstreams/2eef80fe-e1e4-4f57-9bf2-917aaf3337ea/download
https://repositorio.ufscar.br/bitstreams/461e86b3-7b9e-4671-9693-56cb8fec8123/download
bitstream.checksum.fl_str_mv eb804c92c0c3d6de034086f53b6176d9
ee8493f75885b6ca891f9a5584b52633
2c6edc9f3179fdaaf67a6471a4e0705c
fba754f0467e45ac3862bc2533fb2736
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)
repository.mail.fl_str_mv repositorio.sibi@ufscar.br
_version_ 1851688733643898880