Uma abordagem para detecção de discurso de ódio utilizando aprendizado de máquina baseado em cruzamento de idiomas.
| Ano de defesa: | 2022 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | |
| Tipo de documento: | Tese |
| Tipo de acesso: | Acesso aberto |
| Idioma: | por |
| Instituição de defesa: |
Universidade Federal de Campina Grande
Brasil Centro de Engenharia Elétrica e Informática - CEEI PÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO UFCG |
| Programa de Pós-Graduação: |
Não Informado pela instituição
|
| Departamento: |
Não Informado pela instituição
|
| País: |
Não Informado pela instituição
|
| Palavras-chave em Português: | |
| Link de acesso: | http://dspace.sti.ufcg.edu.br:8080/jspui/handle/riufcg/27501 |
Resumo: | O crescimento das mídias sociais em todo o mundo trouxe benefícios e desafios para a sociedade. Dentre os desafios, destaca-se a proliferação do discurso de ódio nas redes sociais. Hodiernamente, a detecção de discurso do ódio tornou-se uma tarefa árdua. Cerca de 22,5 milhões de postagens com discurso de ódio foram removidas nas redes sociais entre abril e junho de 2020. Destarte, faz-se necessário o desenvolvimento de pesquisas que busquem soluções automatizadas para identificar e remover discurso de ódio nas redes sociais. Nesta tese, propõe-se uma nova metodologia para detecção de discurso de ódio em textos em português. Esta metodologia faz uso de Cross - Lingual Learning, que consiste em usar transferência de aprendizagem em Modelos de Linguagem Pré -Treinados (MLPTs) com um idioma com grandes corpora disponíveis (idioma fonte) para resolver problemas em idiomas com menos dados anotados (idioma alvo). A metodologia proposta compreende quatro etapas: aquisição de corpora, definição de MLPT, estratégias de treinamento e avaliação. Foram realizados experimentos utilizando Modelos de Linguagem Pré -Treinados em diferentes idiomas: Inglês, Italiano e Português (BERT e XLM-R) para verificar qual deles se adequava melhor ao método proposto. Corpora em inglês (WH) e italiano (Evalita 2018) foram utilizados como idioma fonte e dois corpora em português (idioma alvo) foram utilizados: OffComBr-2 e Hate Speech Dataset (HSD). Os resultados dos experimentos demonstraram que a metodologia proposta é competitiva com o estado da arte: para o corpus OffComBr-2 obteve-se o melhor resultado dentre os trabalhos que utilizaram o mesmo corpus, com Medida F1 = 92%; e para o corpus HSD, obteve-se o segundo melhor resultado, com Medida F1 = 90%. |
| id |
UCB-2_5d7dc7c5fec2db84f75082d4860818ec |
|---|---|
| oai_identifier_str |
oai:localhost:riufcg/27501 |
| network_acronym_str |
UCB-2 |
| network_name_str |
Repositório Institucional da UCB |
| repository_id_str |
|
| spelling |
Uma abordagem para detecção de discurso de ódio utilizando aprendizado de máquina baseado em cruzamento de idiomas.An approach to detecting hate speech using machine learning based on cross-languages.Processamento de linguagem naturalDetecção de discurso de ódioRedes sociaisCross-lingual learningNatural language processingSocial networksHate speech detectionCiência da ComputaçãoO crescimento das mídias sociais em todo o mundo trouxe benefícios e desafios para a sociedade. Dentre os desafios, destaca-se a proliferação do discurso de ódio nas redes sociais. Hodiernamente, a detecção de discurso do ódio tornou-se uma tarefa árdua. Cerca de 22,5 milhões de postagens com discurso de ódio foram removidas nas redes sociais entre abril e junho de 2020. Destarte, faz-se necessário o desenvolvimento de pesquisas que busquem soluções automatizadas para identificar e remover discurso de ódio nas redes sociais. Nesta tese, propõe-se uma nova metodologia para detecção de discurso de ódio em textos em português. Esta metodologia faz uso de Cross - Lingual Learning, que consiste em usar transferência de aprendizagem em Modelos de Linguagem Pré -Treinados (MLPTs) com um idioma com grandes corpora disponíveis (idioma fonte) para resolver problemas em idiomas com menos dados anotados (idioma alvo). A metodologia proposta compreende quatro etapas: aquisição de corpora, definição de MLPT, estratégias de treinamento e avaliação. Foram realizados experimentos utilizando Modelos de Linguagem Pré -Treinados em diferentes idiomas: Inglês, Italiano e Português (BERT e XLM-R) para verificar qual deles se adequava melhor ao método proposto. Corpora em inglês (WH) e italiano (Evalita 2018) foram utilizados como idioma fonte e dois corpora em português (idioma alvo) foram utilizados: OffComBr-2 e Hate Speech Dataset (HSD). Os resultados dos experimentos demonstraram que a metodologia proposta é competitiva com o estado da arte: para o corpus OffComBr-2 obteve-se o melhor resultado dentre os trabalhos que utilizaram o mesmo corpus, com Medida F1 = 92%; e para o corpus HSD, obteve-se o segundo melhor resultado, com Medida F1 = 90%.The growth of social media around the world has brought both benefits and challenges to society. Among the challenges, we highlight the proliferation of hate speech in social networks. Detecting hate speech has become an arduous task in today’s world. About 22.5 million posts with hate speech were removed from social networks between April and June 2020. Thus, it is necessary to develop research that seek automated solutions to identify and remove hate speech in social networks. In this thesis, we propose a new methodology for detecting hate speech in Portuguese texts. This methodology uses Cross-Lingual Learning, which consists of using transfer learning in Pre-Trained Language Models with a language with large corpora available (source language) to solve problems in languages with less annotated data (target language). The proposed methodology comprises four stages: corpora acquisition, definition of PTLM, training strategies and evaluation. We carried out experiments using Pre-Trained Language Models in different languages: English, Italian and Portuguese (BERT and XLM-R) to verify which one best suited the proposed method. Corpora in English (WH) and Italian (Evalita 2018) were used as source language and two corpora in Portuguese (target language) were used: OffComBr-2 and Hate Speech Dataset (HSD). The results of the experiments showed that the proposed methodology is promising: for the OffComBr-2 corpus, the best state-of-the-art result was obtained (F1 Score = 92%); and for the HSD corpus, the second best result was obtained (F1 Score = 90%).Universidade Federal de Campina GrandeBrasilCentro de Engenharia Elétrica e Informática - CEEIPÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃOUFCGBAPTISTA, Cláudio de Souza.BAPTISTA, C. S.http://lattes.cnpq.br/0104124422364023GOMES, Herman Martins.GOMES, H. M.http://lattes.cnpq.br/4223020694433271PEREIRA, Eanes Torres.PEREIRA, E. T.http://lattes.cnpq.br/2030738304003254BRAZ JÚNIOR, Geraldo.BRAZ JÚNIOR, Geraldo.http://lattes.cnpq.br/8287861610873629CARVALHO, Windson Viana de.CARVALHO, W. V.http://lattes.cnpq.br/1744732999336375FIRMINO, Anderson Almeida.2022-05-182022-09-29T14:45:00Z2022-09-292022-09-29T14:45:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesishttp://dspace.sti.ufcg.edu.br:8080/jspui/handle/riufcg/27501FIRMINO, Anderson Almeida. Uma abordagem para detecção de discurso de ódio utilizando aprendizado de máquina baseado em cruzamento de idiomas. 2022. 107 fl. Tese (Doutorado em Ciência da Computação), Programa de Pós-Graduação em Ciência da Computação, Centro de Engenharia Elétrica e Informática, Campina Grande, Paraíba, Brasil, 2022. Disponível em: http://dspace.sti.ufcg.edu.br:8080/jspui/handle/riufcg/27501porinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UCBinstname:Universidade Católica de Brasília (UCB)instacron:UCB2022-10-04T16:58:57Zoai:localhost:riufcg/27501Repositório InstitucionalPRIhttps://repositorio.ucb.br/oai/requestsara.ribeiro@ucb.bropendoar:2022-10-04T16:58:57Repositório Institucional da UCB - Universidade Católica de Brasília (UCB)false |
| dc.title.none.fl_str_mv |
Uma abordagem para detecção de discurso de ódio utilizando aprendizado de máquina baseado em cruzamento de idiomas. An approach to detecting hate speech using machine learning based on cross-languages. |
| title |
Uma abordagem para detecção de discurso de ódio utilizando aprendizado de máquina baseado em cruzamento de idiomas. |
| spellingShingle |
Uma abordagem para detecção de discurso de ódio utilizando aprendizado de máquina baseado em cruzamento de idiomas. FIRMINO, Anderson Almeida. Processamento de linguagem natural Detecção de discurso de ódio Redes sociais Cross-lingual learning Natural language processing Social networks Hate speech detection Ciência da Computação |
| title_short |
Uma abordagem para detecção de discurso de ódio utilizando aprendizado de máquina baseado em cruzamento de idiomas. |
| title_full |
Uma abordagem para detecção de discurso de ódio utilizando aprendizado de máquina baseado em cruzamento de idiomas. |
| title_fullStr |
Uma abordagem para detecção de discurso de ódio utilizando aprendizado de máquina baseado em cruzamento de idiomas. |
| title_full_unstemmed |
Uma abordagem para detecção de discurso de ódio utilizando aprendizado de máquina baseado em cruzamento de idiomas. |
| title_sort |
Uma abordagem para detecção de discurso de ódio utilizando aprendizado de máquina baseado em cruzamento de idiomas. |
| author |
FIRMINO, Anderson Almeida. |
| author_facet |
FIRMINO, Anderson Almeida. |
| author_role |
author |
| dc.contributor.none.fl_str_mv |
BAPTISTA, Cláudio de Souza. BAPTISTA, C. S. http://lattes.cnpq.br/0104124422364023 GOMES, Herman Martins. GOMES, H. M. http://lattes.cnpq.br/4223020694433271 PEREIRA, Eanes Torres. PEREIRA, E. T. http://lattes.cnpq.br/2030738304003254 BRAZ JÚNIOR, Geraldo. BRAZ JÚNIOR, Geraldo. http://lattes.cnpq.br/8287861610873629 CARVALHO, Windson Viana de. CARVALHO, W. V. http://lattes.cnpq.br/1744732999336375 |
| dc.contributor.author.fl_str_mv |
FIRMINO, Anderson Almeida. |
| dc.subject.por.fl_str_mv |
Processamento de linguagem natural Detecção de discurso de ódio Redes sociais Cross-lingual learning Natural language processing Social networks Hate speech detection Ciência da Computação |
| topic |
Processamento de linguagem natural Detecção de discurso de ódio Redes sociais Cross-lingual learning Natural language processing Social networks Hate speech detection Ciência da Computação |
| description |
O crescimento das mídias sociais em todo o mundo trouxe benefícios e desafios para a sociedade. Dentre os desafios, destaca-se a proliferação do discurso de ódio nas redes sociais. Hodiernamente, a detecção de discurso do ódio tornou-se uma tarefa árdua. Cerca de 22,5 milhões de postagens com discurso de ódio foram removidas nas redes sociais entre abril e junho de 2020. Destarte, faz-se necessário o desenvolvimento de pesquisas que busquem soluções automatizadas para identificar e remover discurso de ódio nas redes sociais. Nesta tese, propõe-se uma nova metodologia para detecção de discurso de ódio em textos em português. Esta metodologia faz uso de Cross - Lingual Learning, que consiste em usar transferência de aprendizagem em Modelos de Linguagem Pré -Treinados (MLPTs) com um idioma com grandes corpora disponíveis (idioma fonte) para resolver problemas em idiomas com menos dados anotados (idioma alvo). A metodologia proposta compreende quatro etapas: aquisição de corpora, definição de MLPT, estratégias de treinamento e avaliação. Foram realizados experimentos utilizando Modelos de Linguagem Pré -Treinados em diferentes idiomas: Inglês, Italiano e Português (BERT e XLM-R) para verificar qual deles se adequava melhor ao método proposto. Corpora em inglês (WH) e italiano (Evalita 2018) foram utilizados como idioma fonte e dois corpora em português (idioma alvo) foram utilizados: OffComBr-2 e Hate Speech Dataset (HSD). Os resultados dos experimentos demonstraram que a metodologia proposta é competitiva com o estado da arte: para o corpus OffComBr-2 obteve-se o melhor resultado dentre os trabalhos que utilizaram o mesmo corpus, com Medida F1 = 92%; e para o corpus HSD, obteve-se o segundo melhor resultado, com Medida F1 = 90%. |
| publishDate |
2022 |
| dc.date.none.fl_str_mv |
2022-05-18 2022-09-29T14:45:00Z 2022-09-29 2022-09-29T14:45:00Z |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
| format |
doctoralThesis |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
http://dspace.sti.ufcg.edu.br:8080/jspui/handle/riufcg/27501 FIRMINO, Anderson Almeida. Uma abordagem para detecção de discurso de ódio utilizando aprendizado de máquina baseado em cruzamento de idiomas. 2022. 107 fl. Tese (Doutorado em Ciência da Computação), Programa de Pós-Graduação em Ciência da Computação, Centro de Engenharia Elétrica e Informática, Campina Grande, Paraíba, Brasil, 2022. Disponível em: http://dspace.sti.ufcg.edu.br:8080/jspui/handle/riufcg/27501 |
| url |
http://dspace.sti.ufcg.edu.br:8080/jspui/handle/riufcg/27501 |
| identifier_str_mv |
FIRMINO, Anderson Almeida. Uma abordagem para detecção de discurso de ódio utilizando aprendizado de máquina baseado em cruzamento de idiomas. 2022. 107 fl. Tese (Doutorado em Ciência da Computação), Programa de Pós-Graduação em Ciência da Computação, Centro de Engenharia Elétrica e Informática, Campina Grande, Paraíba, Brasil, 2022. Disponível em: http://dspace.sti.ufcg.edu.br:8080/jspui/handle/riufcg/27501 |
| dc.language.iso.fl_str_mv |
por |
| language |
por |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.publisher.none.fl_str_mv |
Universidade Federal de Campina Grande Brasil Centro de Engenharia Elétrica e Informática - CEEI PÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO UFCG |
| publisher.none.fl_str_mv |
Universidade Federal de Campina Grande Brasil Centro de Engenharia Elétrica e Informática - CEEI PÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO UFCG |
| dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UCB instname:Universidade Católica de Brasília (UCB) instacron:UCB |
| instname_str |
Universidade Católica de Brasília (UCB) |
| instacron_str |
UCB |
| institution |
UCB |
| reponame_str |
Repositório Institucional da UCB |
| collection |
Repositório Institucional da UCB |
| repository.name.fl_str_mv |
Repositório Institucional da UCB - Universidade Católica de Brasília (UCB) |
| repository.mail.fl_str_mv |
sara.ribeiro@ucb.br |
| _version_ |
1834013216164806656 |