Relative differential cohomology

Detalhes bibliográficos
Ano de defesa: 2017
Autor(a) principal: Rocha Barriga, Juan Carlos
Orientador(a): Ruffino, Fabio Ferrari lattes
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Universidade Federal de São Carlos
Câmpus São Carlos
Programa de Pós-Graduação: Programa de Pós-Graduação em Matemática - PPGM
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Palavras-chave em Inglês:
Área do conhecimento CNPq:
Link de acesso: https://repositorio.ufscar.br/handle/20.500.14289/9574
Resumo: We briefly review the classical construction of the Cheeger-Simons characters, the Deligne cohomology groups and the differential K-theory groups, which are representatives of the absolute differential refinement of the corresponding cohomology theories. We present the axiomatic framework for the differential refinement of a generic cohomology theory in the absolute case, together with the important results of existence and uniqueness developed by Bunke and Schick. Motivated by the introduction of the relative Cheeger-Simons characters, we propose a suitable set of axioms for the relative differential extension of a cohomology theory, we construct a family of long exact sequences involving the differential groups and we extend to the relative case the results of existence and uniqueness. Furthermore, we generalize the notion of Cheeger-Simons character to any cohomology theory and we extend to the relative case the construction of the integration map.
id SCAR_f80ec2a0ad2f81b0ba106206d550ea0c
oai_identifier_str oai:repositorio.ufscar.br:20.500.14289/9574
network_acronym_str SCAR
network_name_str Repositório Institucional da UFSCAR
repository_id_str
spelling Rocha Barriga, Juan CarlosRuffino, Fabio Ferrarihttp://lattes.cnpq.br/2512107188781159http://lattes.cnpq.br/224306544391418254ae2f7b-dd14-4bb1-ad98-42b77296ceda2018-03-15T20:08:06Z2018-03-15T20:08:06Z2017-09-27ROCHA BARRIGA, Juan Carlos. Relative differential cohomology. 2017. Tese (Doutorado em Matemática) – Universidade Federal de São Carlos, São Carlos, 2017. Disponível em: https://repositorio.ufscar.br/handle/20.500.14289/9574.https://repositorio.ufscar.br/handle/20.500.14289/9574We briefly review the classical construction of the Cheeger-Simons characters, the Deligne cohomology groups and the differential K-theory groups, which are representatives of the absolute differential refinement of the corresponding cohomology theories. We present the axiomatic framework for the differential refinement of a generic cohomology theory in the absolute case, together with the important results of existence and uniqueness developed by Bunke and Schick. Motivated by the introduction of the relative Cheeger-Simons characters, we propose a suitable set of axioms for the relative differential extension of a cohomology theory, we construct a family of long exact sequences involving the differential groups and we extend to the relative case the results of existence and uniqueness. Furthermore, we generalize the notion of Cheeger-Simons character to any cohomology theory and we extend to the relative case the construction of the integration map.Revisamos brevemente a construção clássica dos carácteres de Cheeger-Simons, dos grupos de cohomologia de Deligne e dos grupos de K-teoria diferencial, os quais são representantes do refinamento diferencial absoluto das teorias cohomológicas correspondentes. Apresentamos a estrutura axiomática do refinamento diferencial de uma teoria da cohomologia genérica no caso absoluto, juntamente com os importantes resultados de existência e unicidade desenvolvidos por Bunke e Schick. Motivados pela introdução dos carácteres de Cheeger-Simons relativos, propomos uma estrutura axiomática adequada para a extensão diferencial relativa de uma teoria cohomológica, construı́mos uma famı́lia de sequências exatas longas que envolvem os grupos diferenciais e estendemos ao caso relativo os resultados de existência e unicidade. Além disso, generalizamos a noção de carácter de Cheeger-Simons a qualquer teoria cohomológica e estendemos ao caso relativo a construção da aplicação de integração.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)engUniversidade Federal de São CarlosCâmpus São CarlosPrograma de Pós-Graduação em Matemática - PPGMUFSCarCohomologia diferencialCarácteres de Cheeger-SimonsCohomologia de DeligneK-teoria diferencialMapa de GysinDifferential cohomologyCheeger-Simons charactersDeligne cohomologyDifferential K-theoryGysin mapCIENCIAS EXATAS E DA TERRA::MATEMATICARelative differential cohomologyinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisOnline600600756edf14-844a-440d-92bf-648d61ad3b16info:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFSCARinstname:Universidade Federal de São Carlos (UFSCAR)instacron:UFSCARLICENSElicense.txtlicense.txttext/plain; charset=utf-81957https://repositorio.ufscar.br/bitstreams/0aceea43-4863-4904-ae48-80ec35d9a378/downloadae0398b6f8b235e40ad82cba6c50031dMD53falseAnonymousREADORIGINALBARRIGA_Juan_2018.pdfBARRIGA_Juan_2018.pdfapplication/pdf1007378https://repositorio.ufscar.br/bitstreams/aad3788e-b43a-44f5-81e7-3b0a967f2e4c/download4fc8a701c9174225b0c7eee3ba104d26MD54trueAnonymousREADTEXTBARRIGA_Juan_2018.pdf.txtBARRIGA_Juan_2018.pdf.txtExtracted texttext/plain281523https://repositorio.ufscar.br/bitstreams/488ff3c1-8c32-4469-90ea-6ef0c52fb60f/downloadf45efd349e4f83fa20347476ba8c3bfdMD57falseAnonymousREADTHUMBNAILBARRIGA_Juan_2018.pdf.jpgBARRIGA_Juan_2018.pdf.jpgIM Thumbnailimage/jpeg4805https://repositorio.ufscar.br/bitstreams/6a179e8b-0232-4838-a7ad-9f64bc17ff11/download059055652a565ff724022622425843bbMD58falseAnonymousREAD20.500.14289/95742025-02-05 19:02:29.733Acesso abertoopen.accessoai:repositorio.ufscar.br:20.500.14289/9574https://repositorio.ufscar.brRepositório InstitucionalPUBhttps://repositorio.ufscar.br/oai/requestrepositorio.sibi@ufscar.bropendoar:43222025-02-05T22:02:29Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)falseTElDRU7Dh0EgREUgRElTVFJJQlVJw4fDg08gTsODTy1FWENMVVNJVkEKCkNvbSBhIGFwcmVzZW50YcOnw6NvIGRlc3RhIGxpY2Vuw6dhLCB2b2PDqiAobyBhdXRvciAoZXMpIG91IG8gdGl0dWxhciBkb3MgZGlyZWl0b3MgZGUgYXV0b3IpIGNvbmNlZGUgw6AgVW5pdmVyc2lkYWRlCkZlZGVyYWwgZGUgU8OjbyBDYXJsb3MgbyBkaXJlaXRvIG7Do28tZXhjbHVzaXZvIGRlIHJlcHJvZHV6aXIsICB0cmFkdXppciAoY29uZm9ybWUgZGVmaW5pZG8gYWJhaXhvKSwgZS9vdQpkaXN0cmlidWlyIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyAoaW5jbHVpbmRvIG8gcmVzdW1vKSBwb3IgdG9kbyBvIG11bmRvIG5vIGZvcm1hdG8gaW1wcmVzc28gZSBlbGV0csO0bmljbyBlCmVtIHF1YWxxdWVyIG1laW8sIGluY2x1aW5kbyBvcyBmb3JtYXRvcyDDoXVkaW8gb3UgdsOtZGVvLgoKVm9jw6ogY29uY29yZGEgcXVlIGEgVUZTQ2FyIHBvZGUsIHNlbSBhbHRlcmFyIG8gY29udGXDumRvLCB0cmFuc3BvciBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28KcGFyYSBxdWFscXVlciBtZWlvIG91IGZvcm1hdG8gcGFyYSBmaW5zIGRlIHByZXNlcnZhw6fDo28uCgpWb2PDqiB0YW1iw6ltIGNvbmNvcmRhIHF1ZSBhIFVGU0NhciBwb2RlIG1hbnRlciBtYWlzIGRlIHVtYSBjw7NwaWEgYSBzdWEgdGVzZSBvdQpkaXNzZXJ0YcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcwpuZXN0YSBsaWNlbsOnYS4gVm9jw6ogdGFtYsOpbSBkZWNsYXJhIHF1ZSBvIGRlcMOzc2l0byBkYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIG7Do28sIHF1ZSBzZWphIGRlIHNldQpjb25oZWNpbWVudG8sIGluZnJpbmdlIGRpcmVpdG9zIGF1dG9yYWlzIGRlIG5pbmd1w6ltLgoKQ2FzbyBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gY29udGVuaGEgbWF0ZXJpYWwgcXVlIHZvY8OqIG7Do28gcG9zc3VpIGEgdGl0dWxhcmlkYWRlIGRvcyBkaXJlaXRvcyBhdXRvcmFpcywgdm9jw6oKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIMOgIFVGU0NhcgpvcyBkaXJlaXRvcyBhcHJlc2VudGFkb3MgbmVzdGEgbGljZW7Dp2EsIGUgcXVlIGVzc2UgbWF0ZXJpYWwgZGUgcHJvcHJpZWRhZGUgZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUKaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3Ugbm8gY29udGXDumRvIGRhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBvcmEgZGVwb3NpdGFkYS4KCkNBU08gQSBURVNFIE9VIERJU1NFUlRBw4fDg08gT1JBIERFUE9TSVRBREEgVEVOSEEgU0lETyBSRVNVTFRBRE8gREUgVU0gUEFUUk9Dw41OSU8gT1UKQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBVRlNDYXIsClZPQ8OKIERFQ0xBUkEgUVVFIFJFU1BFSVRPVSBUT0RPUyBFIFFVQUlTUVVFUiBESVJFSVRPUyBERSBSRVZJU8ODTyBDT01PClRBTULDiU0gQVMgREVNQUlTIE9CUklHQcOHw5VFUyBFWElHSURBUyBQT1IgQ09OVFJBVE8gT1UgQUNPUkRPLgoKQSBVRlNDYXIgc2UgY29tcHJvbWV0ZSBhIGlkZW50aWZpY2FyIGNsYXJhbWVudGUgbyBzZXUgbm9tZSAocykgb3UgbyhzKSBub21lKHMpIGRvKHMpCmRldGVudG9yKGVzKSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzCmNvbmNlZGlkYXMgcG9yIGVzdGEgbGljZW7Dp2EuCg==
dc.title.eng.fl_str_mv Relative differential cohomology
title Relative differential cohomology
spellingShingle Relative differential cohomology
Rocha Barriga, Juan Carlos
Cohomologia diferencial
Carácteres de Cheeger-Simons
Cohomologia de Deligne
K-teoria diferencial
Mapa de Gysin
Differential cohomology
Cheeger-Simons characters
Deligne cohomology
Differential K-theory
Gysin map
CIENCIAS EXATAS E DA TERRA::MATEMATICA
title_short Relative differential cohomology
title_full Relative differential cohomology
title_fullStr Relative differential cohomology
title_full_unstemmed Relative differential cohomology
title_sort Relative differential cohomology
author Rocha Barriga, Juan Carlos
author_facet Rocha Barriga, Juan Carlos
author_role author
dc.contributor.authorlattes.por.fl_str_mv http://lattes.cnpq.br/2243065443914182
dc.contributor.author.fl_str_mv Rocha Barriga, Juan Carlos
dc.contributor.advisor1.fl_str_mv Ruffino, Fabio Ferrari
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/2512107188781159
dc.contributor.authorID.fl_str_mv 54ae2f7b-dd14-4bb1-ad98-42b77296ceda
contributor_str_mv Ruffino, Fabio Ferrari
dc.subject.por.fl_str_mv Cohomologia diferencial
Carácteres de Cheeger-Simons
Cohomologia de Deligne
K-teoria diferencial
Mapa de Gysin
topic Cohomologia diferencial
Carácteres de Cheeger-Simons
Cohomologia de Deligne
K-teoria diferencial
Mapa de Gysin
Differential cohomology
Cheeger-Simons characters
Deligne cohomology
Differential K-theory
Gysin map
CIENCIAS EXATAS E DA TERRA::MATEMATICA
dc.subject.eng.fl_str_mv Differential cohomology
Cheeger-Simons characters
Deligne cohomology
Differential K-theory
Gysin map
dc.subject.cnpq.fl_str_mv CIENCIAS EXATAS E DA TERRA::MATEMATICA
description We briefly review the classical construction of the Cheeger-Simons characters, the Deligne cohomology groups and the differential K-theory groups, which are representatives of the absolute differential refinement of the corresponding cohomology theories. We present the axiomatic framework for the differential refinement of a generic cohomology theory in the absolute case, together with the important results of existence and uniqueness developed by Bunke and Schick. Motivated by the introduction of the relative Cheeger-Simons characters, we propose a suitable set of axioms for the relative differential extension of a cohomology theory, we construct a family of long exact sequences involving the differential groups and we extend to the relative case the results of existence and uniqueness. Furthermore, we generalize the notion of Cheeger-Simons character to any cohomology theory and we extend to the relative case the construction of the integration map.
publishDate 2017
dc.date.issued.fl_str_mv 2017-09-27
dc.date.accessioned.fl_str_mv 2018-03-15T20:08:06Z
dc.date.available.fl_str_mv 2018-03-15T20:08:06Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv ROCHA BARRIGA, Juan Carlos. Relative differential cohomology. 2017. Tese (Doutorado em Matemática) – Universidade Federal de São Carlos, São Carlos, 2017. Disponível em: https://repositorio.ufscar.br/handle/20.500.14289/9574.
dc.identifier.uri.fl_str_mv https://repositorio.ufscar.br/handle/20.500.14289/9574
identifier_str_mv ROCHA BARRIGA, Juan Carlos. Relative differential cohomology. 2017. Tese (Doutorado em Matemática) – Universidade Federal de São Carlos, São Carlos, 2017. Disponível em: https://repositorio.ufscar.br/handle/20.500.14289/9574.
url https://repositorio.ufscar.br/handle/20.500.14289/9574
dc.language.iso.fl_str_mv eng
language eng
dc.relation.confidence.fl_str_mv 600
600
dc.relation.authority.fl_str_mv 756edf14-844a-440d-92bf-648d61ad3b16
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal de São Carlos
Câmpus São Carlos
dc.publisher.program.fl_str_mv Programa de Pós-Graduação em Matemática - PPGM
dc.publisher.initials.fl_str_mv UFSCar
publisher.none.fl_str_mv Universidade Federal de São Carlos
Câmpus São Carlos
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFSCAR
instname:Universidade Federal de São Carlos (UFSCAR)
instacron:UFSCAR
instname_str Universidade Federal de São Carlos (UFSCAR)
instacron_str UFSCAR
institution UFSCAR
reponame_str Repositório Institucional da UFSCAR
collection Repositório Institucional da UFSCAR
bitstream.url.fl_str_mv https://repositorio.ufscar.br/bitstreams/0aceea43-4863-4904-ae48-80ec35d9a378/download
https://repositorio.ufscar.br/bitstreams/aad3788e-b43a-44f5-81e7-3b0a967f2e4c/download
https://repositorio.ufscar.br/bitstreams/488ff3c1-8c32-4469-90ea-6ef0c52fb60f/download
https://repositorio.ufscar.br/bitstreams/6a179e8b-0232-4838-a7ad-9f64bc17ff11/download
bitstream.checksum.fl_str_mv ae0398b6f8b235e40ad82cba6c50031d
4fc8a701c9174225b0c7eee3ba104d26
f45efd349e4f83fa20347476ba8c3bfd
059055652a565ff724022622425843bb
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)
repository.mail.fl_str_mv repositorio.sibi@ufscar.br
_version_ 1851688929426669568