Previsão de seca na bacia hidrográfica do açude Epitácio Pessoa com base em redes neurais artificiais.

Detalhes bibliográficos
Ano de defesa: 2011
Autor(a) principal: GUEDES, Roni Valter de Souza.
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Campina Grande
Brasil
Centro de Tecnologia e Recursos Naturais - CTRN
PÓS-GRADUAÇÃO EM METEOROLOGIA
UFCG
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://dspace.sti.ufcg.edu.br:8080/jspui/handle/riufcg/6640
Resumo: A seca afeta o ambiente natural de uma área quando persiste por um período mais longo. Desse modo, a previsão de seca desempenha um importante papel no planejamento e na gestão dos recursos naturais e sistemas de recursos hídricos de uma bacia hidrográfica. Na última década, a metodologia com base em Redes Neurais Artificiais (RNAs) tem mostrado grande habilidade na modelagem e previsão de séries temporais não-lineares e nãoestacionárias. Este trabalho aplica a metodologia das RNAs para previsão das séries temporais do índice padronizado de precipitação (SPI - Standardized Precipitation Index) na bacia hidrográfica do açude Epitácio Pessoa - PB e avalia sua eficiência. A área de estudo (bacia hidrográfica do açude Epitácio Pessoa) é localizada no município de Boqueirão, uma região semi-árida do Estado da Paraíba. No processo e modelagem foram efetuadas mudanças sucessivas na configuração da rede a fim de se obter um modelo com o menor erro possível. A rede feed-forward backpropagation teve um dos melhores desempenhos, com uma estrutura de duas camadas e algoritmo de aprendizado de Levenberg - Marqualdt. Dos 26 postos estudados no âmbito da bacia, o modelo proposto para previsão apresentou valores médios de regressão acima de 88 % e erro médio quadrático abaixo de 0,223. As previsões mostraram-se mais eficientes para escalas temporais de SPI maiores, no curto prazo. Verificou-se que à medida que se aumenta o horizonte temporal reduz-se a precisão da previsão. Os resultados indicam que previsões abaixo de três meses são consideradas satisfatórias, para prazos maiores é necessário melhorar o processo de aprendizagem da rede.
id UCB-2_08efefd5cc11b90ed7124caa4df717b7
oai_identifier_str oai:localhost:riufcg/6640
network_acronym_str UCB-2
network_name_str Repositório Institucional da UCB
repository_id_str
spelling Previsão de seca na bacia hidrográfica do açude Epitácio Pessoa com base em redes neurais artificiais.Drought forecast in the Epitácio dam basin Person based on artificial neural networks.Previsão HidrológicaÍndice de ChuvaModelagemInteligência ArtificialHydrological ForecastRainfall IndexModelingArtificial IntelligenceMeteorologiaA seca afeta o ambiente natural de uma área quando persiste por um período mais longo. Desse modo, a previsão de seca desempenha um importante papel no planejamento e na gestão dos recursos naturais e sistemas de recursos hídricos de uma bacia hidrográfica. Na última década, a metodologia com base em Redes Neurais Artificiais (RNAs) tem mostrado grande habilidade na modelagem e previsão de séries temporais não-lineares e nãoestacionárias. Este trabalho aplica a metodologia das RNAs para previsão das séries temporais do índice padronizado de precipitação (SPI - Standardized Precipitation Index) na bacia hidrográfica do açude Epitácio Pessoa - PB e avalia sua eficiência. A área de estudo (bacia hidrográfica do açude Epitácio Pessoa) é localizada no município de Boqueirão, uma região semi-árida do Estado da Paraíba. No processo e modelagem foram efetuadas mudanças sucessivas na configuração da rede a fim de se obter um modelo com o menor erro possível. A rede feed-forward backpropagation teve um dos melhores desempenhos, com uma estrutura de duas camadas e algoritmo de aprendizado de Levenberg - Marqualdt. Dos 26 postos estudados no âmbito da bacia, o modelo proposto para previsão apresentou valores médios de regressão acima de 88 % e erro médio quadrático abaixo de 0,223. As previsões mostraram-se mais eficientes para escalas temporais de SPI maiores, no curto prazo. Verificou-se que à medida que se aumenta o horizonte temporal reduz-se a precisão da previsão. Os resultados indicam que previsões abaixo de três meses são consideradas satisfatórias, para prazos maiores é necessário melhorar o processo de aprendizagem da rede.Drought affects the natural environment of an area when it persists for a longer period. Thus, the prediction of drought plays a major role in planning and resource management systems and water resources in a river basin. In the last decade, the methodology based on Artificial Neural Networks (ANN) has shown great skill in modeling and forecasting time series nonlinear and nonstationary. This work applies the methodology of ANNs for forecasting time series of Standardized Precipitation Index (SPI) in the Epitácio Pessoa river basin dam - PB and evaluates their effectiveness. The study area (Epitácio Pessoa river basin dam) is located in the semiarid region of Paraíba State. In the modeling process, subsequent changes were made to the Neural Network configuration in order to obtain a model with the smallest possible error. The feed-forward back propagation Neural Network had one of the best performances, with a two-layer structure and learning algorithm of Levenberg-Marqualdt. Of the 26 gauge stations studied within the basin, the proposed model for prediction of regression showed values above 88% and mean square error below 0.223. The forecasts are more efficient for larger time scales of SPI, in the short term. It was found that as an increase the time horizon reduces the accuracy of the forecast. The results indicate that forecast less than three months is considered satisfactory. For longer terms is necessary to improve the learning process of the Neural Network.CNPqUniversidade Federal de Campina GrandeBrasilCentro de Tecnologia e Recursos Naturais - CTRNPÓS-GRADUAÇÃO EM METEOROLOGIAUFCGSOUSA, Francisco de Assis Salviano de.SOUSA, F. A. S.http://lattes.cnpq.br/5392432872592612CAVALCANTI , Enilson Palmeira.NÓBREGA, Ranyére Silva.GUEDES, Roni Valter de Souza.2011-02-252019-09-04T10:15:28Z2019-09-042019-09-04T10:15:28Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesishttp://dspace.sti.ufcg.edu.br:8080/jspui/handle/riufcg/6640GUEDES, R. V. de S. Previsão de seca na bacia hidrográfica do açude Epitácio Pessoa com base em redes neurais artificiais. 2011. 72 f. Dissertação (Mestrado em Meteorologia) – Pós-Graduação em Meteorologia, Centro de Tecnologia e Recursos Naturais, Universidade Federal de Campina Grande, Paraíba, Brasil, 2011. Disponível em: http://dspace.sti.ufcg.edu.br:8080/jspui/handle/riufcg/6640porinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UCBinstname:Universidade Católica de Brasília (UCB)instacron:UCB2022-09-29T22:47:30Zoai:localhost:riufcg/6640Repositório InstitucionalPRIhttps://repositorio.ucb.br/oai/requestsara.ribeiro@ucb.bropendoar:2022-09-29T22:47:30Repositório Institucional da UCB - Universidade Católica de Brasília (UCB)false
dc.title.none.fl_str_mv Previsão de seca na bacia hidrográfica do açude Epitácio Pessoa com base em redes neurais artificiais.
Drought forecast in the Epitácio dam basin Person based on artificial neural networks.
title Previsão de seca na bacia hidrográfica do açude Epitácio Pessoa com base em redes neurais artificiais.
spellingShingle Previsão de seca na bacia hidrográfica do açude Epitácio Pessoa com base em redes neurais artificiais.
GUEDES, Roni Valter de Souza.
Previsão Hidrológica
Índice de Chuva
Modelagem
Inteligência Artificial
Hydrological Forecast
Rainfall Index
Modeling
Artificial Intelligence
Meteorologia
title_short Previsão de seca na bacia hidrográfica do açude Epitácio Pessoa com base em redes neurais artificiais.
title_full Previsão de seca na bacia hidrográfica do açude Epitácio Pessoa com base em redes neurais artificiais.
title_fullStr Previsão de seca na bacia hidrográfica do açude Epitácio Pessoa com base em redes neurais artificiais.
title_full_unstemmed Previsão de seca na bacia hidrográfica do açude Epitácio Pessoa com base em redes neurais artificiais.
title_sort Previsão de seca na bacia hidrográfica do açude Epitácio Pessoa com base em redes neurais artificiais.
author GUEDES, Roni Valter de Souza.
author_facet GUEDES, Roni Valter de Souza.
author_role author
dc.contributor.none.fl_str_mv SOUSA, Francisco de Assis Salviano de.
SOUSA, F. A. S.
http://lattes.cnpq.br/5392432872592612
CAVALCANTI , Enilson Palmeira.
NÓBREGA, Ranyére Silva.
dc.contributor.author.fl_str_mv GUEDES, Roni Valter de Souza.
dc.subject.por.fl_str_mv Previsão Hidrológica
Índice de Chuva
Modelagem
Inteligência Artificial
Hydrological Forecast
Rainfall Index
Modeling
Artificial Intelligence
Meteorologia
topic Previsão Hidrológica
Índice de Chuva
Modelagem
Inteligência Artificial
Hydrological Forecast
Rainfall Index
Modeling
Artificial Intelligence
Meteorologia
description A seca afeta o ambiente natural de uma área quando persiste por um período mais longo. Desse modo, a previsão de seca desempenha um importante papel no planejamento e na gestão dos recursos naturais e sistemas de recursos hídricos de uma bacia hidrográfica. Na última década, a metodologia com base em Redes Neurais Artificiais (RNAs) tem mostrado grande habilidade na modelagem e previsão de séries temporais não-lineares e nãoestacionárias. Este trabalho aplica a metodologia das RNAs para previsão das séries temporais do índice padronizado de precipitação (SPI - Standardized Precipitation Index) na bacia hidrográfica do açude Epitácio Pessoa - PB e avalia sua eficiência. A área de estudo (bacia hidrográfica do açude Epitácio Pessoa) é localizada no município de Boqueirão, uma região semi-árida do Estado da Paraíba. No processo e modelagem foram efetuadas mudanças sucessivas na configuração da rede a fim de se obter um modelo com o menor erro possível. A rede feed-forward backpropagation teve um dos melhores desempenhos, com uma estrutura de duas camadas e algoritmo de aprendizado de Levenberg - Marqualdt. Dos 26 postos estudados no âmbito da bacia, o modelo proposto para previsão apresentou valores médios de regressão acima de 88 % e erro médio quadrático abaixo de 0,223. As previsões mostraram-se mais eficientes para escalas temporais de SPI maiores, no curto prazo. Verificou-se que à medida que se aumenta o horizonte temporal reduz-se a precisão da previsão. Os resultados indicam que previsões abaixo de três meses são consideradas satisfatórias, para prazos maiores é necessário melhorar o processo de aprendizagem da rede.
publishDate 2011
dc.date.none.fl_str_mv 2011-02-25
2019-09-04T10:15:28Z
2019-09-04
2019-09-04T10:15:28Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dspace.sti.ufcg.edu.br:8080/jspui/handle/riufcg/6640
GUEDES, R. V. de S. Previsão de seca na bacia hidrográfica do açude Epitácio Pessoa com base em redes neurais artificiais. 2011. 72 f. Dissertação (Mestrado em Meteorologia) – Pós-Graduação em Meteorologia, Centro de Tecnologia e Recursos Naturais, Universidade Federal de Campina Grande, Paraíba, Brasil, 2011. Disponível em: http://dspace.sti.ufcg.edu.br:8080/jspui/handle/riufcg/6640
url http://dspace.sti.ufcg.edu.br:8080/jspui/handle/riufcg/6640
identifier_str_mv GUEDES, R. V. de S. Previsão de seca na bacia hidrográfica do açude Epitácio Pessoa com base em redes neurais artificiais. 2011. 72 f. Dissertação (Mestrado em Meteorologia) – Pós-Graduação em Meteorologia, Centro de Tecnologia e Recursos Naturais, Universidade Federal de Campina Grande, Paraíba, Brasil, 2011. Disponível em: http://dspace.sti.ufcg.edu.br:8080/jspui/handle/riufcg/6640
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal de Campina Grande
Brasil
Centro de Tecnologia e Recursos Naturais - CTRN
PÓS-GRADUAÇÃO EM METEOROLOGIA
UFCG
publisher.none.fl_str_mv Universidade Federal de Campina Grande
Brasil
Centro de Tecnologia e Recursos Naturais - CTRN
PÓS-GRADUAÇÃO EM METEOROLOGIA
UFCG
dc.source.none.fl_str_mv reponame:Repositório Institucional da UCB
instname:Universidade Católica de Brasília (UCB)
instacron:UCB
instname_str Universidade Católica de Brasília (UCB)
instacron_str UCB
institution UCB
reponame_str Repositório Institucional da UCB
collection Repositório Institucional da UCB
repository.name.fl_str_mv Repositório Institucional da UCB - Universidade Católica de Brasília (UCB)
repository.mail.fl_str_mv sara.ribeiro@ucb.br
_version_ 1834013162342449152