Produção de penicilina G acilase por organismos geneticamente modificados

Detalhes bibliográficos
Ano de defesa: 2013
Autor(a) principal: Escallón, Ana María Vélez
Orientador(a): Giordano, Raquel de Lima Camargo lattes
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de São Carlos
Programa de Pós-Graduação: Programa de Pós-Graduação em Engenharia Química - PPGEQ
Departamento: Não Informado pela instituição
País: BR
Palavras-chave em Português:
Área do conhecimento CNPq:
Link de acesso: https://repositorio.ufscar.br/handle/ufscar/3942
Resumo: Penicillin G acilase (PGA) is a key enzyme in the industrial production of β-lactamic antibiotics. In this work, it was studied the production of PGA from Escherichia coli by recombinant E. coli and from Bacillus megaterium by recombinant B. megaterium. In E. coli, the enzyme accumulates in the periplasmic cell space, B. megaterium secretes PGA, what may reduce downstream costs. With E.coli, the study has begun at the expression step. Using a donated recombinant microorganism, it was studied, in shake flasks cultures, the influence of temperature (ranging from 18 to 28°C) during induction phase in the PGA production. High level expression of PGA E. coli was detected at 20°C, which was 4-fold superior than the volumetric enzymatic activity reached at 28°C. Fed-batch cultures were conducted with glycerol as carbon source, using both defined and complex media as well as IPTG and lactose as inducers. Final biomass concentrations of 100 gDCW/L and 120 gDCW/L and enzymatic activity 210000 and 80000 IU/L were achieved, for complex and defined media, respectively. The study with B. megaterium was initiated isolating the pac gene, encoding for PGA from B. megaterium ATCC14945, which was after cloned into the pLipAhp expression plasmid, together with the promoter gene and a gene codifying antibiotic resistance. This construct (pga-pLipAhp) was used to transform three different B. megaterium strain protoplasts, aiming studies to determine the best expression host in terms of PGA production. The tested strains, B. megaterium PV361, QM B1551 and ATCC 14945, have respectively shown about 95%, 95% and 10% plasmidial stability, after eight consecutive growths. The best PGA production was detected in PV361. Study of thermal and pH stability with the purified enzyme showed that PGA has a half-life of 5 min at 60° C, 20 min at 50° C, keeping 100% of activity for 1h at pH 10.0 and up to 8 h at pH 5.0. The values of temperature and pH for maximum PGA activity are 37° C and 8.0, respectively. The enzyme was stable at least for 5 hours in these conditions, with Michaelis-Menten estimated as Km=8.8 μM. A systematic study was developed to search the best condition to obtain the highest level of B.megaterium PGA production by recombinant B.megaterium. Media compositions for biomass and PGA production were evaluated using a genetic algorithm. The screening was carried out in 96 microtiter deep well plates, starting as a minimal medium and studying the concentration of 12 defined components. In 7 generations, 240 different kinds of media were tested for production and secretion and a 10-fold increase in PGA production and 5-fold increase in biomass compared to the previously used minimal medium could be achieved. It was scaled-up to shaker flasks obtaining 3-fold in PGA production and 1.8-fold in biomass. Later, it was scaled-up to bioreactors obtaining 3-fold in biomass and 8-fold in PGA production. Using glycerol as carbon source, it was tested different complex amino acids sources, using flask cultures. The best medium was scale-up in a 5 L bioreactor, in a batch culture with pulses. The highest production of PGA of recombinant B. megaterium achieved was 105600 IU/L and 36 gDCW/L.
id SCAR_cc2708e6eef1ca0b6649fa1873a963f0
oai_identifier_str oai:repositorio.ufscar.br:ufscar/3942
network_acronym_str SCAR
network_name_str Repositório Institucional da UFSCAR
repository_id_str
spelling Escallón, Ana María VélezGiordano, Raquel de Lima Camargohttp://genos.cnpq.br:12010/dwlattes/owa/prc_imp_cv_int?f_cod=K4780181P0http://lattes.cnpq.br/0003899410308014def682fa-48bd-4b1a-916c-9cdfd9fb8c8f2016-06-02T19:55:38Z2014-02-122016-06-02T19:55:38Z2013-09-17ESCALLÓN, Ana María Vélez. Produção de penicilina G acilase por organismos geneticamente modificados. 2013. 169 f. Tese (Doutorado em Ciências Exatas e da Terra) - Universidade Federal de São Carlos, São Carlos, 2013.https://repositorio.ufscar.br/handle/ufscar/3942Penicillin G acilase (PGA) is a key enzyme in the industrial production of β-lactamic antibiotics. In this work, it was studied the production of PGA from Escherichia coli by recombinant E. coli and from Bacillus megaterium by recombinant B. megaterium. In E. coli, the enzyme accumulates in the periplasmic cell space, B. megaterium secretes PGA, what may reduce downstream costs. With E.coli, the study has begun at the expression step. Using a donated recombinant microorganism, it was studied, in shake flasks cultures, the influence of temperature (ranging from 18 to 28°C) during induction phase in the PGA production. High level expression of PGA E. coli was detected at 20°C, which was 4-fold superior than the volumetric enzymatic activity reached at 28°C. Fed-batch cultures were conducted with glycerol as carbon source, using both defined and complex media as well as IPTG and lactose as inducers. Final biomass concentrations of 100 gDCW/L and 120 gDCW/L and enzymatic activity 210000 and 80000 IU/L were achieved, for complex and defined media, respectively. The study with B. megaterium was initiated isolating the pac gene, encoding for PGA from B. megaterium ATCC14945, which was after cloned into the pLipAhp expression plasmid, together with the promoter gene and a gene codifying antibiotic resistance. This construct (pga-pLipAhp) was used to transform three different B. megaterium strain protoplasts, aiming studies to determine the best expression host in terms of PGA production. The tested strains, B. megaterium PV361, QM B1551 and ATCC 14945, have respectively shown about 95%, 95% and 10% plasmidial stability, after eight consecutive growths. The best PGA production was detected in PV361. Study of thermal and pH stability with the purified enzyme showed that PGA has a half-life of 5 min at 60° C, 20 min at 50° C, keeping 100% of activity for 1h at pH 10.0 and up to 8 h at pH 5.0. The values of temperature and pH for maximum PGA activity are 37° C and 8.0, respectively. The enzyme was stable at least for 5 hours in these conditions, with Michaelis-Menten estimated as Km=8.8 μM. A systematic study was developed to search the best condition to obtain the highest level of B.megaterium PGA production by recombinant B.megaterium. Media compositions for biomass and PGA production were evaluated using a genetic algorithm. The screening was carried out in 96 microtiter deep well plates, starting as a minimal medium and studying the concentration of 12 defined components. In 7 generations, 240 different kinds of media were tested for production and secretion and a 10-fold increase in PGA production and 5-fold increase in biomass compared to the previously used minimal medium could be achieved. It was scaled-up to shaker flasks obtaining 3-fold in PGA production and 1.8-fold in biomass. Later, it was scaled-up to bioreactors obtaining 3-fold in biomass and 8-fold in PGA production. Using glycerol as carbon source, it was tested different complex amino acids sources, using flask cultures. The best medium was scale-up in a 5 L bioreactor, in a batch culture with pulses. The highest production of PGA of recombinant B. megaterium achieved was 105600 IU/L and 36 gDCW/L.Penicilina G Acilase (PGA) é enzima chave na produção industrial de antibióticos β- lactâmicos. Neste trabalho, foram estudadas as produções de PGA de Escherichia coli produzida por E.coli recombinante e de Bacillus megaterium produzida por B. megaterium recombinante. No primeiro, esta é acumulada no espaço periplasmático, o segundo secreta a enzima, o que pode reduzir grandemente custos de recuperação da enzima, pois não requer rompimento celular. Para E.coli, o estudo foi iniciado na etapa de expressão. Utilizando E.coli recombinante doada, foi realizado um estudo em frascos agitados da influência da temperatura (entre 18 e 28°C), durante a fase de indução, na expressão de PGA, que mostrou haver altos níveis de expressão de enzima a 20°C, com atividade volumétrica 4 vezes superior à obtida a 28°C. Foram realizados então cultivos a 20°C, em biorreator, em batelada alimentada, com glicerol como fonte de carbono, usando meio definido ou complexo, com IPTG ou lactose como indutores. Foram atingidas concentrações de biomassa finais de 100 gms/L e 120 gms/L, e atividades enzimáticas de 210000 e 80000 UI/L para meios complexo e definido, respectivamente. Para B. megaterium, o gene pac, que codifica PGA de B. megaterium ATCC14945 foi isolado e clonado no plasmídeo pLipAhp, juntamente com um gene promotor e outro codificando resistência a antibiótico (para seleção da linhagem clonada). Essa construção (pga-pLipAhp) foi usada para transformar três linhagens de protoplastos de B. megaterium, com o objetivo de determinar o melhor hospedeiro para a expressão de PGA recombinante. Foram testadas as linhagens: B. megaterium PV 361, QM B1551 e ATCC 14945, obtendo-se 95%, 95% e 10%, respectivamente, de estabilidade plasmidial, após 8 cultivos consecutivos. A melhor produção de PGA foi detectada em PV 361. Estudo de estabilidade térmica e de pH com a enzima purificada mostrou que PGA possui um tempo de meia vida de 5 min a 60°C, 20 min a 50°C, mantém 100% de atividade por 1 h, a pH 10 e por 8 horas, a pH 5. A temperatura e pH de atividade máxima é 37°C e 8,0, respectivamente, com Km=8.8 μM, com manutenção de 100% de atividade, no mínimo por 5 horas, nessas condições. Um estudo sistemático foi desenvolvido para obter um alto rendimento na produção de PGA de B. megaterium por B.megaterium recombinante. Busca da melhor composição de meio para biomassa e produção de PGA foi feita usando o algoritmo genético. A busca foi desenvolvida em placas de 96 poços, iniciando com um meio mínimo, com 12 componentes definidos. Em 7 gerações, 240 tipos de meio foram testados para a produção e secreção, conseguindo-se um incremento de 10 vezes na produção de PGA e de 5 vezes na produção de biomassa, comparando-se com o meio mínimo controle. Escalonamento para frascos agitados permitiu aumento de 3 vezes na produção de PGA e de 1.8 vezes na produção de biomassa. Escolhendo-se glicerol como fonte de carbono, foram testadas diferentes fontes complexas de aminoácidos. O meio que conduziu ao melhor resultado foi usado em cultivos em biorreator em batelada, 5L, onde se obteve como máxima produção de PGA recombinante de B. megaterium 105600 UI/L, com 36 gms/L de massa celular.Universidade Federal de Minas Geraisapplication/pdfporUniversidade Federal de São CarlosPrograma de Pós-Graduação em Engenharia Química - PPGEQUFSCarBREngenharia químicaProteínas recombinantesEscherichia coliBacillus megateriumBatelada alimentadaBiorreator convencionalENGENHARIAS::ENGENHARIA QUIMICAProdução de penicilina G acilase por organismos geneticamente modificadosinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesis-1-187b60e6c-591e-4a38-94f3-e75e2beebea0info:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFSCARinstname:Universidade Federal de São Carlos (UFSCAR)instacron:UFSCARORIGINAL5647.pdfapplication/pdf2822412https://repositorio.ufscar.br/bitstream/ufscar/3942/1/5647.pdf769ca8edf54438ee75a0a4df886371c3MD51TEXT5647.pdf.txt5647.pdf.txtExtracted texttext/plain0https://repositorio.ufscar.br/bitstream/ufscar/3942/2/5647.pdf.txtd41d8cd98f00b204e9800998ecf8427eMD52THUMBNAIL5647.pdf.jpg5647.pdf.jpgIM Thumbnailimage/jpeg5714https://repositorio.ufscar.br/bitstream/ufscar/3942/3/5647.pdf.jpg4476e5476091fd73f255f901ba7774fcMD53ufscar/39422023-09-18 18:31:33.329oai:repositorio.ufscar.br:ufscar/3942Repositório InstitucionalPUBhttps://repositorio.ufscar.br/oai/requestopendoar:43222023-09-18T18:31:33Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)false
dc.title.por.fl_str_mv Produção de penicilina G acilase por organismos geneticamente modificados
title Produção de penicilina G acilase por organismos geneticamente modificados
spellingShingle Produção de penicilina G acilase por organismos geneticamente modificados
Escallón, Ana María Vélez
Engenharia química
Proteínas recombinantes
Escherichia coli
Bacillus megaterium
Batelada alimentada
Biorreator convencional
ENGENHARIAS::ENGENHARIA QUIMICA
title_short Produção de penicilina G acilase por organismos geneticamente modificados
title_full Produção de penicilina G acilase por organismos geneticamente modificados
title_fullStr Produção de penicilina G acilase por organismos geneticamente modificados
title_full_unstemmed Produção de penicilina G acilase por organismos geneticamente modificados
title_sort Produção de penicilina G acilase por organismos geneticamente modificados
author Escallón, Ana María Vélez
author_facet Escallón, Ana María Vélez
author_role author
dc.contributor.authorlattes.por.fl_str_mv http://lattes.cnpq.br/0003899410308014
dc.contributor.author.fl_str_mv Escallón, Ana María Vélez
dc.contributor.advisor1.fl_str_mv Giordano, Raquel de Lima Camargo
dc.contributor.advisor1Lattes.fl_str_mv http://genos.cnpq.br:12010/dwlattes/owa/prc_imp_cv_int?f_cod=K4780181P0
dc.contributor.authorID.fl_str_mv def682fa-48bd-4b1a-916c-9cdfd9fb8c8f
contributor_str_mv Giordano, Raquel de Lima Camargo
dc.subject.por.fl_str_mv Engenharia química
Proteínas recombinantes
Escherichia coli
Bacillus megaterium
Batelada alimentada
Biorreator convencional
topic Engenharia química
Proteínas recombinantes
Escherichia coli
Bacillus megaterium
Batelada alimentada
Biorreator convencional
ENGENHARIAS::ENGENHARIA QUIMICA
dc.subject.cnpq.fl_str_mv ENGENHARIAS::ENGENHARIA QUIMICA
description Penicillin G acilase (PGA) is a key enzyme in the industrial production of β-lactamic antibiotics. In this work, it was studied the production of PGA from Escherichia coli by recombinant E. coli and from Bacillus megaterium by recombinant B. megaterium. In E. coli, the enzyme accumulates in the periplasmic cell space, B. megaterium secretes PGA, what may reduce downstream costs. With E.coli, the study has begun at the expression step. Using a donated recombinant microorganism, it was studied, in shake flasks cultures, the influence of temperature (ranging from 18 to 28°C) during induction phase in the PGA production. High level expression of PGA E. coli was detected at 20°C, which was 4-fold superior than the volumetric enzymatic activity reached at 28°C. Fed-batch cultures were conducted with glycerol as carbon source, using both defined and complex media as well as IPTG and lactose as inducers. Final biomass concentrations of 100 gDCW/L and 120 gDCW/L and enzymatic activity 210000 and 80000 IU/L were achieved, for complex and defined media, respectively. The study with B. megaterium was initiated isolating the pac gene, encoding for PGA from B. megaterium ATCC14945, which was after cloned into the pLipAhp expression plasmid, together with the promoter gene and a gene codifying antibiotic resistance. This construct (pga-pLipAhp) was used to transform three different B. megaterium strain protoplasts, aiming studies to determine the best expression host in terms of PGA production. The tested strains, B. megaterium PV361, QM B1551 and ATCC 14945, have respectively shown about 95%, 95% and 10% plasmidial stability, after eight consecutive growths. The best PGA production was detected in PV361. Study of thermal and pH stability with the purified enzyme showed that PGA has a half-life of 5 min at 60° C, 20 min at 50° C, keeping 100% of activity for 1h at pH 10.0 and up to 8 h at pH 5.0. The values of temperature and pH for maximum PGA activity are 37° C and 8.0, respectively. The enzyme was stable at least for 5 hours in these conditions, with Michaelis-Menten estimated as Km=8.8 μM. A systematic study was developed to search the best condition to obtain the highest level of B.megaterium PGA production by recombinant B.megaterium. Media compositions for biomass and PGA production were evaluated using a genetic algorithm. The screening was carried out in 96 microtiter deep well plates, starting as a minimal medium and studying the concentration of 12 defined components. In 7 generations, 240 different kinds of media were tested for production and secretion and a 10-fold increase in PGA production and 5-fold increase in biomass compared to the previously used minimal medium could be achieved. It was scaled-up to shaker flasks obtaining 3-fold in PGA production and 1.8-fold in biomass. Later, it was scaled-up to bioreactors obtaining 3-fold in biomass and 8-fold in PGA production. Using glycerol as carbon source, it was tested different complex amino acids sources, using flask cultures. The best medium was scale-up in a 5 L bioreactor, in a batch culture with pulses. The highest production of PGA of recombinant B. megaterium achieved was 105600 IU/L and 36 gDCW/L.
publishDate 2013
dc.date.issued.fl_str_mv 2013-09-17
dc.date.available.fl_str_mv 2014-02-12
2016-06-02T19:55:38Z
dc.date.accessioned.fl_str_mv 2016-06-02T19:55:38Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv ESCALLÓN, Ana María Vélez. Produção de penicilina G acilase por organismos geneticamente modificados. 2013. 169 f. Tese (Doutorado em Ciências Exatas e da Terra) - Universidade Federal de São Carlos, São Carlos, 2013.
dc.identifier.uri.fl_str_mv https://repositorio.ufscar.br/handle/ufscar/3942
identifier_str_mv ESCALLÓN, Ana María Vélez. Produção de penicilina G acilase por organismos geneticamente modificados. 2013. 169 f. Tese (Doutorado em Ciências Exatas e da Terra) - Universidade Federal de São Carlos, São Carlos, 2013.
url https://repositorio.ufscar.br/handle/ufscar/3942
dc.language.iso.fl_str_mv por
language por
dc.relation.confidence.fl_str_mv -1
-1
dc.relation.authority.fl_str_mv 87b60e6c-591e-4a38-94f3-e75e2beebea0
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de São Carlos
dc.publisher.program.fl_str_mv Programa de Pós-Graduação em Engenharia Química - PPGEQ
dc.publisher.initials.fl_str_mv UFSCar
dc.publisher.country.fl_str_mv BR
publisher.none.fl_str_mv Universidade Federal de São Carlos
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFSCAR
instname:Universidade Federal de São Carlos (UFSCAR)
instacron:UFSCAR
instname_str Universidade Federal de São Carlos (UFSCAR)
instacron_str UFSCAR
institution UFSCAR
reponame_str Repositório Institucional da UFSCAR
collection Repositório Institucional da UFSCAR
bitstream.url.fl_str_mv https://repositorio.ufscar.br/bitstream/ufscar/3942/1/5647.pdf
https://repositorio.ufscar.br/bitstream/ufscar/3942/2/5647.pdf.txt
https://repositorio.ufscar.br/bitstream/ufscar/3942/3/5647.pdf.jpg
bitstream.checksum.fl_str_mv 769ca8edf54438ee75a0a4df886371c3
d41d8cd98f00b204e9800998ecf8427e
4476e5476091fd73f255f901ba7774fc
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)
repository.mail.fl_str_mv
_version_ 1802136487086522368