Sistemas de recomenda??o que utilizam dados espaciais: um mapeamento sistem?tico

Detalhes bibliográficos
Ano de defesa: 2025
Autor(a) principal: Pereira, Aline Ferreira lattes
Orientador(a): Rocha Junior, Jo?o Batista da lattes
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Estadual de Feira de Santana
Programa de Pós-Graduação: Programa de P?s-Gradua??o em Ci?ncia da Computa??o
Departamento: DEPARTAMENTO DE CI?NCIAS EXATAS
País: Brasil
Palavras-chave em Português:
Palavras-chave em Inglês:
Área do conhecimento CNPq:
Link de acesso: http://tede2.uefs.br:8080/handle/tede/1888
Resumo: The increasing availability of spatial data, driven by greater connectivity and the massive use of mobile devices, has transformed several areas of technology, especially Recommender Systems. These systems, which already play a crucial role in personalizing user experiences on digital platforms, benefit significantly from the integration of spatial data, leading to more accurate recommendations. However, there is no comprehensive mapping of how this data is utilized in these systems. This dissertation addresses this gap by conducting a systematic review of the incorporation of spatial data in Recommender Systems. The adopted methodological approach is theoretical and exploratory, based on bibliographic and documentary research. The process consists of well-defined stages: planning, execution, and presentation of results. data organization and systematization are performed through systematic tabulation. The main objective is to map how spatial data is being utilized in Recommender Systems. The key findings include: (1) Recommender Systems leveraging spatial data apply Machine Learning and Collaborative Filtering techniques to enhance recommendation accuracy and relevance; (2) the integration of spatial data involves a complex process of collection, extraction, and mapping, typically beginning with the acquisition of geospatial information, such as latitude and longitude coordinates, often derived from Social Media; and (3) baseline models are frequently used to evaluate Recommender Systems that incorporate spatial data.
id UEFS_33bb78f46b088192d344c6a00b72dc24
oai_identifier_str oai:tede2.uefs.br:8080:tede/1888
network_acronym_str UEFS
network_name_str Biblioteca Digital de Teses e Dissertações da UEFS
repository_id_str
spelling Rocha Junior, Jo?o Batista da6304377549101792http://lattes.cnpq.br/63043775491017927188528368839323http://lattes.cnpq.br/7188528368839323Pereira, Aline Ferreira2025-08-07T17:47:51Z2025-04-28PEREIRA, Aline Ferreira. Sistemas de recomenda??o que utilizam dados espaciais: um mapeamento sistem?tico, 2025, 100f., Disserta??o (mestrado) - Programa de P?s-Gradua??o em Ci?ncia da Computa??o, Universidade Estadual de Feira de Santana, Feira de Santana.http://tede2.uefs.br:8080/handle/tede/1888The increasing availability of spatial data, driven by greater connectivity and the massive use of mobile devices, has transformed several areas of technology, especially Recommender Systems. These systems, which already play a crucial role in personalizing user experiences on digital platforms, benefit significantly from the integration of spatial data, leading to more accurate recommendations. However, there is no comprehensive mapping of how this data is utilized in these systems. This dissertation addresses this gap by conducting a systematic review of the incorporation of spatial data in Recommender Systems. The adopted methodological approach is theoretical and exploratory, based on bibliographic and documentary research. The process consists of well-defined stages: planning, execution, and presentation of results. data organization and systematization are performed through systematic tabulation. The main objective is to map how spatial data is being utilized in Recommender Systems. The key findings include: (1) Recommender Systems leveraging spatial data apply Machine Learning and Collaborative Filtering techniques to enhance recommendation accuracy and relevance; (2) the integration of spatial data involves a complex process of collection, extraction, and mapping, typically beginning with the acquisition of geospatial information, such as latitude and longitude coordinates, often derived from Social Media; and (3) baseline models are frequently used to evaluate Recommender Systems that incorporate spatial data.A crescente disponibilidade de dados espaciais, impulsionada pelo aumento da conectividade e pelo uso massivo de dispositivos m?veis, tem transformado diversas ?reas da tecnologia, especialmente os Sistemas de Recomenda??o. Esses sistemas, que j? desempenham um papel crucial na personaliza??o de experi?ncias de usu?rios em plataformas digitais, beneficiam-se significativamente da integra??o com dados espaciais, proporcionando recomenda??es mais precisas. No entanto, n?o existe um mapeamento abrangente sobre a utiliza??ao desses dados nestes sistemas. Esta disserta??o preenche esta lacuna, realizando um mapeamento sistem?tico atual da incorpora??o de dados espaciais em Sistemas de Recomenda??o. A abordagem metodol?gica adotada ? de natureza te?rica e explorat?ria, fundamentada em uma investiga??o bibliogr?fica documental. O processo compreende etapas definidas de planejamento, execu??oo e apresenta??o dos resultados. A organiza??o e sistematiza??o dos dados s?o conduzidas atrav?s de uma tabula??o estruturada. O objetivo geral ? mapear como os dados espaciais est?o sendo utilizados no contexto dos Sistemas de Recomendac?o. Entre os resultados obtidos est?o: 1) os Sistemas de Recomenda??o que utilizam dados espaciais utilizam as t?cnicas de Aprendizado de M?quina e Filtragem Colaborativa para melhorar a precis?o e relev?ncia das recomenda??es, 2) a integra??o de dados espaciais envolve um processo complexo de coleta, extra??o e mapeamento, que geralmente inicia com a obten??o de informa??ess geoespaciais, como coordenadas de latitude e longitude, frequentemente derivadas de Redes Sociais e 3) o Baseline ?e frequentemente utilizado na avalia??o dos Sistemas de Recomenda??o de utilizam dados espaciais.Submitted by Daniela Costa (dmscosta@uefs.br) on 2025-08-07T17:47:51Z No. of bitstreams: 1 Aline Ferreira Pereira - Disserta??o.pdf: 2055155 bytes, checksum: 6a56b1685953ccda15ce000ef82d0512 (MD5)Made available in DSpace on 2025-08-07T17:47:51Z (GMT). No. of bitstreams: 1 Aline Ferreira Pereira - Disserta??o.pdf: 2055155 bytes, checksum: 6a56b1685953ccda15ce000ef82d0512 (MD5) Previous issue date: 2025-04-28Coordena??o de Aperfei?oamento de Pessoal de N?vel Superior - CAPESapplication/pdfhttp://tede2.uefs.br:8080/retrieve/7880/Aline%20Ferreira%20Pereira%20-%20Disserta%c3%a7%c3%a3o.pdf.jpgporUniversidade Estadual de Feira de SantanaPrograma de P?s-Gradua??o em Ci?ncia da Computa??oUEFSBrasilDEPARTAMENTO DE CI?NCIAS EXATASMapeamento sistem?ticoSistemas de Recomenda??oDados espaciaisSystematic mappingRecommender SystemsSpatial dataCIENCIA DA COMPUTACAO::SISTEMAS DE COMPUTACAOSistemas de recomenda??o que utilizam dados espaciais: um mapeamento sistem?ticoinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesis1974996533081274470600600600600799474008228959080789300925156837715312075167498588264571info:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UEFSinstname:Universidade Estadual de Feira de Santana (UEFS)instacron:UEFSTHUMBNAILAline Ferreira Pereira - Disserta??o.pdf.jpgAline Ferreira Pereira - Disserta??o.pdf.jpgimage/jpeg3210http://tede2.uefs.br:8080/bitstream/tede/1888/4/Aline+Ferreira+Pereira+-+Disserta%C3%A7%C3%A3o.pdf.jpg3ecc29c421900a0a6f595617412af9abMD54TEXTAline Ferreira Pereira - Disserta??o.pdf.txtAline Ferreira Pereira - Disserta??o.pdf.txttext/plain219274http://tede2.uefs.br:8080/bitstream/tede/1888/3/Aline+Ferreira+Pereira+-+Disserta%C3%A7%C3%A3o.pdf.txt267c2e6713cb244c5fe70ca504169290MD53ORIGINALAline Ferreira Pereira - Disserta??o.pdfAline Ferreira Pereira - Disserta??o.pdfapplication/pdf2055155http://tede2.uefs.br:8080/bitstream/tede/1888/2/Aline+Ferreira+Pereira+-+Disserta%C3%A7%C3%A3o.pdf6a56b1685953ccda15ce000ef82d0512MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-82165http://tede2.uefs.br:8080/bitstream/tede/1888/1/license.txtbd3efa91386c1718a7f26a329fdcb468MD51tede/18882025-09-10 01:44:31.198oai:tede2.uefs.br:8080:tede/1888Tk9UQTogQ09MT1FVRSBBUVVJIEEgU1VBIFBSw5NQUklBIExJQ0VOw4dBCkVzdGEgbGljZW7Dp2EgZGUgZXhlbXBsbyDDqSBmb3JuZWNpZGEgYXBlbmFzIHBhcmEgZmlucyBpbmZvcm1hdGl2b3MuCgpMSUNFTsOHQSBERSBESVNUUklCVUnDh8ODTyBOw4NPLUVYQ0xVU0lWQQoKQ29tIGEgYXByZXNlbnRhw6fDo28gZGVzdGEgbGljZW7Dp2EsIHZvY8OqIChvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSDDoCBVbml2ZXJzaWRhZGUgClhYWCAoU2lnbGEgZGEgVW5pdmVyc2lkYWRlKSBvIGRpcmVpdG8gbsOjby1leGNsdXNpdm8gZGUgcmVwcm9kdXppciwgIHRyYWR1emlyIChjb25mb3JtZSBkZWZpbmlkbyBhYmFpeG8pLCBlL291IApkaXN0cmlidWlyIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyAoaW5jbHVpbmRvIG8gcmVzdW1vKSBwb3IgdG9kbyBvIG11bmRvIG5vIGZvcm1hdG8gaW1wcmVzc28gZSBlbGV0csO0bmljbyBlIAplbSBxdWFscXVlciBtZWlvLCBpbmNsdWluZG8gb3MgZm9ybWF0b3Mgw6F1ZGlvIG91IHbDrWRlby4KClZvY8OqIGNvbmNvcmRhIHF1ZSBhIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBwb2RlLCBzZW0gYWx0ZXJhciBvIGNvbnRlw7pkbywgdHJhbnNwb3IgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIApwYXJhIHF1YWxxdWVyIG1laW8gb3UgZm9ybWF0byBwYXJhIGZpbnMgZGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIHRhbWLDqW0gY29uY29yZGEgcXVlIGEgU2lnbGEgZGUgVW5pdmVyc2lkYWRlIHBvZGUgbWFudGVyIG1haXMgZGUgdW1hIGPDs3BpYSBhIHN1YSB0ZXNlIG91IApkaXNzZXJ0YcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcyAKbmVzdGEgbGljZW7Dp2EuIFZvY8OqIHRhbWLDqW0gZGVjbGFyYSBxdWUgbyBkZXDDs3NpdG8gZGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBuw6NvLCBxdWUgc2VqYSBkZSBzZXUgCmNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3XDqW0uCgpDYXNvIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiAKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIMOgIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSAKb3MgZGlyZWl0b3MgYXByZXNlbnRhZG9zIG5lc3RhIGxpY2Vuw6dhLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3TDoSBjbGFyYW1lbnRlIAppZGVudGlmaWNhZG8gZSByZWNvbmhlY2lkbyBubyB0ZXh0byBvdSBubyBjb250ZcO6ZG8gZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIG9yYSBkZXBvc2l0YWRhLgoKQ0FTTyBBIFRFU0UgT1UgRElTU0VSVEHDh8ODTyBPUkEgREVQT1NJVEFEQSBURU5IQSBTSURPIFJFU1VMVEFETyBERSBVTSBQQVRST0PDjU5JTyBPVSAKQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBTSUdMQSBERSAKVU5JVkVSU0lEQURFLCBWT0PDiiBERUNMQVJBIFFVRSBSRVNQRUlUT1UgVE9ET1MgRSBRVUFJU1FVRVIgRElSRUlUT1MgREUgUkVWSVPDg08gQ09NTyAKVEFNQsOJTSBBUyBERU1BSVMgT0JSSUdBw4fDlUVTIEVYSUdJREFTIFBPUiBDT05UUkFUTyBPVSBBQ09SRE8uCgpBIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBzZSBjb21wcm9tZXRlIGEgaWRlbnRpZmljYXIgY2xhcmFtZW50ZSBvIHNldSBub21lIChzKSBvdSBvKHMpIG5vbWUocykgZG8ocykgCmRldGVudG9yKGVzKSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzIApjb25jZWRpZGFzIHBvciBlc3RhIGxpY2Vuw6dhLgo=Biblioteca Digital de Teses e Dissertaçõeshttp://tede2.uefs.br:8080/PUBhttp://tede2.uefs.br:8080/oai/requestbcuefs@uefs.br|| bcref@uefs.br||bcuefs@uefs.bropendoar:2025-09-10T04:44:31Biblioteca Digital de Teses e Dissertações da UEFS - Universidade Estadual de Feira de Santana (UEFS)false
dc.title.por.fl_str_mv Sistemas de recomenda??o que utilizam dados espaciais: um mapeamento sistem?tico
title Sistemas de recomenda??o que utilizam dados espaciais: um mapeamento sistem?tico
spellingShingle Sistemas de recomenda??o que utilizam dados espaciais: um mapeamento sistem?tico
Pereira, Aline Ferreira
Mapeamento sistem?tico
Sistemas de Recomenda??o
Dados espaciais
Systematic mapping
Recommender Systems
Spatial data
CIENCIA DA COMPUTACAO::SISTEMAS DE COMPUTACAO
title_short Sistemas de recomenda??o que utilizam dados espaciais: um mapeamento sistem?tico
title_full Sistemas de recomenda??o que utilizam dados espaciais: um mapeamento sistem?tico
title_fullStr Sistemas de recomenda??o que utilizam dados espaciais: um mapeamento sistem?tico
title_full_unstemmed Sistemas de recomenda??o que utilizam dados espaciais: um mapeamento sistem?tico
title_sort Sistemas de recomenda??o que utilizam dados espaciais: um mapeamento sistem?tico
author Pereira, Aline Ferreira
author_facet Pereira, Aline Ferreira
author_role author
dc.contributor.advisor1.fl_str_mv Rocha Junior, Jo?o Batista da
dc.contributor.advisor1ID.fl_str_mv 6304377549101792
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/6304377549101792
dc.contributor.authorID.fl_str_mv 7188528368839323
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/7188528368839323
dc.contributor.author.fl_str_mv Pereira, Aline Ferreira
contributor_str_mv Rocha Junior, Jo?o Batista da
dc.subject.por.fl_str_mv Mapeamento sistem?tico
Sistemas de Recomenda??o
Dados espaciais
topic Mapeamento sistem?tico
Sistemas de Recomenda??o
Dados espaciais
Systematic mapping
Recommender Systems
Spatial data
CIENCIA DA COMPUTACAO::SISTEMAS DE COMPUTACAO
dc.subject.eng.fl_str_mv Systematic mapping
Recommender Systems
Spatial data
dc.subject.cnpq.fl_str_mv CIENCIA DA COMPUTACAO::SISTEMAS DE COMPUTACAO
description The increasing availability of spatial data, driven by greater connectivity and the massive use of mobile devices, has transformed several areas of technology, especially Recommender Systems. These systems, which already play a crucial role in personalizing user experiences on digital platforms, benefit significantly from the integration of spatial data, leading to more accurate recommendations. However, there is no comprehensive mapping of how this data is utilized in these systems. This dissertation addresses this gap by conducting a systematic review of the incorporation of spatial data in Recommender Systems. The adopted methodological approach is theoretical and exploratory, based on bibliographic and documentary research. The process consists of well-defined stages: planning, execution, and presentation of results. data organization and systematization are performed through systematic tabulation. The main objective is to map how spatial data is being utilized in Recommender Systems. The key findings include: (1) Recommender Systems leveraging spatial data apply Machine Learning and Collaborative Filtering techniques to enhance recommendation accuracy and relevance; (2) the integration of spatial data involves a complex process of collection, extraction, and mapping, typically beginning with the acquisition of geospatial information, such as latitude and longitude coordinates, often derived from Social Media; and (3) baseline models are frequently used to evaluate Recommender Systems that incorporate spatial data.
publishDate 2025
dc.date.accessioned.fl_str_mv 2025-08-07T17:47:51Z
dc.date.issued.fl_str_mv 2025-04-28
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv PEREIRA, Aline Ferreira. Sistemas de recomenda??o que utilizam dados espaciais: um mapeamento sistem?tico, 2025, 100f., Disserta??o (mestrado) - Programa de P?s-Gradua??o em Ci?ncia da Computa??o, Universidade Estadual de Feira de Santana, Feira de Santana.
dc.identifier.uri.fl_str_mv http://tede2.uefs.br:8080/handle/tede/1888
identifier_str_mv PEREIRA, Aline Ferreira. Sistemas de recomenda??o que utilizam dados espaciais: um mapeamento sistem?tico, 2025, 100f., Disserta??o (mestrado) - Programa de P?s-Gradua??o em Ci?ncia da Computa??o, Universidade Estadual de Feira de Santana, Feira de Santana.
url http://tede2.uefs.br:8080/handle/tede/1888
dc.language.iso.fl_str_mv por
language por
dc.relation.program.fl_str_mv 1974996533081274470
dc.relation.confidence.fl_str_mv 600
600
600
600
dc.relation.department.fl_str_mv 7994740082289590807
dc.relation.cnpq.fl_str_mv 8930092515683771531
dc.relation.sponsorship.fl_str_mv 2075167498588264571
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Estadual de Feira de Santana
dc.publisher.program.fl_str_mv Programa de P?s-Gradua??o em Ci?ncia da Computa??o
dc.publisher.initials.fl_str_mv UEFS
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv DEPARTAMENTO DE CI?NCIAS EXATAS
publisher.none.fl_str_mv Universidade Estadual de Feira de Santana
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações da UEFS
instname:Universidade Estadual de Feira de Santana (UEFS)
instacron:UEFS
instname_str Universidade Estadual de Feira de Santana (UEFS)
instacron_str UEFS
institution UEFS
reponame_str Biblioteca Digital de Teses e Dissertações da UEFS
collection Biblioteca Digital de Teses e Dissertações da UEFS
bitstream.url.fl_str_mv http://tede2.uefs.br:8080/bitstream/tede/1888/4/Aline+Ferreira+Pereira+-+Disserta%C3%A7%C3%A3o.pdf.jpg
http://tede2.uefs.br:8080/bitstream/tede/1888/3/Aline+Ferreira+Pereira+-+Disserta%C3%A7%C3%A3o.pdf.txt
http://tede2.uefs.br:8080/bitstream/tede/1888/2/Aline+Ferreira+Pereira+-+Disserta%C3%A7%C3%A3o.pdf
http://tede2.uefs.br:8080/bitstream/tede/1888/1/license.txt
bitstream.checksum.fl_str_mv 3ecc29c421900a0a6f595617412af9ab
267c2e6713cb244c5fe70ca504169290
6a56b1685953ccda15ce000ef82d0512
bd3efa91386c1718a7f26a329fdcb468
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da UEFS - Universidade Estadual de Feira de Santana (UEFS)
repository.mail.fl_str_mv bcuefs@uefs.br|| bcref@uefs.br||bcuefs@uefs.br
_version_ 1845618205937106944