Mineração de regras de associação espaço-temporais temáticas aplicada a imagens de explosões solares

Detalhes bibliográficos
Ano de defesa: 2018
Autor(a) principal: Silveira Junior, Carlos Roberto
Orientador(a): Ribeiro, Marcela Xavier lattes
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de São Carlos
Câmpus São Carlos
Programa de Pós-Graduação: Programa de Pós-Graduação em Ciência da Computação - PPGCC
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Palavras-chave em Inglês:
Área do conhecimento CNPq:
Link de acesso: https://repositorio.ufscar.br/handle/20.500.14289/10961
Resumo: Introduction. Space weather analysis is a complex task that involves spatiotemporal data from satellite images added to data from daily bulletins. These data are characterized as time series of georeferenced images and time series of semantic data (alphanumeric data describing the images), respectively. The mining of association rules can aid in the analysis of these data as a mechanism for revealing new and useful standards for the domain expert. However, existing spatiotemporal association rules mining methods are still limited and, as a consequence, they do not adequately meet expectations for extracting patterns that relate spatiotemporal information to images and semantic data. Goal. Therefore, this work aims to support the analysis of space climate from the development of a method of mining of spatiotemporal association rules that allows to relate solar data semantics and visual. The focus is a series of solar images from satellites. Scientific contribution. A new method was developed for extracting significant patterns from satellite imagery series. Called Solar Miner, this method is composed of: a new process of Extraction Transformation Data load - directed to the solar domain - able to work and relate spatiotemporal data with image processing. A new mining algorithm for spatiotemporal association rules, capable of working with this set of data in an acceptable time. And a new classifier that uses the space-time rules to determine the future behavior of new solar data. The proposed mining algorithm advances the current state-of-the-art mining area of association rules by dividing the application of spatiotemporal constraints into two different stages of processing: spatial constraints are applied during the extraction of frequent itemsets and application of temporal constraints during the generation of spatiotemporal association rules. In this way, it is possible to obtain rules that represent the evolution of a given set of events and how they relate to each other. Finally, these rules are used by the associative classifier that was proposed in this work to predict solar behavior based on its current visual characteristics. Results. The proposed method generated rules that were used for the classification, presenting a precision of up to 87.3% in the classification of solar images, being that this value of precision varies with the characteristic extractor used to represent the images. The higher precision (87.3%) was obtained using SURF as extraction of characteristics and the less precision (82.7%) was used the Histogram as extractor of characteristics. The results obtained were analyzed by the domain expert who evaluated how effective and valid the proposed method.
id SCAR_d89265c3ea301e79b47892539e53a86a
oai_identifier_str oai:repositorio.ufscar.br:20.500.14289/10961
network_acronym_str SCAR
network_name_str Repositório Institucional da UFSCAR
repository_id_str
spelling Silveira Junior, Carlos RobertoRibeiro, Marcela Xavierhttp://lattes.cnpq.br/0300141044144026Santos, Marilde Terezinha Pradohttp://lattes.cnpq.br/9826026025118073http://lattes.cnpq.br/9893034966040171b514b8de-d381-4b18-a0d0-2720637b182c2019-02-13T11:59:29Z2019-02-13T11:59:29Z2018-09-14SILVEIRA JUNIOR, Carlos Roberto. Mineração de regras de associação espaço-temporais temáticas aplicada a imagens de explosões solares. 2018. Tese (Doutorado em Ciência da Computação) – Universidade Federal de São Carlos, São Carlos, 2018. Disponível em: https://repositorio.ufscar.br/handle/20.500.14289/10961.https://repositorio.ufscar.br/handle/20.500.14289/10961Introduction. Space weather analysis is a complex task that involves spatiotemporal data from satellite images added to data from daily bulletins. These data are characterized as time series of georeferenced images and time series of semantic data (alphanumeric data describing the images), respectively. The mining of association rules can aid in the analysis of these data as a mechanism for revealing new and useful standards for the domain expert. However, existing spatiotemporal association rules mining methods are still limited and, as a consequence, they do not adequately meet expectations for extracting patterns that relate spatiotemporal information to images and semantic data. Goal. Therefore, this work aims to support the analysis of space climate from the development of a method of mining of spatiotemporal association rules that allows to relate solar data semantics and visual. The focus is a series of solar images from satellites. Scientific contribution. A new method was developed for extracting significant patterns from satellite imagery series. Called Solar Miner, this method is composed of: a new process of Extraction Transformation Data load - directed to the solar domain - able to work and relate spatiotemporal data with image processing. A new mining algorithm for spatiotemporal association rules, capable of working with this set of data in an acceptable time. And a new classifier that uses the space-time rules to determine the future behavior of new solar data. The proposed mining algorithm advances the current state-of-the-art mining area of association rules by dividing the application of spatiotemporal constraints into two different stages of processing: spatial constraints are applied during the extraction of frequent itemsets and application of temporal constraints during the generation of spatiotemporal association rules. In this way, it is possible to obtain rules that represent the evolution of a given set of events and how they relate to each other. Finally, these rules are used by the associative classifier that was proposed in this work to predict solar behavior based on its current visual characteristics. Results. The proposed method generated rules that were used for the classification, presenting a precision of up to 87.3% in the classification of solar images, being that this value of precision varies with the characteristic extractor used to represent the images. The higher precision (87.3%) was obtained using SURF as extraction of characteristics and the less precision (82.7%) was used the Histogram as extractor of characteristics. The results obtained were analyzed by the domain expert who evaluated how effective and valid the proposed method.Introdução. A análise de clima espacial é uma tarefa complexa que envolve dados espaço-temporais provenientes de imagens de satélite somado a dados de boletins diários. Tais dados são caracterizados como séries temporais de imagens georeferenciadas e séries temporais de dados semânticos (dados alfanuméricos que descrevem as imagens), respectivamente. A mineração de regras de associação pode auxiliar na análise desses dados, como um mecanismo para a revelação de padrões novos e úteis para o especialista de domínio. No entanto, os métodos existentes de mineração de regras de associação espaço-temporais ainda são limitados e, em consequência disso, não atendem adequadamente às expectativas para extração de padrões que relacionam informações espaço-temporais em imagens e dados semânticos. Objetivo. Assim sendo, este trabalho tem por objetivo apoiar a análise do clima espacial a partir do desenvolvimento de um método de mineração de regras de associação espaço-temporais que permita relacionar dados solares semânticos e visuais. O foco são séries de imagens solares oriundas de satélites. Contribuição científica. Um novo método foi desenvolvido para a extração de padrões significativos de de séries de imagens de satélite. Chamado de Solar Miner, esse método é composto por: um novo processo de Extração Transformação Carga de dados -direcionado ao domínio solar- capaz de trabalhar e relacionar dados espaço-temporais com processamento de imagens. Um novo algoritmo de mineração de regras de associação espaço-temporais temático, capaz de trabalhar com esse conjunto de dados em um tempo aceitável. E um novo classificador que utiliza as regras espaço-temporais para determinar o comportamento futuro de novos dados solares. O algoritmo de mineração proposto avança o atual estado da arte da área de mineração de regras de associação por dividir a aplicação das restrições espaço-temporais em duas etapas diferentes do processamento: a aplicação das restrições espaciais é feita durante a extração de itemsets frequentes e a aplicação das restrições temporais durante a geração das regras de associação espaço-temporais temáticas. Desta forma, é possível a obtenção de regras que representam a evolução de um determinado conjunto de eventos e como eles se relacionam entre si. Por fim, essas regras são utilizadas pelo classificador associativo que foi proposto neste trabalho para predizer o comportamento solar com base em suas características visuais atuais. Resultados. O método proposto gerou regras que foram usadas para a classificação, apresentando uma precisão de até 87,3% na classificação de imagens solares, sendo que esse valor de precisão varia com o extrator de características utilizado para representar as imagens. A maior precisão (87,3%) foi obtida utilizado SURF como extrator de características e a menor precisão (82,7%) foi utilizado o Histograma como extrator de características. Os resultados obtidos foram analisados pelo especialista de domínio que avaliou como eficaz e válido o método proposto.Não recebi financiamentoporUniversidade Federal de São CarlosCâmpus São CarlosPrograma de Pós-Graduação em Ciência da Computação - PPGCCUFSCarMineração de dados (Computação)Mineração de imagensRegras de associação espaço-temporaisSéries temporais de imagens solaresData miningImage miningSpatiotemporal association rulesTime series of solar imagesCIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO::METODOLOGIA E TECNICAS DA COMPUTACAOMineração de regras de associação espaço-temporais temáticas aplicada a imagens de explosões solaresMining thematic spatiotemporal association rules applied to images of solar explosioninfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisOnline60004d8be23-7330-4147-baf0-14545dd9cbdfinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFSCARinstname:Universidade Federal de São Carlos (UFSCAR)instacron:UFSCARORIGINALfinal-version.pdffinal-version.pdfapplication/pdf3872229https://repositorio.ufscar.br/bitstreams/0026730a-049e-44a2-b203-9ba82bc91115/downloadba4631f15fe9740df119f5fe0866a7d1MD51trueAnonymousREADLICENSElicense.txtlicense.txttext/plain; charset=utf-81957https://repositorio.ufscar.br/bitstreams/3c095919-05a6-4f32-8fa2-8b8860c29b0f/downloadae0398b6f8b235e40ad82cba6c50031dMD53falseAnonymousREADTEXTfinal-version.pdf.txtfinal-version.pdf.txtExtracted texttext/plain261536https://repositorio.ufscar.br/bitstreams/67bcd5cc-f062-4a75-a8f0-35910c5c56b1/downloadae72df9934dc3ce37552e445759599baMD56falseAnonymousREADTHUMBNAILfinal-version.pdf.jpgfinal-version.pdf.jpgIM Thumbnailimage/jpeg5918https://repositorio.ufscar.br/bitstreams/d9815ad6-baa4-4ddd-8b8d-a18adc9d8d1d/downloadcc28e339dd6f6ba7c2f5a249f61dc796MD57falseAnonymousREAD20.500.14289/109612025-02-05 19:13:46.512Acesso abertoopen.accessoai:repositorio.ufscar.br:20.500.14289/10961https://repositorio.ufscar.brRepositório InstitucionalPUBhttps://repositorio.ufscar.br/oai/requestrepositorio.sibi@ufscar.bropendoar:43222025-02-05T22:13:46Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)falseTElDRU7Dh0EgREUgRElTVFJJQlVJw4fDg08gTsODTy1FWENMVVNJVkEKCkNvbSBhIGFwcmVzZW50YcOnw6NvIGRlc3RhIGxpY2Vuw6dhLCB2b2PDqiAobyBhdXRvciAoZXMpIG91IG8gdGl0dWxhciBkb3MgZGlyZWl0b3MgZGUgYXV0b3IpIGNvbmNlZGUgw6AgVW5pdmVyc2lkYWRlCkZlZGVyYWwgZGUgU8OjbyBDYXJsb3MgbyBkaXJlaXRvIG7Do28tZXhjbHVzaXZvIGRlIHJlcHJvZHV6aXIsICB0cmFkdXppciAoY29uZm9ybWUgZGVmaW5pZG8gYWJhaXhvKSwgZS9vdQpkaXN0cmlidWlyIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyAoaW5jbHVpbmRvIG8gcmVzdW1vKSBwb3IgdG9kbyBvIG11bmRvIG5vIGZvcm1hdG8gaW1wcmVzc28gZSBlbGV0csO0bmljbyBlCmVtIHF1YWxxdWVyIG1laW8sIGluY2x1aW5kbyBvcyBmb3JtYXRvcyDDoXVkaW8gb3UgdsOtZGVvLgoKVm9jw6ogY29uY29yZGEgcXVlIGEgVUZTQ2FyIHBvZGUsIHNlbSBhbHRlcmFyIG8gY29udGXDumRvLCB0cmFuc3BvciBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28KcGFyYSBxdWFscXVlciBtZWlvIG91IGZvcm1hdG8gcGFyYSBmaW5zIGRlIHByZXNlcnZhw6fDo28uCgpWb2PDqiB0YW1iw6ltIGNvbmNvcmRhIHF1ZSBhIFVGU0NhciBwb2RlIG1hbnRlciBtYWlzIGRlIHVtYSBjw7NwaWEgYSBzdWEgdGVzZSBvdQpkaXNzZXJ0YcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcwpuZXN0YSBsaWNlbsOnYS4gVm9jw6ogdGFtYsOpbSBkZWNsYXJhIHF1ZSBvIGRlcMOzc2l0byBkYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIG7Do28sIHF1ZSBzZWphIGRlIHNldQpjb25oZWNpbWVudG8sIGluZnJpbmdlIGRpcmVpdG9zIGF1dG9yYWlzIGRlIG5pbmd1w6ltLgoKQ2FzbyBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gY29udGVuaGEgbWF0ZXJpYWwgcXVlIHZvY8OqIG7Do28gcG9zc3VpIGEgdGl0dWxhcmlkYWRlIGRvcyBkaXJlaXRvcyBhdXRvcmFpcywgdm9jw6oKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIMOgIFVGU0NhcgpvcyBkaXJlaXRvcyBhcHJlc2VudGFkb3MgbmVzdGEgbGljZW7Dp2EsIGUgcXVlIGVzc2UgbWF0ZXJpYWwgZGUgcHJvcHJpZWRhZGUgZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUKaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3Ugbm8gY29udGXDumRvIGRhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBvcmEgZGVwb3NpdGFkYS4KCkNBU08gQSBURVNFIE9VIERJU1NFUlRBw4fDg08gT1JBIERFUE9TSVRBREEgVEVOSEEgU0lETyBSRVNVTFRBRE8gREUgVU0gUEFUUk9Dw41OSU8gT1UKQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBVRlNDYXIsClZPQ8OKIERFQ0xBUkEgUVVFIFJFU1BFSVRPVSBUT0RPUyBFIFFVQUlTUVVFUiBESVJFSVRPUyBERSBSRVZJU8ODTyBDT01PClRBTULDiU0gQVMgREVNQUlTIE9CUklHQcOHw5VFUyBFWElHSURBUyBQT1IgQ09OVFJBVE8gT1UgQUNPUkRPLgoKQSBVRlNDYXIgc2UgY29tcHJvbWV0ZSBhIGlkZW50aWZpY2FyIGNsYXJhbWVudGUgbyBzZXUgbm9tZSAocykgb3UgbyhzKSBub21lKHMpIGRvKHMpCmRldGVudG9yKGVzKSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzCmNvbmNlZGlkYXMgcG9yIGVzdGEgbGljZW7Dp2EuCg==
dc.title.por.fl_str_mv Mineração de regras de associação espaço-temporais temáticas aplicada a imagens de explosões solares
dc.title.alternative.eng.fl_str_mv Mining thematic spatiotemporal association rules applied to images of solar explosion
title Mineração de regras de associação espaço-temporais temáticas aplicada a imagens de explosões solares
spellingShingle Mineração de regras de associação espaço-temporais temáticas aplicada a imagens de explosões solares
Silveira Junior, Carlos Roberto
Mineração de dados (Computação)
Mineração de imagens
Regras de associação espaço-temporais
Séries temporais de imagens solares
Data mining
Image mining
Spatiotemporal association rules
Time series of solar images
CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO::METODOLOGIA E TECNICAS DA COMPUTACAO
title_short Mineração de regras de associação espaço-temporais temáticas aplicada a imagens de explosões solares
title_full Mineração de regras de associação espaço-temporais temáticas aplicada a imagens de explosões solares
title_fullStr Mineração de regras de associação espaço-temporais temáticas aplicada a imagens de explosões solares
title_full_unstemmed Mineração de regras de associação espaço-temporais temáticas aplicada a imagens de explosões solares
title_sort Mineração de regras de associação espaço-temporais temáticas aplicada a imagens de explosões solares
author Silveira Junior, Carlos Roberto
author_facet Silveira Junior, Carlos Roberto
author_role author
dc.contributor.authorlattes.por.fl_str_mv http://lattes.cnpq.br/9893034966040171
dc.contributor.author.fl_str_mv Silveira Junior, Carlos Roberto
dc.contributor.advisor1.fl_str_mv Ribeiro, Marcela Xavier
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/0300141044144026
dc.contributor.advisor-co1.fl_str_mv Santos, Marilde Terezinha Prado
dc.contributor.advisor-co1Lattes.fl_str_mv http://lattes.cnpq.br/9826026025118073
dc.contributor.authorID.fl_str_mv b514b8de-d381-4b18-a0d0-2720637b182c
contributor_str_mv Ribeiro, Marcela Xavier
Santos, Marilde Terezinha Prado
dc.subject.por.fl_str_mv Mineração de dados (Computação)
Mineração de imagens
Regras de associação espaço-temporais
Séries temporais de imagens solares
topic Mineração de dados (Computação)
Mineração de imagens
Regras de associação espaço-temporais
Séries temporais de imagens solares
Data mining
Image mining
Spatiotemporal association rules
Time series of solar images
CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO::METODOLOGIA E TECNICAS DA COMPUTACAO
dc.subject.eng.fl_str_mv Data mining
Image mining
Spatiotemporal association rules
Time series of solar images
dc.subject.cnpq.fl_str_mv CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO::METODOLOGIA E TECNICAS DA COMPUTACAO
description Introduction. Space weather analysis is a complex task that involves spatiotemporal data from satellite images added to data from daily bulletins. These data are characterized as time series of georeferenced images and time series of semantic data (alphanumeric data describing the images), respectively. The mining of association rules can aid in the analysis of these data as a mechanism for revealing new and useful standards for the domain expert. However, existing spatiotemporal association rules mining methods are still limited and, as a consequence, they do not adequately meet expectations for extracting patterns that relate spatiotemporal information to images and semantic data. Goal. Therefore, this work aims to support the analysis of space climate from the development of a method of mining of spatiotemporal association rules that allows to relate solar data semantics and visual. The focus is a series of solar images from satellites. Scientific contribution. A new method was developed for extracting significant patterns from satellite imagery series. Called Solar Miner, this method is composed of: a new process of Extraction Transformation Data load - directed to the solar domain - able to work and relate spatiotemporal data with image processing. A new mining algorithm for spatiotemporal association rules, capable of working with this set of data in an acceptable time. And a new classifier that uses the space-time rules to determine the future behavior of new solar data. The proposed mining algorithm advances the current state-of-the-art mining area of association rules by dividing the application of spatiotemporal constraints into two different stages of processing: spatial constraints are applied during the extraction of frequent itemsets and application of temporal constraints during the generation of spatiotemporal association rules. In this way, it is possible to obtain rules that represent the evolution of a given set of events and how they relate to each other. Finally, these rules are used by the associative classifier that was proposed in this work to predict solar behavior based on its current visual characteristics. Results. The proposed method generated rules that were used for the classification, presenting a precision of up to 87.3% in the classification of solar images, being that this value of precision varies with the characteristic extractor used to represent the images. The higher precision (87.3%) was obtained using SURF as extraction of characteristics and the less precision (82.7%) was used the Histogram as extractor of characteristics. The results obtained were analyzed by the domain expert who evaluated how effective and valid the proposed method.
publishDate 2018
dc.date.issued.fl_str_mv 2018-09-14
dc.date.accessioned.fl_str_mv 2019-02-13T11:59:29Z
dc.date.available.fl_str_mv 2019-02-13T11:59:29Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv SILVEIRA JUNIOR, Carlos Roberto. Mineração de regras de associação espaço-temporais temáticas aplicada a imagens de explosões solares. 2018. Tese (Doutorado em Ciência da Computação) – Universidade Federal de São Carlos, São Carlos, 2018. Disponível em: https://repositorio.ufscar.br/handle/20.500.14289/10961.
dc.identifier.uri.fl_str_mv https://repositorio.ufscar.br/handle/20.500.14289/10961
identifier_str_mv SILVEIRA JUNIOR, Carlos Roberto. Mineração de regras de associação espaço-temporais temáticas aplicada a imagens de explosões solares. 2018. Tese (Doutorado em Ciência da Computação) – Universidade Federal de São Carlos, São Carlos, 2018. Disponível em: https://repositorio.ufscar.br/handle/20.500.14289/10961.
url https://repositorio.ufscar.br/handle/20.500.14289/10961
dc.language.iso.fl_str_mv por
language por
dc.relation.confidence.fl_str_mv 600
dc.relation.authority.fl_str_mv 04d8be23-7330-4147-baf0-14545dd9cbdf
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal de São Carlos
Câmpus São Carlos
dc.publisher.program.fl_str_mv Programa de Pós-Graduação em Ciência da Computação - PPGCC
dc.publisher.initials.fl_str_mv UFSCar
publisher.none.fl_str_mv Universidade Federal de São Carlos
Câmpus São Carlos
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFSCAR
instname:Universidade Federal de São Carlos (UFSCAR)
instacron:UFSCAR
instname_str Universidade Federal de São Carlos (UFSCAR)
instacron_str UFSCAR
institution UFSCAR
reponame_str Repositório Institucional da UFSCAR
collection Repositório Institucional da UFSCAR
bitstream.url.fl_str_mv https://repositorio.ufscar.br/bitstreams/0026730a-049e-44a2-b203-9ba82bc91115/download
https://repositorio.ufscar.br/bitstreams/3c095919-05a6-4f32-8fa2-8b8860c29b0f/download
https://repositorio.ufscar.br/bitstreams/67bcd5cc-f062-4a75-a8f0-35910c5c56b1/download
https://repositorio.ufscar.br/bitstreams/d9815ad6-baa4-4ddd-8b8d-a18adc9d8d1d/download
bitstream.checksum.fl_str_mv ba4631f15fe9740df119f5fe0866a7d1
ae0398b6f8b235e40ad82cba6c50031d
ae72df9934dc3ce37552e445759599ba
cc28e339dd6f6ba7c2f5a249f61dc796
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)
repository.mail.fl_str_mv repositorio.sibi@ufscar.br
_version_ 1851688795892613120