Modelagem de vari?veis meteorol?gicas: um estudo de caso do Brasil

Detalhes bibliográficos
Ano de defesa: 2025
Autor(a) principal: Santos, Joice de Jesus lattes
Orientador(a): Zebende, Gilney Figueira lattes
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Estadual de Feira de Santana
Programa de Pós-Graduação: Mestrado em Modelagem em Ci?ncia da Terra e do Ambiente
Departamento: DEPARTAMENTO DE CI?NCIAS EXATAS
País: Brasil
Palavras-chave em Português:
Palavras-chave em Inglês:
Área do conhecimento CNPq:
Link de acesso: http://tede2.uefs.br:8080/handle/tede/1850
Resumo: This dissertation investigates climatic variability and its impacts in Brazil, highlighting the diversity of regional climate patterns and the relevance of forecasting extreme events, such as droughts and floods, that directly affect the country. The primary objective of this research is to study correlations of meteorological variables in Brazil through the cross-correlation coefficients ?DCCA and DMC2 x . The theoretical foundation includes a review of statistical models applied to meteorological data and time series, emphasizing the use of cross-correlation analyses and long-range memory methods, such as detrended fluctuation analysis (DFA). These methods are essential for developing strategic solutions aimed at mitigating the impacts of climate change and improving the understanding and forecasting of extreme weather events in Brazil. The study addressed climatic variability in Brazil, emphasizing the importance of analyzing meteorological conditions in different regions of the country, which present distinct climatic characteristics. The research utilized data from the National Institute of Meteorology (INMET), selecting 26 active stations between 2009 and 2019, allowing a comprehensive overview of solar radiation, temperature, humidity, and wind speed. The methodology included data processing and the application of statistical methods, such as cross-correlations, to investigate the relationships between the variables. Preliminary results indicated significant correlations, especially between solar radiation and temperature, with the expectation that the analyses will contribute to planning and decision-making in various fields of knowledge. The statistical analysis of the meteorological data revealed large variations in solar radiation, air temperature, relative humidity, and wind speed in different Brazilian cities. Using Tukey?s boxplot method, it was observed that cities like Natal and Jo?ao Pessoa exhibited high solar radiation values, while relative humidity varied considerably between regions. The cross-correlation between solar radiation and air temperature showed a strong relationship in several stations, except in Cuiab?a and Teresina. The ?DCCA analysis highlighted significant correlations between solar radiation and relative humidity, especially in regions like the North and Northeast. The DMC2 x method allowed for a more comprehensive understanding of the interactions between the variables, essential for specialties such as sustainable management and adaptation to climate change, considering the particularities of each biome and their influences on regional climatic conditions. Although the research showed relevant results, limitations such as the collection time and the number of variables hinder definitive conclusions about global warming and its causes.
id UEFS_7b1b8964f8e14f18d7ffff54bef7c5fd
oai_identifier_str oai:tede2.uefs.br:8080:tede/1850
network_acronym_str UEFS
network_name_str Biblioteca Digital de Teses e Dissertações da UEFS
repository_id_str
spelling Zebende, Gilney Figueirahttps://orcid.org/0000-0003-2420-9805http://lattes.cnpq.br/2464685002862801Brito, Andrea de Almeida3987430071852962http://lattes.cnpq.br/3987430071852962https://orcid.org/0009-0003-9633-0396http://lattes.cnpq.br/1848984914444848Santos, Joice de Jesus2025-06-17T18:03:37Z2025-02-20SANTOS, Joice de Jesus. Modelagem de vari?veis meteorol?gicas: um estudo de caso do Brasil, 2025, 81 f., Disserta??o (mestrado) - Programa de P?s-Gradua??o em Modelagem em Ci?ncia da Terra e do Ambiente, Universidade Estadual de Feira de Santana, Feira de Santana.http://tede2.uefs.br:8080/handle/tede/1850This dissertation investigates climatic variability and its impacts in Brazil, highlighting the diversity of regional climate patterns and the relevance of forecasting extreme events, such as droughts and floods, that directly affect the country. The primary objective of this research is to study correlations of meteorological variables in Brazil through the cross-correlation coefficients ?DCCA and DMC2 x . The theoretical foundation includes a review of statistical models applied to meteorological data and time series, emphasizing the use of cross-correlation analyses and long-range memory methods, such as detrended fluctuation analysis (DFA). These methods are essential for developing strategic solutions aimed at mitigating the impacts of climate change and improving the understanding and forecasting of extreme weather events in Brazil. The study addressed climatic variability in Brazil, emphasizing the importance of analyzing meteorological conditions in different regions of the country, which present distinct climatic characteristics. The research utilized data from the National Institute of Meteorology (INMET), selecting 26 active stations between 2009 and 2019, allowing a comprehensive overview of solar radiation, temperature, humidity, and wind speed. The methodology included data processing and the application of statistical methods, such as cross-correlations, to investigate the relationships between the variables. Preliminary results indicated significant correlations, especially between solar radiation and temperature, with the expectation that the analyses will contribute to planning and decision-making in various fields of knowledge. The statistical analysis of the meteorological data revealed large variations in solar radiation, air temperature, relative humidity, and wind speed in different Brazilian cities. Using Tukey?s boxplot method, it was observed that cities like Natal and Jo?ao Pessoa exhibited high solar radiation values, while relative humidity varied considerably between regions. The cross-correlation between solar radiation and air temperature showed a strong relationship in several stations, except in Cuiab?a and Teresina. The ?DCCA analysis highlighted significant correlations between solar radiation and relative humidity, especially in regions like the North and Northeast. The DMC2 x method allowed for a more comprehensive understanding of the interactions between the variables, essential for specialties such as sustainable management and adaptation to climate change, considering the particularities of each biome and their influences on regional climatic conditions. Although the research showed relevant results, limitations such as the collection time and the number of variables hinder definitive conclusions about global warming and its causes.Essa disserta??o investiga a variabilidade clim?tica e seus impactos no Brasil, destacando a diversidade de padr?es clim?ticos regionais e a relev?ncia da previs?o de eventos extremos, como secas e inunda??es, que afetam diretamente o pa?s. E com o intuito de discorrer sobre esta quest?o, nesta pesquisa temos como objetivo principal estudar correla??es de vari?veis meteorol?gicas no Brasil por meio dos coeficientes de correla??o cruzada ?DCCA e DMC2 . A fundamenta??o te?rica inclui uma revis?o de modelos estat?sticos aplicados a dados meteorol?gicos e s?ries temporais, enfatizando o uso de an?lises de correla??o cruzada e m?todos de mem?ria de longo alcance, como a an?lise de flutua??o sem tend?ncia (DFA). Esses m?todos s?o essenciais para o desenvolvimento de solu??es estrat?gicas que visam mitigar os impactos das mudan?as clim?ticas e melhorar a compreens?o e previs?o de eventos meteorol?gicos extremos no Brasil. O estudo abordou a variabilidade clim?tica no Brasil, enfatizando a import?ncia da an?lise das condi??es meteorol?gicas em diferentes regi?es do pa?s, que apresentam caracter?sticas clim?ticas distintas. A pesquisa utilizou dados do Instituto Nacional de Meteorologia (INMET), selecionando 26 esta??es ativas entre 2009 e 2019, permitindo um panorama abrangente da radia??o solar, temperatura, umidade e velocidade do vento. A metodologia incluiu o tratamento de dados e a aplica??o de m?todos estat?sticos, como correla??es cruzadas, para investigar as rela??es entre as vari?veis. Resultados preliminares indicaram correla??es significativas, especialmente entre radia??o solar e temperatura, com a expectativa de que as an?lises contribuam para o planejamento e tomada de decis?es em diversas ?reas do conhecimento. A an?lise estat?stica dos dados meteorol?gicos revelou grandes varia??ees nas vari?veis radia??o solar, temperatura do ar, umidade relativa e velocidade do vento em diferentes capitais brasileiras. Utilizando o m?todo do diagrama de caixas de Tukey, observou-se que cidades como Natal e Jo?o Pessoa apresentaram altos valores de radia??o solar, enquanto a umidade relativa variou consideravelmente entre regi?es. A correla??o cruzada entre radia??o solar e temperatura do ar mostrou uma rela??o forte em v?rias esta??es, exceto em Cuiab? e Teresina. A an?lise ?DCCA destacou correla??es significativas entre radia??o solar e umidade relativa, especialmente em regi?es como Norte e Nordeste. O coeficiente DMC2 permitiu uma compreens?o mais abrangente das intera??es entre as vari?veis, essencial para especialidaes como o manejo sustent?vel e a adapta??o as m dan?as clim?ticas, considerando as particularidades de cada bioma e suas influ?ncias nas condi??es clim?ticas regionais. Embora a pesquisa tenha mostrado resultados relevantes, limita??es como o tempo de coleta e o n?mero de vari?veis dificultam conclus?es definitivas sobre o aquecimento global e suas causas.Submitted by Daniela Costa (dmscosta@uefs.br) on 2025-06-17T18:03:37Z No. of bitstreams: 1 Joice de Jesus Santos - Dissertacao.pdf: 19813088 bytes, checksum: c899cc5a956db3bff045aa81559a9227 (MD5)Made available in DSpace on 2025-06-17T18:03:37Z (GMT). No. of bitstreams: 1 Joice de Jesus Santos - Dissertacao.pdf: 19813088 bytes, checksum: c899cc5a956db3bff045aa81559a9227 (MD5) Previous issue date: 2025-02-20Funda??o de Amparo ? Pesquisa do Estado da Bahia - FAPEBapplication/pdfhttp://tede2.uefs.br:8080/retrieve/7702/Joice%20de%20Jesus%20Santos%20-%20Dissertacao.pdf.jpgporUniversidade Estadual de Feira de SantanaMestrado em Modelagem em Ci?ncia da Terra e do AmbienteUEFSBrasilDEPARTAMENTO DE CI?NCIAS EXATASCorrela??esModelagemRadia??oTempoCorrelationsModelingRadiationWeatherOUTROS::CIENCIASModelagem de vari?veis meteorol?gicas: um estudo de caso do Brasilinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesis-885176421937510469600600600600-54868328166115062116209957791494323825-8233071094704392586info:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UEFSinstname:Universidade Estadual de Feira de Santana (UEFS)instacron:UEFSTHUMBNAILJoice de Jesus Santos - Dissertacao.pdf.jpgJoice de Jesus Santos - Dissertacao.pdf.jpgimage/jpeg4547http://tede2.uefs.br:8080/bitstream/tede/1850/4/Joice+de+Jesus+Santos+-+Dissertacao.pdf.jpg79e92e40dec003461bb74ab1e92b069bMD54TEXTJoice de Jesus Santos - Dissertacao.pdf.txtJoice de Jesus Santos - Dissertacao.pdf.txttext/plain166388http://tede2.uefs.br:8080/bitstream/tede/1850/3/Joice+de+Jesus+Santos+-+Dissertacao.pdf.txtd0f0241ed24c0b454a6d642b4feb01d3MD53ORIGINALJoice de Jesus Santos - Dissertacao.pdfJoice de Jesus Santos - Dissertacao.pdfapplication/pdf19813088http://tede2.uefs.br:8080/bitstream/tede/1850/2/Joice+de+Jesus+Santos+-+Dissertacao.pdfc899cc5a956db3bff045aa81559a9227MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-82089http://tede2.uefs.br:8080/bitstream/tede/1850/1/license.txt7b5ba3d2445355f386edab96125d42b7MD51tede/18502025-09-10 01:41:55.854oai:tede2.uefs.br:8080:tede/1850Tk9UQTogQ09MT1FVRSBBUVVJIEEgU1VBIFBSP1BSSUEgTElDRU4/QQpFc3RhIGxpY2VuP2EgZGUgZXhlbXBsbyA/IGZvcm5lY2lkYSBhcGVuYXMgcGFyYSBmaW5zIGluZm9ybWF0aXZvcy4KCkxJQ0VOP0EgREUgRElTVFJJQlVJPz9PIE4/Ty1FWENMVVNJVkEKCkNvbSBhIGFwcmVzZW50YT8/byBkZXN0YSBsaWNlbj9hLCB2b2M/IChvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSA/IFVuaXZlcnNpZGFkZSAKWFhYIChTaWdsYSBkYSBVbml2ZXJzaWRhZGUpIG8gZGlyZWl0byBuP28tZXhjbHVzaXZvIGRlIHJlcHJvZHV6aXIsICB0cmFkdXppciAoY29uZm9ybWUgZGVmaW5pZG8gYWJhaXhvKSwgZS9vdSAKZGlzdHJpYnVpciBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhPz9vIChpbmNsdWluZG8gbyByZXN1bW8pIHBvciB0b2RvIG8gbXVuZG8gbm8gZm9ybWF0byBpbXByZXNzbyBlIGVsZXRyP25pY28gZSAKZW0gcXVhbHF1ZXIgbWVpbywgaW5jbHVpbmRvIG9zIGZvcm1hdG9zID91ZGlvIG91IHY/ZGVvLgoKVm9jPyBjb25jb3JkYSBxdWUgYSBTaWdsYSBkZSBVbml2ZXJzaWRhZGUgcG9kZSwgc2VtIGFsdGVyYXIgbyBjb250ZT9kbywgdHJhbnNwb3IgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YT8/byAKcGFyYSBxdWFscXVlciBtZWlvIG91IGZvcm1hdG8gcGFyYSBmaW5zIGRlIHByZXNlcnZhPz9vLgoKVm9jPyB0YW1iP20gY29uY29yZGEgcXVlIGEgU2lnbGEgZGUgVW5pdmVyc2lkYWRlIHBvZGUgbWFudGVyIG1haXMgZGUgdW1hIGM/cGlhIGEgc3VhIHRlc2Ugb3UgCmRpc3NlcnRhPz9vIHBhcmEgZmlucyBkZSBzZWd1cmFuP2EsIGJhY2stdXAgZSBwcmVzZXJ2YT8/by4KClZvYz8gZGVjbGFyYSBxdWUgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YT8/byA/IG9yaWdpbmFsIGUgcXVlIHZvYz8gdGVtIG8gcG9kZXIgZGUgY29uY2VkZXIgb3MgZGlyZWl0b3MgY29udGlkb3MgCm5lc3RhIGxpY2VuP2EuIFZvYz8gdGFtYj9tIGRlY2xhcmEgcXVlIG8gZGVwP3NpdG8gZGEgc3VhIHRlc2Ugb3UgZGlzc2VydGE/P28gbj9vLCBxdWUgc2VqYSBkZSBzZXUgCmNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3U/bS4KCkNhc28gYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YT8/byBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jPyBuP28gcG9zc3VpIGEgdGl0dWxhcmlkYWRlIGRvcyBkaXJlaXRvcyBhdXRvcmFpcywgdm9jPyAKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzcz9vIGlycmVzdHJpdGEgZG8gZGV0ZW50b3IgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIHBhcmEgY29uY2VkZXIgPyBTaWdsYSBkZSBVbml2ZXJzaWRhZGUgCm9zIGRpcmVpdG9zIGFwcmVzZW50YWRvcyBuZXN0YSBsaWNlbj9hLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3Q/IGNsYXJhbWVudGUgCmlkZW50aWZpY2FkbyBlIHJlY29uaGVjaWRvIG5vIHRleHRvIG91IG5vIGNvbnRlP2RvIGRhIHRlc2Ugb3UgZGlzc2VydGE/P28gb3JhIGRlcG9zaXRhZGEuCgpDQVNPIEEgVEVTRSBPVSBESVNTRVJUQT8/TyBPUkEgREVQT1NJVEFEQSBURU5IQSBTSURPIFJFU1VMVEFETyBERSBVTSBQQVRST0M/TklPIE9VIApBUE9JTyBERSBVTUEgQUc/TkNJQSBERSBGT01FTlRPIE9VIE9VVFJPIE9SR0FOSVNNTyBRVUUgTj9PIFNFSkEgQSBTSUdMQSBERSAKVU5JVkVSU0lEQURFLCBWT0M/IERFQ0xBUkEgUVVFIFJFU1BFSVRPVSBUT0RPUyBFIFFVQUlTUVVFUiBESVJFSVRPUyBERSBSRVZJUz9PIENPTU8gClRBTUI/TSBBUyBERU1BSVMgT0JSSUdBPz9FUyBFWElHSURBUyBQT1IgQ09OVFJBVE8gT1UgQUNPUkRPLgoKQSBTaWdsYSBkZSBVbml2ZXJzaWRhZGUgc2UgY29tcHJvbWV0ZSBhIGlkZW50aWZpY2FyIGNsYXJhbWVudGUgbyBzZXUgbm9tZSAocykgb3UgbyhzKSBub21lKHMpIGRvKHMpIApkZXRlbnRvcihlcykgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIGRhIHRlc2Ugb3UgZGlzc2VydGE/P28sIGUgbj9vIGZhcj8gcXVhbHF1ZXIgYWx0ZXJhPz9vLCBhbD9tIGRhcXVlbGFzIApjb25jZWRpZGFzIHBvciBlc3RhIGxpY2VuP2EuCg==Biblioteca Digital de Teses e Dissertaçõeshttp://tede2.uefs.br:8080/PUBhttp://tede2.uefs.br:8080/oai/requestbcuefs@uefs.br|| bcref@uefs.br||bcuefs@uefs.bropendoar:2025-09-10T04:41:55Biblioteca Digital de Teses e Dissertações da UEFS - Universidade Estadual de Feira de Santana (UEFS)false
dc.title.por.fl_str_mv Modelagem de vari?veis meteorol?gicas: um estudo de caso do Brasil
title Modelagem de vari?veis meteorol?gicas: um estudo de caso do Brasil
spellingShingle Modelagem de vari?veis meteorol?gicas: um estudo de caso do Brasil
Santos, Joice de Jesus
Correla??es
Modelagem
Radia??o
Tempo
Correlations
Modeling
Radiation
Weather
OUTROS::CIENCIAS
title_short Modelagem de vari?veis meteorol?gicas: um estudo de caso do Brasil
title_full Modelagem de vari?veis meteorol?gicas: um estudo de caso do Brasil
title_fullStr Modelagem de vari?veis meteorol?gicas: um estudo de caso do Brasil
title_full_unstemmed Modelagem de vari?veis meteorol?gicas: um estudo de caso do Brasil
title_sort Modelagem de vari?veis meteorol?gicas: um estudo de caso do Brasil
author Santos, Joice de Jesus
author_facet Santos, Joice de Jesus
author_role author
dc.contributor.advisor1.fl_str_mv Zebende, Gilney Figueira
dc.contributor.advisor1ID.fl_str_mv https://orcid.org/0000-0003-2420-9805
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/2464685002862801
dc.contributor.advisor-co1.fl_str_mv Brito, Andrea de Almeida
dc.contributor.advisor-co1ID.fl_str_mv 3987430071852962
dc.contributor.advisor-co1Lattes.fl_str_mv http://lattes.cnpq.br/3987430071852962
dc.contributor.authorID.fl_str_mv https://orcid.org/0009-0003-9633-0396
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/1848984914444848
dc.contributor.author.fl_str_mv Santos, Joice de Jesus
contributor_str_mv Zebende, Gilney Figueira
Brito, Andrea de Almeida
dc.subject.por.fl_str_mv Correla??es
Modelagem
Radia??o
Tempo
topic Correla??es
Modelagem
Radia??o
Tempo
Correlations
Modeling
Radiation
Weather
OUTROS::CIENCIAS
dc.subject.eng.fl_str_mv Correlations
Modeling
Radiation
Weather
dc.subject.cnpq.fl_str_mv OUTROS::CIENCIAS
description This dissertation investigates climatic variability and its impacts in Brazil, highlighting the diversity of regional climate patterns and the relevance of forecasting extreme events, such as droughts and floods, that directly affect the country. The primary objective of this research is to study correlations of meteorological variables in Brazil through the cross-correlation coefficients ?DCCA and DMC2 x . The theoretical foundation includes a review of statistical models applied to meteorological data and time series, emphasizing the use of cross-correlation analyses and long-range memory methods, such as detrended fluctuation analysis (DFA). These methods are essential for developing strategic solutions aimed at mitigating the impacts of climate change and improving the understanding and forecasting of extreme weather events in Brazil. The study addressed climatic variability in Brazil, emphasizing the importance of analyzing meteorological conditions in different regions of the country, which present distinct climatic characteristics. The research utilized data from the National Institute of Meteorology (INMET), selecting 26 active stations between 2009 and 2019, allowing a comprehensive overview of solar radiation, temperature, humidity, and wind speed. The methodology included data processing and the application of statistical methods, such as cross-correlations, to investigate the relationships between the variables. Preliminary results indicated significant correlations, especially between solar radiation and temperature, with the expectation that the analyses will contribute to planning and decision-making in various fields of knowledge. The statistical analysis of the meteorological data revealed large variations in solar radiation, air temperature, relative humidity, and wind speed in different Brazilian cities. Using Tukey?s boxplot method, it was observed that cities like Natal and Jo?ao Pessoa exhibited high solar radiation values, while relative humidity varied considerably between regions. The cross-correlation between solar radiation and air temperature showed a strong relationship in several stations, except in Cuiab?a and Teresina. The ?DCCA analysis highlighted significant correlations between solar radiation and relative humidity, especially in regions like the North and Northeast. The DMC2 x method allowed for a more comprehensive understanding of the interactions between the variables, essential for specialties such as sustainable management and adaptation to climate change, considering the particularities of each biome and their influences on regional climatic conditions. Although the research showed relevant results, limitations such as the collection time and the number of variables hinder definitive conclusions about global warming and its causes.
publishDate 2025
dc.date.accessioned.fl_str_mv 2025-06-17T18:03:37Z
dc.date.issued.fl_str_mv 2025-02-20
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv SANTOS, Joice de Jesus. Modelagem de vari?veis meteorol?gicas: um estudo de caso do Brasil, 2025, 81 f., Disserta??o (mestrado) - Programa de P?s-Gradua??o em Modelagem em Ci?ncia da Terra e do Ambiente, Universidade Estadual de Feira de Santana, Feira de Santana.
dc.identifier.uri.fl_str_mv http://tede2.uefs.br:8080/handle/tede/1850
identifier_str_mv SANTOS, Joice de Jesus. Modelagem de vari?veis meteorol?gicas: um estudo de caso do Brasil, 2025, 81 f., Disserta??o (mestrado) - Programa de P?s-Gradua??o em Modelagem em Ci?ncia da Terra e do Ambiente, Universidade Estadual de Feira de Santana, Feira de Santana.
url http://tede2.uefs.br:8080/handle/tede/1850
dc.language.iso.fl_str_mv por
language por
dc.relation.program.fl_str_mv -885176421937510469
dc.relation.confidence.fl_str_mv 600
600
600
600
dc.relation.department.fl_str_mv -5486832816611506211
dc.relation.cnpq.fl_str_mv 6209957791494323825
dc.relation.sponsorship.fl_str_mv -8233071094704392586
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Estadual de Feira de Santana
dc.publisher.program.fl_str_mv Mestrado em Modelagem em Ci?ncia da Terra e do Ambiente
dc.publisher.initials.fl_str_mv UEFS
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv DEPARTAMENTO DE CI?NCIAS EXATAS
publisher.none.fl_str_mv Universidade Estadual de Feira de Santana
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações da UEFS
instname:Universidade Estadual de Feira de Santana (UEFS)
instacron:UEFS
instname_str Universidade Estadual de Feira de Santana (UEFS)
instacron_str UEFS
institution UEFS
reponame_str Biblioteca Digital de Teses e Dissertações da UEFS
collection Biblioteca Digital de Teses e Dissertações da UEFS
bitstream.url.fl_str_mv http://tede2.uefs.br:8080/bitstream/tede/1850/4/Joice+de+Jesus+Santos+-+Dissertacao.pdf.jpg
http://tede2.uefs.br:8080/bitstream/tede/1850/3/Joice+de+Jesus+Santos+-+Dissertacao.pdf.txt
http://tede2.uefs.br:8080/bitstream/tede/1850/2/Joice+de+Jesus+Santos+-+Dissertacao.pdf
http://tede2.uefs.br:8080/bitstream/tede/1850/1/license.txt
bitstream.checksum.fl_str_mv 79e92e40dec003461bb74ab1e92b069b
d0f0241ed24c0b454a6d642b4feb01d3
c899cc5a956db3bff045aa81559a9227
7b5ba3d2445355f386edab96125d42b7
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da UEFS - Universidade Estadual de Feira de Santana (UEFS)
repository.mail.fl_str_mv bcuefs@uefs.br|| bcref@uefs.br||bcuefs@uefs.br
_version_ 1845618205624631296