Exportação concluída — 

Rede Bayesiana empregada no gerenciamento da saúde dos sistemas na computação em nuvem

Detalhes bibliográficos
Ano de defesa: 2016
Autor(a) principal: Alves, Renato dos Santos
Orientador(a): Marcondes, César Augusto Cavalheiro lattes
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de São Carlos
Câmpus São Carlos
Programa de Pós-Graduação: Programa de Pós-Graduação em Ciência da Computação - PPGCC
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Palavras-chave em Inglês:
Área do conhecimento CNPq:
Link de acesso: https://repositorio.ufscar.br/handle/20.500.14289/8283
Resumo: Cloud computing is a convenient computing model, because it allows the ubiquity with on-demand access to a set of configurable and shared features, that can be rapidly provisioned and made available with minimal effort or interaction with the service provider. IaaS is a different way to deliver cloud computing, where infrastructure servers, networking systems, storage, and all the necessary environment for the operating system to run the application are hired as services. Meanwhile, traditional companies still have doubts in relation to the transferring of their data outside of the limits of the corporation. The health of cloud computing systems is fundamental to the business, given the complexity of the systems it is difficult to ensure that all services and resources will work properly. In order to ensure a more appropriate management of the systems and services in the cloud, an architecture is proposed. The architecture has been modularized through specializing monitoring functions, data mining, and inference with Bayesian network. In this architecture are essential records of event monitoring systems and computing resources because the recorded data is mined to identify fault patterns a given system after the result of one or more events in the environment. For mining the monitoring data we proposed two algorithms, one for performing preprocessing of data and another to perform data transformation. As a data mining product obtained, data sets that were the input to create a Bayesian network. Through structural and parametric learning algorithms Bayesinas networks for each systems and services offered by cloud computing were created. The Bayesian network is intended to assist in decision making with prevention, prediction, error correction in systems and services, allowing to manage the health and performance of the most appropriate way systems. To check the compliance of the fault diagnosis of this architecture, we validate accuracy of inference of Bayesian network with cross-validation method using data sets generated by monitoring systems and services.
id SCAR_c5f77bc16f04fa33a16b36a2e9e05366
oai_identifier_str oai:repositorio.ufscar.br:20.500.14289/8283
network_acronym_str SCAR
network_name_str Repositório Institucional da UFSCAR
repository_id_str
spelling Alves, Renato dos SantosMarcondes, César Augusto Cavalheirohttp://lattes.cnpq.br/4431183539132719http://lattes.cnpq.br/1718499653531495d0cdb74c-b327-4f61-89bb-8f7624e5a09f2016-11-08T18:44:39Z2016-11-08T18:44:39Z2016-08-10ALVES, Renato dos Santos. Rede Bayesiana empregada no gerenciamento da saúde dos sistemas na computação em nuvem. 2016. Dissertação (Mestrado em Ciência da Computação) – Universidade Federal de São Carlos, São Carlos, 2016. Disponível em: https://repositorio.ufscar.br/handle/20.500.14289/8283.https://repositorio.ufscar.br/handle/20.500.14289/8283Cloud computing is a convenient computing model, because it allows the ubiquity with on-demand access to a set of configurable and shared features, that can be rapidly provisioned and made available with minimal effort or interaction with the service provider. IaaS is a different way to deliver cloud computing, where infrastructure servers, networking systems, storage, and all the necessary environment for the operating system to run the application are hired as services. Meanwhile, traditional companies still have doubts in relation to the transferring of their data outside of the limits of the corporation. The health of cloud computing systems is fundamental to the business, given the complexity of the systems it is difficult to ensure that all services and resources will work properly. In order to ensure a more appropriate management of the systems and services in the cloud, an architecture is proposed. The architecture has been modularized through specializing monitoring functions, data mining, and inference with Bayesian network. In this architecture are essential records of event monitoring systems and computing resources because the recorded data is mined to identify fault patterns a given system after the result of one or more events in the environment. For mining the monitoring data we proposed two algorithms, one for performing preprocessing of data and another to perform data transformation. As a data mining product obtained, data sets that were the input to create a Bayesian network. Through structural and parametric learning algorithms Bayesinas networks for each systems and services offered by cloud computing were created. The Bayesian network is intended to assist in decision making with prevention, prediction, error correction in systems and services, allowing to manage the health and performance of the most appropriate way systems. To check the compliance of the fault diagnosis of this architecture, we validate accuracy of inference of Bayesian network with cross-validation method using data sets generated by monitoring systems and services.A computação em nuvem é um modelo de computação conveniente, pois permite a ubiquidade, com acesso sob demanda a um conjunto de recursos configuráveis e compartilhados, que podem ser rapidamente provisionados e disponibilizados com o mínimo de esforço ou interação com o fornecedor do serviço. IaaS é uma maneira diferente de entregar computação em nuvem, onde a infraestrutura de servidores, sistemas de rede, armazenamento e todo o ambiente necessário para o funcionamento do sistema operacional até aplicação são contratados como serviços. Entretanto, empresas tradicionais ainda possuem dúvidas com relação à transferência de seus dados para fora dos limites da corporação. A saúde de sistemas em computação em nuvem é algo fundamental para o negócio, e dada a complexidade dos sistemas é difícil garantir que todos os serviços e recursos funcionem adequadamente. A fim de garantir um gerenciamento mais adequado da saúde dos sistema e serviços na nuvem, propôs-se nesse trabalho uma arquitetura de diagnóstico de saúde de sistema de nuvem. A arquitetura foi modularizada, especializando funções de monitoramento, mineração de dados e inferência com rede Bayesiana. Nessa arquitetura, são fundamentais os registros de eventos de monitoramento dos sistemas e recursos computacionais, pois os dados registrados são minerados para identificar padrões de falhas. Para mineração dos dados de monitoramento foram propostos dois algoritmos: um para realizar a tarefa de pré- processamento dos dados e outro para realizar a transformação dos dados. Como produto da mineração dos dados, foram obtidos conjuntos de dados que foram o insumo para criar a rede Bayesiana. Por meio de algoritmos de aprendizagem estrutural e paramétrica foram criadas redes Bayesinas para cada sistema e disponibilizados por meio da computação em nuvem. A rede Bayesiana tem o objetivo de auxiliar na tomada de decis˜ao com prevenção, previsão, correção de falhas nos sistemas e serviços, permitindo assim gerenciar a saúde e o desempenho dos sistemas de forma mais adequada. Para verificar a aderência da arquitetura ao diagnóstico de falhas, validou-se a precisão de inferência da rede Bayesiana com o método de validação cruzada.Não recebi financiamentoporUniversidade Federal de São CarlosCâmpus São CarlosPrograma de Pós-Graduação em Ciência da Computação - PPGCCUFSCarIaaSMineração de dadosComputação em nuvemRede bayesianaSaúde de sistemasCloud computingData miningStructural learningBayesian networkHealth systemsCIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAORede Bayesiana empregada no gerenciamento da saúde dos sistemas na computação em nuveminfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisOnline6006001bb0fc35-bcc1-43ad-97f1-6501019230d9info:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFSCARinstname:Universidade Federal de São Carlos (UFSCAR)instacron:UFSCARORIGINALDissRSA.pdfDissRSA.pdfapplication/pdf2940714https://repositorio.ufscar.br/bitstreams/9334e259-71b9-4a3f-9d33-9414c23dcc1f/download9af799d998ad9646a6f38b0d6e9c382aMD51trueAnonymousREADLICENSElicense.txtlicense.txttext/plain; charset=utf-81957https://repositorio.ufscar.br/bitstreams/c164282c-3d34-46ed-a82e-c80d752ea2a7/downloadae0398b6f8b235e40ad82cba6c50031dMD52falseAnonymousREADTEXTDissRSA.pdf.txtDissRSA.pdf.txtExtracted texttext/plain203821https://repositorio.ufscar.br/bitstreams/c59065d6-6f32-42e1-b155-52141bf56d98/download2ee45d30cc95fe2fb4e19d2f8dd0dc22MD55falseAnonymousREADTHUMBNAILDissRSA.pdf.jpgDissRSA.pdf.jpgIM Thumbnailimage/jpeg5799https://repositorio.ufscar.br/bitstreams/90f7b65c-80fa-4825-bf10-6a61e2f4cfae/download27ee4aa30e3f65dc740a80df55403988MD56falseAnonymousREAD20.500.14289/82832025-02-05 17:25:55.924Acesso abertoopen.accessoai:repositorio.ufscar.br:20.500.14289/8283https://repositorio.ufscar.brRepositório InstitucionalPUBhttps://repositorio.ufscar.br/oai/requestrepositorio.sibi@ufscar.bropendoar:43222025-02-05T20:25:55Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)falseTElDRU7Dh0EgREUgRElTVFJJQlVJw4fDg08gTsODTy1FWENMVVNJVkEKCkNvbSBhIGFwcmVzZW50YcOnw6NvIGRlc3RhIGxpY2Vuw6dhLCB2b2PDqiAobyBhdXRvciAoZXMpIG91IG8gdGl0dWxhciBkb3MgZGlyZWl0b3MgZGUgYXV0b3IpIGNvbmNlZGUgw6AgVW5pdmVyc2lkYWRlCkZlZGVyYWwgZGUgU8OjbyBDYXJsb3MgbyBkaXJlaXRvIG7Do28tZXhjbHVzaXZvIGRlIHJlcHJvZHV6aXIsICB0cmFkdXppciAoY29uZm9ybWUgZGVmaW5pZG8gYWJhaXhvKSwgZS9vdQpkaXN0cmlidWlyIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyAoaW5jbHVpbmRvIG8gcmVzdW1vKSBwb3IgdG9kbyBvIG11bmRvIG5vIGZvcm1hdG8gaW1wcmVzc28gZSBlbGV0csO0bmljbyBlCmVtIHF1YWxxdWVyIG1laW8sIGluY2x1aW5kbyBvcyBmb3JtYXRvcyDDoXVkaW8gb3UgdsOtZGVvLgoKVm9jw6ogY29uY29yZGEgcXVlIGEgVUZTQ2FyIHBvZGUsIHNlbSBhbHRlcmFyIG8gY29udGXDumRvLCB0cmFuc3BvciBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28KcGFyYSBxdWFscXVlciBtZWlvIG91IGZvcm1hdG8gcGFyYSBmaW5zIGRlIHByZXNlcnZhw6fDo28uCgpWb2PDqiB0YW1iw6ltIGNvbmNvcmRhIHF1ZSBhIFVGU0NhciBwb2RlIG1hbnRlciBtYWlzIGRlIHVtYSBjw7NwaWEgYSBzdWEgdGVzZSBvdQpkaXNzZXJ0YcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcwpuZXN0YSBsaWNlbsOnYS4gVm9jw6ogdGFtYsOpbSBkZWNsYXJhIHF1ZSBvIGRlcMOzc2l0byBkYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIG7Do28sIHF1ZSBzZWphIGRlIHNldQpjb25oZWNpbWVudG8sIGluZnJpbmdlIGRpcmVpdG9zIGF1dG9yYWlzIGRlIG5pbmd1w6ltLgoKQ2FzbyBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gY29udGVuaGEgbWF0ZXJpYWwgcXVlIHZvY8OqIG7Do28gcG9zc3VpIGEgdGl0dWxhcmlkYWRlIGRvcyBkaXJlaXRvcyBhdXRvcmFpcywgdm9jw6oKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIMOgIFVGU0NhcgpvcyBkaXJlaXRvcyBhcHJlc2VudGFkb3MgbmVzdGEgbGljZW7Dp2EsIGUgcXVlIGVzc2UgbWF0ZXJpYWwgZGUgcHJvcHJpZWRhZGUgZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUKaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3Ugbm8gY29udGXDumRvIGRhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBvcmEgZGVwb3NpdGFkYS4KCkNBU08gQSBURVNFIE9VIERJU1NFUlRBw4fDg08gT1JBIERFUE9TSVRBREEgVEVOSEEgU0lETyBSRVNVTFRBRE8gREUgVU0gUEFUUk9Dw41OSU8gT1UKQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBVRlNDYXIsClZPQ8OKIERFQ0xBUkEgUVVFIFJFU1BFSVRPVSBUT0RPUyBFIFFVQUlTUVVFUiBESVJFSVRPUyBERSBSRVZJU8ODTyBDT01PClRBTULDiU0gQVMgREVNQUlTIE9CUklHQcOHw5VFUyBFWElHSURBUyBQT1IgQ09OVFJBVE8gT1UgQUNPUkRPLgoKQSBVRlNDYXIgc2UgY29tcHJvbWV0ZSBhIGlkZW50aWZpY2FyIGNsYXJhbWVudGUgbyBzZXUgbm9tZSAocykgb3UgbyhzKSBub21lKHMpIGRvKHMpCmRldGVudG9yKGVzKSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzCmNvbmNlZGlkYXMgcG9yIGVzdGEgbGljZW7Dp2EuCg==
dc.title.por.fl_str_mv Rede Bayesiana empregada no gerenciamento da saúde dos sistemas na computação em nuvem
title Rede Bayesiana empregada no gerenciamento da saúde dos sistemas na computação em nuvem
spellingShingle Rede Bayesiana empregada no gerenciamento da saúde dos sistemas na computação em nuvem
Alves, Renato dos Santos
IaaS
Mineração de dados
Computação em nuvem
Rede bayesiana
Saúde de sistemas
Cloud computing
Data mining
Structural learning
Bayesian network
Health systems
CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO
title_short Rede Bayesiana empregada no gerenciamento da saúde dos sistemas na computação em nuvem
title_full Rede Bayesiana empregada no gerenciamento da saúde dos sistemas na computação em nuvem
title_fullStr Rede Bayesiana empregada no gerenciamento da saúde dos sistemas na computação em nuvem
title_full_unstemmed Rede Bayesiana empregada no gerenciamento da saúde dos sistemas na computação em nuvem
title_sort Rede Bayesiana empregada no gerenciamento da saúde dos sistemas na computação em nuvem
author Alves, Renato dos Santos
author_facet Alves, Renato dos Santos
author_role author
dc.contributor.authorlattes.por.fl_str_mv http://lattes.cnpq.br/1718499653531495
dc.contributor.author.fl_str_mv Alves, Renato dos Santos
dc.contributor.advisor1.fl_str_mv Marcondes, César Augusto Cavalheiro
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/4431183539132719
dc.contributor.authorID.fl_str_mv d0cdb74c-b327-4f61-89bb-8f7624e5a09f
contributor_str_mv Marcondes, César Augusto Cavalheiro
dc.subject.por.fl_str_mv IaaS
Mineração de dados
Computação em nuvem
Rede bayesiana
Saúde de sistemas
topic IaaS
Mineração de dados
Computação em nuvem
Rede bayesiana
Saúde de sistemas
Cloud computing
Data mining
Structural learning
Bayesian network
Health systems
CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO
dc.subject.eng.fl_str_mv Cloud computing
Data mining
Structural learning
Bayesian network
Health systems
dc.subject.cnpq.fl_str_mv CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO
description Cloud computing is a convenient computing model, because it allows the ubiquity with on-demand access to a set of configurable and shared features, that can be rapidly provisioned and made available with minimal effort or interaction with the service provider. IaaS is a different way to deliver cloud computing, where infrastructure servers, networking systems, storage, and all the necessary environment for the operating system to run the application are hired as services. Meanwhile, traditional companies still have doubts in relation to the transferring of their data outside of the limits of the corporation. The health of cloud computing systems is fundamental to the business, given the complexity of the systems it is difficult to ensure that all services and resources will work properly. In order to ensure a more appropriate management of the systems and services in the cloud, an architecture is proposed. The architecture has been modularized through specializing monitoring functions, data mining, and inference with Bayesian network. In this architecture are essential records of event monitoring systems and computing resources because the recorded data is mined to identify fault patterns a given system after the result of one or more events in the environment. For mining the monitoring data we proposed two algorithms, one for performing preprocessing of data and another to perform data transformation. As a data mining product obtained, data sets that were the input to create a Bayesian network. Through structural and parametric learning algorithms Bayesinas networks for each systems and services offered by cloud computing were created. The Bayesian network is intended to assist in decision making with prevention, prediction, error correction in systems and services, allowing to manage the health and performance of the most appropriate way systems. To check the compliance of the fault diagnosis of this architecture, we validate accuracy of inference of Bayesian network with cross-validation method using data sets generated by monitoring systems and services.
publishDate 2016
dc.date.accessioned.fl_str_mv 2016-11-08T18:44:39Z
dc.date.available.fl_str_mv 2016-11-08T18:44:39Z
dc.date.issued.fl_str_mv 2016-08-10
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv ALVES, Renato dos Santos. Rede Bayesiana empregada no gerenciamento da saúde dos sistemas na computação em nuvem. 2016. Dissertação (Mestrado em Ciência da Computação) – Universidade Federal de São Carlos, São Carlos, 2016. Disponível em: https://repositorio.ufscar.br/handle/20.500.14289/8283.
dc.identifier.uri.fl_str_mv https://repositorio.ufscar.br/handle/20.500.14289/8283
identifier_str_mv ALVES, Renato dos Santos. Rede Bayesiana empregada no gerenciamento da saúde dos sistemas na computação em nuvem. 2016. Dissertação (Mestrado em Ciência da Computação) – Universidade Federal de São Carlos, São Carlos, 2016. Disponível em: https://repositorio.ufscar.br/handle/20.500.14289/8283.
url https://repositorio.ufscar.br/handle/20.500.14289/8283
dc.language.iso.fl_str_mv por
language por
dc.relation.confidence.fl_str_mv 600
600
dc.relation.authority.fl_str_mv 1bb0fc35-bcc1-43ad-97f1-6501019230d9
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal de São Carlos
Câmpus São Carlos
dc.publisher.program.fl_str_mv Programa de Pós-Graduação em Ciência da Computação - PPGCC
dc.publisher.initials.fl_str_mv UFSCar
publisher.none.fl_str_mv Universidade Federal de São Carlos
Câmpus São Carlos
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFSCAR
instname:Universidade Federal de São Carlos (UFSCAR)
instacron:UFSCAR
instname_str Universidade Federal de São Carlos (UFSCAR)
instacron_str UFSCAR
institution UFSCAR
reponame_str Repositório Institucional da UFSCAR
collection Repositório Institucional da UFSCAR
bitstream.url.fl_str_mv https://repositorio.ufscar.br/bitstreams/9334e259-71b9-4a3f-9d33-9414c23dcc1f/download
https://repositorio.ufscar.br/bitstreams/c164282c-3d34-46ed-a82e-c80d752ea2a7/download
https://repositorio.ufscar.br/bitstreams/c59065d6-6f32-42e1-b155-52141bf56d98/download
https://repositorio.ufscar.br/bitstreams/90f7b65c-80fa-4825-bf10-6a61e2f4cfae/download
bitstream.checksum.fl_str_mv 9af799d998ad9646a6f38b0d6e9c382a
ae0398b6f8b235e40ad82cba6c50031d
2ee45d30cc95fe2fb4e19d2f8dd0dc22
27ee4aa30e3f65dc740a80df55403988
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)
repository.mail.fl_str_mv repositorio.sibi@ufscar.br
_version_ 1851688887326343168