Modelo e ferramenta para reconhecimento e classificação de gestos do corpo

Detalhes bibliográficos
Ano de defesa: 2017
Autor(a) principal: Brasil, Gustavo Jordan Castro
Orientador(a): Trevelin, Luis Carlos lattes
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de São Carlos
Câmpus São Carlos
Programa de Pós-Graduação: Programa de Pós-Graduação em Ciência da Computação - PPGCC
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Palavras-chave em Inglês:
Área do conhecimento CNPq:
Link de acesso: https://repositorio.ufscar.br/handle/20.500.14289/9536
Resumo: Multimodal interfaces are becoming more popular, and increasingly require natural interaction as a resource to enrich the user experience. Computational systems that support multimodality provide a more natural and flexible way to perform tasks on computers, since they allow users with different levels of skills and knowledge to choose the mode of interaction best suited to their needs. Among natural forms of interaction are the gestures, the natural interaction through gestures is becoming more popular, since it's an alternative to the conventional style of interaction based on keyboard and mouse, and also by the growth and advent of motion capture devices, with low-cost visual depth sensors. In this context, this dissertation presents a study about all the necessary steps for the construction of a model and tool for the recognition of static and dynamic gestures, these being: Segmentation; Modeling; Description; and Classification. Proposed solutions and results are presented for each of these steps and, finally, a tool that implements the model is evaluated in the recognition of gestures, using a finite set of gestures. All the solutions presented in this dissertation were encapsulated in the GGGesture tool, which aims to simplify research in the area of gesture recognition, allowing communication with multimodal interfaces systems and natural interfaces.
id SCAR_c139f3f540508f6cd457356f4a4a8b30
oai_identifier_str oai:repositorio.ufscar.br:20.500.14289/9536
network_acronym_str SCAR
network_name_str Repositório Institucional da UFSCAR
repository_id_str
spelling Brasil, Gustavo Jordan CastroTrevelin, Luis Carloshttp://lattes.cnpq.br/5082419783043736http://lattes.cnpq.br/678862836254658007e04e24-1879-4af1-a0f1-063a7a0e8c1b2018-03-07T11:55:46Z2018-03-07T11:55:46Z2017-08-18BRASIL, Gustavo Jordan Castro. Modelo e ferramenta para reconhecimento e classificação de gestos do corpo. 2017. Dissertação (Mestrado em Ciência da Computação) – Universidade Federal de São Carlos, São Carlos, 2017. Disponível em: https://repositorio.ufscar.br/handle/20.500.14289/9536.https://repositorio.ufscar.br/handle/20.500.14289/9536Multimodal interfaces are becoming more popular, and increasingly require natural interaction as a resource to enrich the user experience. Computational systems that support multimodality provide a more natural and flexible way to perform tasks on computers, since they allow users with different levels of skills and knowledge to choose the mode of interaction best suited to their needs. Among natural forms of interaction are the gestures, the natural interaction through gestures is becoming more popular, since it's an alternative to the conventional style of interaction based on keyboard and mouse, and also by the growth and advent of motion capture devices, with low-cost visual depth sensors. In this context, this dissertation presents a study about all the necessary steps for the construction of a model and tool for the recognition of static and dynamic gestures, these being: Segmentation; Modeling; Description; and Classification. Proposed solutions and results are presented for each of these steps and, finally, a tool that implements the model is evaluated in the recognition of gestures, using a finite set of gestures. All the solutions presented in this dissertation were encapsulated in the GGGesture tool, which aims to simplify research in the area of gesture recognition, allowing communication with multimodal interfaces systems and natural interfaces.Interfaces multimodais estão cada vez mais populares, e demandam mais a interação natural como recurso para enriquecer a experiência do usuário. Sistemas computacionais que suportam a multimodalidade provêm um modo mais natural e flexível para execução de tarefas em computadores, uma vez que permitem aos usuários com diferentes níveis de habilidades e de aprendizado, escolha o modo de interação mais adequado a suas necessidades. Dentre as formas de interação natural, estão os gestos, a interação natural através de gestos vem se popularizando cada vez mais, visto que, foge do estilo convencional de interação baseado em teclado e mouse, e ainda pelo crescimento e advento de dispositivos de captura de movimento, com sensores visuais de profundidade de baixo custo. Neste contexto, esta dissertação apresenta um estudo sobre todas as etapas necessárias para a construção de um modelo e ferramenta para reconhecimento de gestos estáticos e dinâmicos, sendo estas: Segmentação; Modelagem; Descrição; e Classificação. Soluções e resultados propostos, são apresentados para cada uma destas etapas e, por fim uma ferramenta que implementa o modelo é avaliada no reconhecimento de gestos, utilizando um conjunto finito de gestos. Todas as soluções apresentadas nesta dissertação foram encapsuladas na ferramenta GGGesture, que tem por objetivo simplificar as pesquisas na área de reconhecimento de gestos, permitindo a comunicação com sistemas de interfaces multimodais e interfaces naturais.Não recebi financiamentoporUniversidade Federal de São CarlosCâmpus São CarlosPrograma de Pós-Graduação em Ciência da Computação - PPGCCUFSCarReconhecimento de gestosRealidade virtualReconhecimento de padrõesInterface naturalGesture recognitionVirtual realityPattern recognitionNatural interfaceCIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAOModelo e ferramenta para reconhecimento e classificação de gestos do corpoModel and tool for recognition and classification of body gesturesinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisOnlinee47d05e7-5439-42fa-864a-d1da3cf4c0d6info:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFSCARinstname:Universidade Federal de São Carlos (UFSCAR)instacron:UFSCARORIGINALBRASIL_Gustavo_2018.pdfBRASIL_Gustavo_2018.pdfapplication/pdf10017569https://repositorio.ufscar.br/bitstreams/9f9a65f1-ef85-4818-b584-c2a6a85ba721/download9c4cf5fa17c74194b27e89df220cd3eeMD55trueAnonymousREADLICENSElicense.txtlicense.txttext/plain; charset=utf-81957https://repositorio.ufscar.br/bitstreams/b16d83c3-b021-485c-b0fd-bc1ccb8b5ccf/downloadae0398b6f8b235e40ad82cba6c50031dMD54falseAnonymousREADTEXTBRASIL_Gustavo_2018.pdf.txtBRASIL_Gustavo_2018.pdf.txtExtracted texttext/plain207258https://repositorio.ufscar.br/bitstreams/3f510818-770e-442c-9217-abe74b488612/downloadb401a83ad13743a1865b2320535d6deeMD58falseAnonymousREADTHUMBNAILBRASIL_Gustavo_2018.pdf.jpgBRASIL_Gustavo_2018.pdf.jpgIM Thumbnailimage/jpeg1247https://repositorio.ufscar.br/bitstreams/51d53f76-789d-49ad-93b1-2af45dbc917a/download60fd9ed5c27bd7f52ee31d9e754ced7dMD59falseAnonymousREAD20.500.14289/95362025-02-05 17:47:29.552Acesso abertoopen.accessoai:repositorio.ufscar.br:20.500.14289/9536https://repositorio.ufscar.brRepositório InstitucionalPUBhttps://repositorio.ufscar.br/oai/requestrepositorio.sibi@ufscar.bropendoar:43222025-02-05T20:47:29Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)falseTElDRU7Dh0EgREUgRElTVFJJQlVJw4fDg08gTsODTy1FWENMVVNJVkEKCkNvbSBhIGFwcmVzZW50YcOnw6NvIGRlc3RhIGxpY2Vuw6dhLCB2b2PDqiAobyBhdXRvciAoZXMpIG91IG8gdGl0dWxhciBkb3MgZGlyZWl0b3MgZGUgYXV0b3IpIGNvbmNlZGUgw6AgVW5pdmVyc2lkYWRlCkZlZGVyYWwgZGUgU8OjbyBDYXJsb3MgbyBkaXJlaXRvIG7Do28tZXhjbHVzaXZvIGRlIHJlcHJvZHV6aXIsICB0cmFkdXppciAoY29uZm9ybWUgZGVmaW5pZG8gYWJhaXhvKSwgZS9vdQpkaXN0cmlidWlyIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyAoaW5jbHVpbmRvIG8gcmVzdW1vKSBwb3IgdG9kbyBvIG11bmRvIG5vIGZvcm1hdG8gaW1wcmVzc28gZSBlbGV0csO0bmljbyBlCmVtIHF1YWxxdWVyIG1laW8sIGluY2x1aW5kbyBvcyBmb3JtYXRvcyDDoXVkaW8gb3UgdsOtZGVvLgoKVm9jw6ogY29uY29yZGEgcXVlIGEgVUZTQ2FyIHBvZGUsIHNlbSBhbHRlcmFyIG8gY29udGXDumRvLCB0cmFuc3BvciBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28KcGFyYSBxdWFscXVlciBtZWlvIG91IGZvcm1hdG8gcGFyYSBmaW5zIGRlIHByZXNlcnZhw6fDo28uCgpWb2PDqiB0YW1iw6ltIGNvbmNvcmRhIHF1ZSBhIFVGU0NhciBwb2RlIG1hbnRlciBtYWlzIGRlIHVtYSBjw7NwaWEgYSBzdWEgdGVzZSBvdQpkaXNzZXJ0YcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcwpuZXN0YSBsaWNlbsOnYS4gVm9jw6ogdGFtYsOpbSBkZWNsYXJhIHF1ZSBvIGRlcMOzc2l0byBkYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIG7Do28sIHF1ZSBzZWphIGRlIHNldQpjb25oZWNpbWVudG8sIGluZnJpbmdlIGRpcmVpdG9zIGF1dG9yYWlzIGRlIG5pbmd1w6ltLgoKQ2FzbyBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gY29udGVuaGEgbWF0ZXJpYWwgcXVlIHZvY8OqIG7Do28gcG9zc3VpIGEgdGl0dWxhcmlkYWRlIGRvcyBkaXJlaXRvcyBhdXRvcmFpcywgdm9jw6oKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIMOgIFVGU0NhcgpvcyBkaXJlaXRvcyBhcHJlc2VudGFkb3MgbmVzdGEgbGljZW7Dp2EsIGUgcXVlIGVzc2UgbWF0ZXJpYWwgZGUgcHJvcHJpZWRhZGUgZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUKaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3Ugbm8gY29udGXDumRvIGRhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBvcmEgZGVwb3NpdGFkYS4KCkNBU08gQSBURVNFIE9VIERJU1NFUlRBw4fDg08gT1JBIERFUE9TSVRBREEgVEVOSEEgU0lETyBSRVNVTFRBRE8gREUgVU0gUEFUUk9Dw41OSU8gT1UKQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBVRlNDYXIsClZPQ8OKIERFQ0xBUkEgUVVFIFJFU1BFSVRPVSBUT0RPUyBFIFFVQUlTUVVFUiBESVJFSVRPUyBERSBSRVZJU8ODTyBDT01PClRBTULDiU0gQVMgREVNQUlTIE9CUklHQcOHw5VFUyBFWElHSURBUyBQT1IgQ09OVFJBVE8gT1UgQUNPUkRPLgoKQSBVRlNDYXIgc2UgY29tcHJvbWV0ZSBhIGlkZW50aWZpY2FyIGNsYXJhbWVudGUgbyBzZXUgbm9tZSAocykgb3UgbyhzKSBub21lKHMpIGRvKHMpCmRldGVudG9yKGVzKSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzCmNvbmNlZGlkYXMgcG9yIGVzdGEgbGljZW7Dp2EuCg==
dc.title.por.fl_str_mv Modelo e ferramenta para reconhecimento e classificação de gestos do corpo
dc.title.alternative.eng.fl_str_mv Model and tool for recognition and classification of body gestures
title Modelo e ferramenta para reconhecimento e classificação de gestos do corpo
spellingShingle Modelo e ferramenta para reconhecimento e classificação de gestos do corpo
Brasil, Gustavo Jordan Castro
Reconhecimento de gestos
Realidade virtual
Reconhecimento de padrões
Interface natural
Gesture recognition
Virtual reality
Pattern recognition
Natural interface
CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO
title_short Modelo e ferramenta para reconhecimento e classificação de gestos do corpo
title_full Modelo e ferramenta para reconhecimento e classificação de gestos do corpo
title_fullStr Modelo e ferramenta para reconhecimento e classificação de gestos do corpo
title_full_unstemmed Modelo e ferramenta para reconhecimento e classificação de gestos do corpo
title_sort Modelo e ferramenta para reconhecimento e classificação de gestos do corpo
author Brasil, Gustavo Jordan Castro
author_facet Brasil, Gustavo Jordan Castro
author_role author
dc.contributor.authorlattes.por.fl_str_mv http://lattes.cnpq.br/6788628362546580
dc.contributor.author.fl_str_mv Brasil, Gustavo Jordan Castro
dc.contributor.advisor1.fl_str_mv Trevelin, Luis Carlos
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/5082419783043736
dc.contributor.authorID.fl_str_mv 07e04e24-1879-4af1-a0f1-063a7a0e8c1b
contributor_str_mv Trevelin, Luis Carlos
dc.subject.por.fl_str_mv Reconhecimento de gestos
Realidade virtual
Reconhecimento de padrões
Interface natural
topic Reconhecimento de gestos
Realidade virtual
Reconhecimento de padrões
Interface natural
Gesture recognition
Virtual reality
Pattern recognition
Natural interface
CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO
dc.subject.eng.fl_str_mv Gesture recognition
Virtual reality
Pattern recognition
Natural interface
dc.subject.cnpq.fl_str_mv CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO
description Multimodal interfaces are becoming more popular, and increasingly require natural interaction as a resource to enrich the user experience. Computational systems that support multimodality provide a more natural and flexible way to perform tasks on computers, since they allow users with different levels of skills and knowledge to choose the mode of interaction best suited to their needs. Among natural forms of interaction are the gestures, the natural interaction through gestures is becoming more popular, since it's an alternative to the conventional style of interaction based on keyboard and mouse, and also by the growth and advent of motion capture devices, with low-cost visual depth sensors. In this context, this dissertation presents a study about all the necessary steps for the construction of a model and tool for the recognition of static and dynamic gestures, these being: Segmentation; Modeling; Description; and Classification. Proposed solutions and results are presented for each of these steps and, finally, a tool that implements the model is evaluated in the recognition of gestures, using a finite set of gestures. All the solutions presented in this dissertation were encapsulated in the GGGesture tool, which aims to simplify research in the area of gesture recognition, allowing communication with multimodal interfaces systems and natural interfaces.
publishDate 2017
dc.date.issued.fl_str_mv 2017-08-18
dc.date.accessioned.fl_str_mv 2018-03-07T11:55:46Z
dc.date.available.fl_str_mv 2018-03-07T11:55:46Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv BRASIL, Gustavo Jordan Castro. Modelo e ferramenta para reconhecimento e classificação de gestos do corpo. 2017. Dissertação (Mestrado em Ciência da Computação) – Universidade Federal de São Carlos, São Carlos, 2017. Disponível em: https://repositorio.ufscar.br/handle/20.500.14289/9536.
dc.identifier.uri.fl_str_mv https://repositorio.ufscar.br/handle/20.500.14289/9536
identifier_str_mv BRASIL, Gustavo Jordan Castro. Modelo e ferramenta para reconhecimento e classificação de gestos do corpo. 2017. Dissertação (Mestrado em Ciência da Computação) – Universidade Federal de São Carlos, São Carlos, 2017. Disponível em: https://repositorio.ufscar.br/handle/20.500.14289/9536.
url https://repositorio.ufscar.br/handle/20.500.14289/9536
dc.language.iso.fl_str_mv por
language por
dc.relation.authority.fl_str_mv e47d05e7-5439-42fa-864a-d1da3cf4c0d6
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal de São Carlos
Câmpus São Carlos
dc.publisher.program.fl_str_mv Programa de Pós-Graduação em Ciência da Computação - PPGCC
dc.publisher.initials.fl_str_mv UFSCar
publisher.none.fl_str_mv Universidade Federal de São Carlos
Câmpus São Carlos
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFSCAR
instname:Universidade Federal de São Carlos (UFSCAR)
instacron:UFSCAR
instname_str Universidade Federal de São Carlos (UFSCAR)
instacron_str UFSCAR
institution UFSCAR
reponame_str Repositório Institucional da UFSCAR
collection Repositório Institucional da UFSCAR
bitstream.url.fl_str_mv https://repositorio.ufscar.br/bitstreams/9f9a65f1-ef85-4818-b584-c2a6a85ba721/download
https://repositorio.ufscar.br/bitstreams/b16d83c3-b021-485c-b0fd-bc1ccb8b5ccf/download
https://repositorio.ufscar.br/bitstreams/3f510818-770e-442c-9217-abe74b488612/download
https://repositorio.ufscar.br/bitstreams/51d53f76-789d-49ad-93b1-2af45dbc917a/download
bitstream.checksum.fl_str_mv 9c4cf5fa17c74194b27e89df220cd3ee
ae0398b6f8b235e40ad82cba6c50031d
b401a83ad13743a1865b2320535d6dee
60fd9ed5c27bd7f52ee31d9e754ced7d
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)
repository.mail.fl_str_mv repositorio.sibi@ufscar.br
_version_ 1851688945969004544