Benefícios previdenciários e desenvolvimento socioeconômico: uma análise preditiva

Detalhes bibliográficos
Ano de defesa: 2020
Autor(a) principal: Reis, Edmilson Xavier dos
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Católica de Brasília
Escola de Educação, Tecnologia e Comunicação
Brasil
UCB
Programa Stricto Sensu em Governança, Tecnologia e Inovação
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://bdtd.ucb.br:8443/jspui/handle/tede/2801
Resumo: Em 1982, as Nações Unidas documentaram suas preocupações com o envelhecimento da população, produzindo recomendações, entre elas a manutenção de benefícios de seguridade social, para enfrentar os desafios que permeiam uma sociedade com uma idade média cada vez mais avançada. Os recursos dos benefícios previdenciários concedidos pelo Regime Geral de Previdência Social - RGPS no Brasil funcionam como garantia de fonte de renda para a população idosa e alimentam a economia municipal, auxiliando o desenvolvimento econômico. De tempos em tempos é reaberto o debate sobre os custos da previdência social. O programa é considerado um causador do aumento da despesa do estado. Este estudo contribui para a literatura sobre finanças públicas e de desenvolvimento econômico, documentando quais tipos de benefícios previdenciários mais predizem o desenvolvimento econômico municipal usando métodos de previsão não lineares de aprendizado de máquina. Buscamos entender se o programa do RGPS possui algum benefício indireto para a sociedade. O Brasil possui um amplo programa de distribuição de renda operacionalizado por meio do RGPS, com vários tipos de benefícios previdenciários. A técnica de ranqueamento de importância de atributos nos dá informação sobre a importância de um atributo em relação aos demais para prever a variável-alvo. No entanto, ela não nos fornece informação sobre o efeito marginal de cada atributo. Como estamos lidando com modelos altamente não lineares, entender o efeito marginal de cada variável é um desafio, porque não há interpretabilidade conceitual do efeito de cada atributo para a previsão da variável-alvo. Usando técnicas de ranqueamento de importância de atributos, encontramos que a variável que mais prediz desenvolvimento socioeconômico municipal é o valor da aposentadoria pelo PIB per capita, isso dá uma ideia de representatividade indicando que todo valor de aposentadoria é importante para a economia local. Os segundo e terceiro benefícios que mais preveem são os indicadores socioeconômicos Firjan educação e Firjan emprego. Para verificar a robustez dos resultados, utilizamos várias técnicas de aprendizado supervisionado de máquinas, como Support Vector Machines, elastic net, extreme gradient boosting trees, random forest, decision tree e regressão linear. Para descobrimos qual algoritmo teve o melhor desempenho, utilizamos a combinação de modelos de medidas de erros MAE, RMSE e Rsquared. A performance de todos os modelos individuais apresentou que a técnica SVM (RMSE = 0.2057) performou melhor, porém o ensemble (RMSE = 0.2007) é a que melhor prediz a relação entre benefício previdenciário e desenvolvimento econômico.
id UCB_c75e968ff09bb64307654422bafcff1a
oai_identifier_str oai:bdtd.ucb.br:tede/2801
network_acronym_str UCB
network_name_str Biblioteca Digital de Teses e Dissertações da UCB
repository_id_str
spelling Benefícios previdenciários e desenvolvimento socioeconômico: uma análise preditivaSeguridade socialPrevidência socialDesenvolvimento econômicoSocial security benefitsSupervised learningDevelopmentCNPQ::CIENCIAS SOCIAIS APLICADASEm 1982, as Nações Unidas documentaram suas preocupações com o envelhecimento da população, produzindo recomendações, entre elas a manutenção de benefícios de seguridade social, para enfrentar os desafios que permeiam uma sociedade com uma idade média cada vez mais avançada. Os recursos dos benefícios previdenciários concedidos pelo Regime Geral de Previdência Social - RGPS no Brasil funcionam como garantia de fonte de renda para a população idosa e alimentam a economia municipal, auxiliando o desenvolvimento econômico. De tempos em tempos é reaberto o debate sobre os custos da previdência social. O programa é considerado um causador do aumento da despesa do estado. Este estudo contribui para a literatura sobre finanças públicas e de desenvolvimento econômico, documentando quais tipos de benefícios previdenciários mais predizem o desenvolvimento econômico municipal usando métodos de previsão não lineares de aprendizado de máquina. Buscamos entender se o programa do RGPS possui algum benefício indireto para a sociedade. O Brasil possui um amplo programa de distribuição de renda operacionalizado por meio do RGPS, com vários tipos de benefícios previdenciários. A técnica de ranqueamento de importância de atributos nos dá informação sobre a importância de um atributo em relação aos demais para prever a variável-alvo. No entanto, ela não nos fornece informação sobre o efeito marginal de cada atributo. Como estamos lidando com modelos altamente não lineares, entender o efeito marginal de cada variável é um desafio, porque não há interpretabilidade conceitual do efeito de cada atributo para a previsão da variável-alvo. Usando técnicas de ranqueamento de importância de atributos, encontramos que a variável que mais prediz desenvolvimento socioeconômico municipal é o valor da aposentadoria pelo PIB per capita, isso dá uma ideia de representatividade indicando que todo valor de aposentadoria é importante para a economia local. Os segundo e terceiro benefícios que mais preveem são os indicadores socioeconômicos Firjan educação e Firjan emprego. Para verificar a robustez dos resultados, utilizamos várias técnicas de aprendizado supervisionado de máquinas, como Support Vector Machines, elastic net, extreme gradient boosting trees, random forest, decision tree e regressão linear. Para descobrimos qual algoritmo teve o melhor desempenho, utilizamos a combinação de modelos de medidas de erros MAE, RMSE e Rsquared. A performance de todos os modelos individuais apresentou que a técnica SVM (RMSE = 0.2057) performou melhor, porém o ensemble (RMSE = 0.2007) é a que melhor prediz a relação entre benefício previdenciário e desenvolvimento econômico.In 1982, the United Nations documented its concerns about the aging of the population, producing recommendations, including the maintenance of social security benefits, to face the challenges that pervade a society with an increasingly advanced middle age. The resources of the social security benefits granted by the General Social Security Regime - RGPS in Brazil work as a guarantee of income source for the elderly population and feed the municipal economy, helping economic development. The debate on social security costs is reopened from time to time. The program is considered to cause increased state spending. This study contributes to the literature on public finances and economic development, documenting which types of social security benefits most predict municipal economic development using non-linear machine learning forecasting methods. We seek to understand whether the RGPS program has any indirect benefits for society. Brazil has a broad income distribution program operated through the RGPS, with various types of social security benefits. The technique of ranking the importance of attributes gives us information about the importance of one attribute in relation to the others to predict the target variable. However, it does not provide us with information about the marginal effect of each attribute. As we are dealing with highly non-linear models, understanding the marginal effect of each variable is a challenge, because there is no conceptual interpretability of the effect of each attribute for the prediction of the target variable. Using ranking techniques of importance of attributes, we found that the variable that most predicts municipal socioeconomic development is the value of retirement by GDP per capita, this gives an idea of representativeness indicating that all retirement value is important for the local economy. The second and third most anticipated benefits are the socioeconomic indicators Firjan education and Firjan employment. To verify the robustness of the results, we used several supervised machine-learning techniques, such as Support Vector Machines, elastic net, extreme gradient boosting trees, random forest, decision tree and linear regression. To find out which algorithm had the best performance, we used the combination of error measurement models MAE, RMSE and Rsquared. The performance of all individual models showed that the SVM technique (RMSE = 0.2057) performed better, but the ensemble (RMSE = 0.2007) is the one that best predicts the relationship between social security benefit and economic development.Universidade Católica de BrasíliaEscola de Educação, Tecnologia e ComunicaçãoBrasilUCBPrograma Stricto Sensu em Governança, Tecnologia e InovaçãoSilva, Thiago Christianohttp://lattes.cnpq.br/6238208958412798Reis, Edmilson Xavier dos2021-08-10T18:05:13Z2020-12-09info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfREIS, Edmilson Xavier dos. Benefícios previdenciários e desenvolvimento socioeconômico: uma análise preditiva. 2020. 70 f. Dissertação (Programa Stricto Sensu em Governança, Tecnologia e Inovação) - Universidade Católica de Brasília, Brasília, 2020.https://bdtd.ucb.br:8443/jspui/handle/tede/2801porinfo:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UCBinstname:Universidade Católica de Brasília (UCB)instacron:UCB2022-02-20T13:02:00Zoai:bdtd.ucb.br:tede/2801Biblioteca Digital de Teses e Dissertaçõeshttps://bdtd.ucb.br:8443/jspui/PRIhttps://bdtd.ucb.br:8443/oai/requestsdi@ucb.bropendoar:47812022-02-20T13:02Biblioteca Digital de Teses e Dissertações da UCB - Universidade Católica de Brasília (UCB)false
dc.title.none.fl_str_mv Benefícios previdenciários e desenvolvimento socioeconômico: uma análise preditiva
title Benefícios previdenciários e desenvolvimento socioeconômico: uma análise preditiva
spellingShingle Benefícios previdenciários e desenvolvimento socioeconômico: uma análise preditiva
Reis, Edmilson Xavier dos
Seguridade social
Previdência social
Desenvolvimento econômico
Social security benefits
Supervised learning
Development
CNPQ::CIENCIAS SOCIAIS APLICADAS
title_short Benefícios previdenciários e desenvolvimento socioeconômico: uma análise preditiva
title_full Benefícios previdenciários e desenvolvimento socioeconômico: uma análise preditiva
title_fullStr Benefícios previdenciários e desenvolvimento socioeconômico: uma análise preditiva
title_full_unstemmed Benefícios previdenciários e desenvolvimento socioeconômico: uma análise preditiva
title_sort Benefícios previdenciários e desenvolvimento socioeconômico: uma análise preditiva
author Reis, Edmilson Xavier dos
author_facet Reis, Edmilson Xavier dos
author_role author
dc.contributor.none.fl_str_mv Silva, Thiago Christiano
http://lattes.cnpq.br/6238208958412798
dc.contributor.author.fl_str_mv Reis, Edmilson Xavier dos
dc.subject.por.fl_str_mv Seguridade social
Previdência social
Desenvolvimento econômico
Social security benefits
Supervised learning
Development
CNPQ::CIENCIAS SOCIAIS APLICADAS
topic Seguridade social
Previdência social
Desenvolvimento econômico
Social security benefits
Supervised learning
Development
CNPQ::CIENCIAS SOCIAIS APLICADAS
description Em 1982, as Nações Unidas documentaram suas preocupações com o envelhecimento da população, produzindo recomendações, entre elas a manutenção de benefícios de seguridade social, para enfrentar os desafios que permeiam uma sociedade com uma idade média cada vez mais avançada. Os recursos dos benefícios previdenciários concedidos pelo Regime Geral de Previdência Social - RGPS no Brasil funcionam como garantia de fonte de renda para a população idosa e alimentam a economia municipal, auxiliando o desenvolvimento econômico. De tempos em tempos é reaberto o debate sobre os custos da previdência social. O programa é considerado um causador do aumento da despesa do estado. Este estudo contribui para a literatura sobre finanças públicas e de desenvolvimento econômico, documentando quais tipos de benefícios previdenciários mais predizem o desenvolvimento econômico municipal usando métodos de previsão não lineares de aprendizado de máquina. Buscamos entender se o programa do RGPS possui algum benefício indireto para a sociedade. O Brasil possui um amplo programa de distribuição de renda operacionalizado por meio do RGPS, com vários tipos de benefícios previdenciários. A técnica de ranqueamento de importância de atributos nos dá informação sobre a importância de um atributo em relação aos demais para prever a variável-alvo. No entanto, ela não nos fornece informação sobre o efeito marginal de cada atributo. Como estamos lidando com modelos altamente não lineares, entender o efeito marginal de cada variável é um desafio, porque não há interpretabilidade conceitual do efeito de cada atributo para a previsão da variável-alvo. Usando técnicas de ranqueamento de importância de atributos, encontramos que a variável que mais prediz desenvolvimento socioeconômico municipal é o valor da aposentadoria pelo PIB per capita, isso dá uma ideia de representatividade indicando que todo valor de aposentadoria é importante para a economia local. Os segundo e terceiro benefícios que mais preveem são os indicadores socioeconômicos Firjan educação e Firjan emprego. Para verificar a robustez dos resultados, utilizamos várias técnicas de aprendizado supervisionado de máquinas, como Support Vector Machines, elastic net, extreme gradient boosting trees, random forest, decision tree e regressão linear. Para descobrimos qual algoritmo teve o melhor desempenho, utilizamos a combinação de modelos de medidas de erros MAE, RMSE e Rsquared. A performance de todos os modelos individuais apresentou que a técnica SVM (RMSE = 0.2057) performou melhor, porém o ensemble (RMSE = 0.2007) é a que melhor prediz a relação entre benefício previdenciário e desenvolvimento econômico.
publishDate 2020
dc.date.none.fl_str_mv 2020-12-09
2021-08-10T18:05:13Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv REIS, Edmilson Xavier dos. Benefícios previdenciários e desenvolvimento socioeconômico: uma análise preditiva. 2020. 70 f. Dissertação (Programa Stricto Sensu em Governança, Tecnologia e Inovação) - Universidade Católica de Brasília, Brasília, 2020.
https://bdtd.ucb.br:8443/jspui/handle/tede/2801
identifier_str_mv REIS, Edmilson Xavier dos. Benefícios previdenciários e desenvolvimento socioeconômico: uma análise preditiva. 2020. 70 f. Dissertação (Programa Stricto Sensu em Governança, Tecnologia e Inovação) - Universidade Católica de Brasília, Brasília, 2020.
url https://bdtd.ucb.br:8443/jspui/handle/tede/2801
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Católica de Brasília
Escola de Educação, Tecnologia e Comunicação
Brasil
UCB
Programa Stricto Sensu em Governança, Tecnologia e Inovação
publisher.none.fl_str_mv Universidade Católica de Brasília
Escola de Educação, Tecnologia e Comunicação
Brasil
UCB
Programa Stricto Sensu em Governança, Tecnologia e Inovação
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações da UCB
instname:Universidade Católica de Brasília (UCB)
instacron:UCB
instname_str Universidade Católica de Brasília (UCB)
instacron_str UCB
institution UCB
reponame_str Biblioteca Digital de Teses e Dissertações da UCB
collection Biblioteca Digital de Teses e Dissertações da UCB
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da UCB - Universidade Católica de Brasília (UCB)
repository.mail.fl_str_mv sdi@ucb.br
_version_ 1843971416140021760