Predição de escorregamentos de encostas baseada em aprendizado de máquina

Detalhes bibliográficos
Ano de defesa: 2022
Autor(a) principal: Pedreira, Laedson Silva lattes
Orientador(a): Calumby, Rodrigo Tripodi lattes
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Estadual de Feira de Santana
Programa de Pós-Graduação: Programa de Pós-Graduação em Ciência da Computação
Departamento: DEPARTAMENTO DE TECNOLOGIA
País: Brasil
Palavras-chave em Português:
Palavras-chave em Inglês:
Área do conhecimento CNPq:
Link de acesso: http://tede2.uefs.br:8080/handle/tede/1508
Resumo: Landslides are among the main phenomena that cause natural disasters across the planet. Every year landslides have caused numerous material damages and claimed a large number of fatalities. In order to understand and describe the phenomenon of landslides, in addition to preventing or minimizing the problems caused by them, many studies have been carried out on their dynamics. However, considering the complexity of the problem and the scarcity of integrated and large-scale data, specific studies of individualized predictive models and with a temporal relationship, for monitoring and indicating risks are challenging. Despite this, the application of predictive models based on machine learning has great potential to contribute with effective and efficient tools, capable of assisting in the monitoring and prevention of damages arising from such events. In this context, this work proposes and experimentally evaluates data mining and machine learning techniques for the construction of a database from multiple sources, its pre-processing and the prediction of landslides individually, in time and in space. In addition, in order to verify the impact on the predictive capacity of the classifiers, the implications of two methods of generating non-slip samples, the number of days of accumulated rainfall considered and the lead time of prediction were analyzed. With the application of the methodology proposed here, it was possible to predict landslides in a promising way, with F1-score values greater than 0,929±0,002 and AUC greater than 0.930±0.002. The results presented also suggest that the use of these predictive models can contribute to a better decision-making by the competent about the regarding the monitoring and prevention of damage caused by landslides induced by rain.
id UEFS_97efd4b29de83e55103f237fe0635636
oai_identifier_str oai:tede2.uefs.br:8080:tede/1508
network_acronym_str UEFS
network_name_str Biblioteca Digital de Teses e Dissertações da UEFS
repository_id_str
spelling Calumby, Rodrigo Tripodi019.273.745-70http://lattes.cnpq.br/3303713473565543São Mateus, Maria do Socorro Costa361.455.135-00http://lattes.cnpq.br/2321967085294691030.734.015-55http://lattes.cnpq.br/0910981819308168Pedreira, Laedson Silva2023-08-09T15:42:23Z2022-03-16PEDREIRA, Laedson Silva. Predição de escorregamentos de encostas baseada em aprendizado de máquina. 2022. 124f. Dissertação (Programa de Pós-Graduação em Ciência da Computação) - Universidade Estadual de Feira de Santana, Feira de Santana, 2022.http://tede2.uefs.br:8080/handle/tede/1508Landslides are among the main phenomena that cause natural disasters across the planet. Every year landslides have caused numerous material damages and claimed a large number of fatalities. In order to understand and describe the phenomenon of landslides, in addition to preventing or minimizing the problems caused by them, many studies have been carried out on their dynamics. However, considering the complexity of the problem and the scarcity of integrated and large-scale data, specific studies of individualized predictive models and with a temporal relationship, for monitoring and indicating risks are challenging. Despite this, the application of predictive models based on machine learning has great potential to contribute with effective and efficient tools, capable of assisting in the monitoring and prevention of damages arising from such events. In this context, this work proposes and experimentally evaluates data mining and machine learning techniques for the construction of a database from multiple sources, its pre-processing and the prediction of landslides individually, in time and in space. In addition, in order to verify the impact on the predictive capacity of the classifiers, the implications of two methods of generating non-slip samples, the number of days of accumulated rainfall considered and the lead time of prediction were analyzed. With the application of the methodology proposed here, it was possible to predict landslides in a promising way, with F1-score values greater than 0,929±0,002 and AUC greater than 0.930±0.002. The results presented also suggest that the use of these predictive models can contribute to a better decision-making by the competent about the regarding the monitoring and prevention of damage caused by landslides induced by rain.Os escorregamentos de encostas constituem um dos principais fenômenos causadores de desastres naturais em todo planeta. Todos os anos os escorregamentos têm causado inúmeros prejuízos materiais e fazendo um grande número de vítimas fatais. Com o intuito de compreender e descrever o fenômeno dos escorregamentos, além de prevenir ou minimizar os problemas por eles causados, muitos estudos têm sido realizados acerca da sua dinâmica. Contudo, considerando-se a complexidade do problema e escassez de dados integrados e em larga escala, estudos específicos de modelos preditivos individualizados e com relação temporal, para monitoramento e indicação de riscos são desafiadores. Apesar disso, a aplicação de modelos preditivos baseados em aprendizado de máquina apresenta grande potencial em contribuir com ferramentas eficazes e eficientes, capazes de auxiliar no monitoramento e prevenção de danos oriundos de tais eventos. Neste contexto, este trabalho propõe e avalia experimentalmente técnicas de mineração de dados e aprendizado de máquina para a construção de uma base de dados a partir de múltiplas fontes, seu pré-processamento e a predição de escorregamentos de encostas de forma individualizada, no tempo e no espaço. Além disso, a fim de verificar o impacto na capacidade preditiva dos classificadores, foram analisadas as implicações de dois métodos de geração de amostras de não escorregamentos, do número de dias de chuva acumulada considerada e do tempo de antecedência de predição. Com a aplicação da metodologia aqui proposta foi possível realizar predição de escorregamentos de modo promissor, com valores de F1-score superiores a 0,929±0,002 e AUC superiores a 0,930±0,002. Os resultados apresentados sugerem ainda que a utilização desses modelos preditivos pode contribuir para uma melhor tomada de decisão dos órgãos competentes no que se refere ao monitoramento e prevenção de danos causados pelos escorregamentos de encostas induzidos por chuva.Submitted by Amanda Ponce (aponce@uefs.br) on 2023-08-09T15:42:23Z No. of bitstreams: 1 Dissertacao_Laedson_Final.pdf: 13899495 bytes, checksum: 3083e827e340c55b57d211cbf6062df9 (MD5)Made available in DSpace on 2023-08-09T15:42:23Z (GMT). No. of bitstreams: 1 Dissertacao_Laedson_Final.pdf: 13899495 bytes, checksum: 3083e827e340c55b57d211cbf6062df9 (MD5) Previous issue date: 2022-03-16application/pdfporUniversidade Estadual de Feira de SantanaPrograma de Pós-Graduação em Ciência da ComputaçãoUEFSBrasilDEPARTAMENTO DE TECNOLOGIAEscorregamentoAprendizado de máquinaMineração de dadosPrediçãoDeslizamento de terraData MiningPredictionRandom forestLightGBMLandslideMachine LearningCIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAOMETODOLOGIA E TECNICAS DA COMPUTACAO::SISTEMAS DE INFORMACAOGEOTECNICA::MECANICAS DOS SOLOSPredição de escorregamentos de encostas baseada em aprendizado de máquinainfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesis197499653308127447060060060060060043351085230203470513671711205811204509-651669516009542875-9166114729053747191info:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UEFSinstname:Universidade Estadual de Feira de Santana (UEFS)instacron:UEFSORIGINALDissertacao_Laedson_Final.pdfDissertacao_Laedson_Final.pdfapplication/pdf13899495http://tede2.uefs.br:8080/bitstream/tede/1508/2/Dissertacao_Laedson_Final.pdf3083e827e340c55b57d211cbf6062df9MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-82089http://tede2.uefs.br:8080/bitstream/tede/1508/1/license.txt7b5ba3d2445355f386edab96125d42b7MD51tede/15082023-08-09 12:42:23.279oai:tede2.uefs.br:8080:tede/1508Tk9UQTogQ09MT1FVRSBBUVVJIEEgU1VBIFBSP1BSSUEgTElDRU4/QQpFc3RhIGxpY2VuP2EgZGUgZXhlbXBsbyA/IGZvcm5lY2lkYSBhcGVuYXMgcGFyYSBmaW5zIGluZm9ybWF0aXZvcy4KCkxJQ0VOP0EgREUgRElTVFJJQlVJPz9PIE4/Ty1FWENMVVNJVkEKCkNvbSBhIGFwcmVzZW50YT8/byBkZXN0YSBsaWNlbj9hLCB2b2M/IChvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSA/IFVuaXZlcnNpZGFkZSAKWFhYIChTaWdsYSBkYSBVbml2ZXJzaWRhZGUpIG8gZGlyZWl0byBuP28tZXhjbHVzaXZvIGRlIHJlcHJvZHV6aXIsICB0cmFkdXppciAoY29uZm9ybWUgZGVmaW5pZG8gYWJhaXhvKSwgZS9vdSAKZGlzdHJpYnVpciBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhPz9vIChpbmNsdWluZG8gbyByZXN1bW8pIHBvciB0b2RvIG8gbXVuZG8gbm8gZm9ybWF0byBpbXByZXNzbyBlIGVsZXRyP25pY28gZSAKZW0gcXVhbHF1ZXIgbWVpbywgaW5jbHVpbmRvIG9zIGZvcm1hdG9zID91ZGlvIG91IHY/ZGVvLgoKVm9jPyBjb25jb3JkYSBxdWUgYSBTaWdsYSBkZSBVbml2ZXJzaWRhZGUgcG9kZSwgc2VtIGFsdGVyYXIgbyBjb250ZT9kbywgdHJhbnNwb3IgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YT8/byAKcGFyYSBxdWFscXVlciBtZWlvIG91IGZvcm1hdG8gcGFyYSBmaW5zIGRlIHByZXNlcnZhPz9vLgoKVm9jPyB0YW1iP20gY29uY29yZGEgcXVlIGEgU2lnbGEgZGUgVW5pdmVyc2lkYWRlIHBvZGUgbWFudGVyIG1haXMgZGUgdW1hIGM/cGlhIGEgc3VhIHRlc2Ugb3UgCmRpc3NlcnRhPz9vIHBhcmEgZmlucyBkZSBzZWd1cmFuP2EsIGJhY2stdXAgZSBwcmVzZXJ2YT8/by4KClZvYz8gZGVjbGFyYSBxdWUgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YT8/byA/IG9yaWdpbmFsIGUgcXVlIHZvYz8gdGVtIG8gcG9kZXIgZGUgY29uY2VkZXIgb3MgZGlyZWl0b3MgY29udGlkb3MgCm5lc3RhIGxpY2VuP2EuIFZvYz8gdGFtYj9tIGRlY2xhcmEgcXVlIG8gZGVwP3NpdG8gZGEgc3VhIHRlc2Ugb3UgZGlzc2VydGE/P28gbj9vLCBxdWUgc2VqYSBkZSBzZXUgCmNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3U/bS4KCkNhc28gYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YT8/byBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jPyBuP28gcG9zc3VpIGEgdGl0dWxhcmlkYWRlIGRvcyBkaXJlaXRvcyBhdXRvcmFpcywgdm9jPyAKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzcz9vIGlycmVzdHJpdGEgZG8gZGV0ZW50b3IgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIHBhcmEgY29uY2VkZXIgPyBTaWdsYSBkZSBVbml2ZXJzaWRhZGUgCm9zIGRpcmVpdG9zIGFwcmVzZW50YWRvcyBuZXN0YSBsaWNlbj9hLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3Q/IGNsYXJhbWVudGUgCmlkZW50aWZpY2FkbyBlIHJlY29uaGVjaWRvIG5vIHRleHRvIG91IG5vIGNvbnRlP2RvIGRhIHRlc2Ugb3UgZGlzc2VydGE/P28gb3JhIGRlcG9zaXRhZGEuCgpDQVNPIEEgVEVTRSBPVSBESVNTRVJUQT8/TyBPUkEgREVQT1NJVEFEQSBURU5IQSBTSURPIFJFU1VMVEFETyBERSBVTSBQQVRST0M/TklPIE9VIApBUE9JTyBERSBVTUEgQUc/TkNJQSBERSBGT01FTlRPIE9VIE9VVFJPIE9SR0FOSVNNTyBRVUUgTj9PIFNFSkEgQSBTSUdMQSBERSAKVU5JVkVSU0lEQURFLCBWT0M/IERFQ0xBUkEgUVVFIFJFU1BFSVRPVSBUT0RPUyBFIFFVQUlTUVVFUiBESVJFSVRPUyBERSBSRVZJUz9PIENPTU8gClRBTUI/TSBBUyBERU1BSVMgT0JSSUdBPz9FUyBFWElHSURBUyBQT1IgQ09OVFJBVE8gT1UgQUNPUkRPLgoKQSBTaWdsYSBkZSBVbml2ZXJzaWRhZGUgc2UgY29tcHJvbWV0ZSBhIGlkZW50aWZpY2FyIGNsYXJhbWVudGUgbyBzZXUgbm9tZSAocykgb3UgbyhzKSBub21lKHMpIGRvKHMpIApkZXRlbnRvcihlcykgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIGRhIHRlc2Ugb3UgZGlzc2VydGE/P28sIGUgbj9vIGZhcj8gcXVhbHF1ZXIgYWx0ZXJhPz9vLCBhbD9tIGRhcXVlbGFzIApjb25jZWRpZGFzIHBvciBlc3RhIGxpY2VuP2EuCg==Biblioteca Digital de Teses e Dissertaçõeshttp://tede2.uefs.br:8080/PUBhttp://tede2.uefs.br:8080/oai/requestbcuefs@uefs.br|| bcref@uefs.br||bcuefs@uefs.bropendoar:2023-08-09T15:42:23Biblioteca Digital de Teses e Dissertações da UEFS - Universidade Estadual de Feira de Santana (UEFS)false
dc.title.por.fl_str_mv Predição de escorregamentos de encostas baseada em aprendizado de máquina
title Predição de escorregamentos de encostas baseada em aprendizado de máquina
spellingShingle Predição de escorregamentos de encostas baseada em aprendizado de máquina
Pedreira, Laedson Silva
Escorregamento
Aprendizado de máquina
Mineração de dados
Predição
Deslizamento de terra
Data Mining
Prediction
Random forest
LightGBM
Landslide
Machine Learning
CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO
METODOLOGIA E TECNICAS DA COMPUTACAO::SISTEMAS DE INFORMACAO
GEOTECNICA::MECANICAS DOS SOLOS
title_short Predição de escorregamentos de encostas baseada em aprendizado de máquina
title_full Predição de escorregamentos de encostas baseada em aprendizado de máquina
title_fullStr Predição de escorregamentos de encostas baseada em aprendizado de máquina
title_full_unstemmed Predição de escorregamentos de encostas baseada em aprendizado de máquina
title_sort Predição de escorregamentos de encostas baseada em aprendizado de máquina
author Pedreira, Laedson Silva
author_facet Pedreira, Laedson Silva
author_role author
dc.contributor.advisor1.fl_str_mv Calumby, Rodrigo Tripodi
dc.contributor.advisor1ID.fl_str_mv 019.273.745-70
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/3303713473565543
dc.contributor.advisor-co1.fl_str_mv São Mateus, Maria do Socorro Costa
dc.contributor.advisor-co1ID.fl_str_mv 361.455.135-00
dc.contributor.advisor-co1Lattes.fl_str_mv http://lattes.cnpq.br/2321967085294691
dc.contributor.authorID.fl_str_mv 030.734.015-55
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/0910981819308168
dc.contributor.author.fl_str_mv Pedreira, Laedson Silva
contributor_str_mv Calumby, Rodrigo Tripodi
São Mateus, Maria do Socorro Costa
dc.subject.por.fl_str_mv Escorregamento
Aprendizado de máquina
Mineração de dados
Predição
Deslizamento de terra
Data Mining
Prediction
topic Escorregamento
Aprendizado de máquina
Mineração de dados
Predição
Deslizamento de terra
Data Mining
Prediction
Random forest
LightGBM
Landslide
Machine Learning
CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO
METODOLOGIA E TECNICAS DA COMPUTACAO::SISTEMAS DE INFORMACAO
GEOTECNICA::MECANICAS DOS SOLOS
dc.subject.eng.fl_str_mv Random forest
LightGBM
Landslide
Machine Learning
dc.subject.cnpq.fl_str_mv CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO
METODOLOGIA E TECNICAS DA COMPUTACAO::SISTEMAS DE INFORMACAO
GEOTECNICA::MECANICAS DOS SOLOS
description Landslides are among the main phenomena that cause natural disasters across the planet. Every year landslides have caused numerous material damages and claimed a large number of fatalities. In order to understand and describe the phenomenon of landslides, in addition to preventing or minimizing the problems caused by them, many studies have been carried out on their dynamics. However, considering the complexity of the problem and the scarcity of integrated and large-scale data, specific studies of individualized predictive models and with a temporal relationship, for monitoring and indicating risks are challenging. Despite this, the application of predictive models based on machine learning has great potential to contribute with effective and efficient tools, capable of assisting in the monitoring and prevention of damages arising from such events. In this context, this work proposes and experimentally evaluates data mining and machine learning techniques for the construction of a database from multiple sources, its pre-processing and the prediction of landslides individually, in time and in space. In addition, in order to verify the impact on the predictive capacity of the classifiers, the implications of two methods of generating non-slip samples, the number of days of accumulated rainfall considered and the lead time of prediction were analyzed. With the application of the methodology proposed here, it was possible to predict landslides in a promising way, with F1-score values greater than 0,929±0,002 and AUC greater than 0.930±0.002. The results presented also suggest that the use of these predictive models can contribute to a better decision-making by the competent about the regarding the monitoring and prevention of damage caused by landslides induced by rain.
publishDate 2022
dc.date.issued.fl_str_mv 2022-03-16
dc.date.accessioned.fl_str_mv 2023-08-09T15:42:23Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv PEDREIRA, Laedson Silva. Predição de escorregamentos de encostas baseada em aprendizado de máquina. 2022. 124f. Dissertação (Programa de Pós-Graduação em Ciência da Computação) - Universidade Estadual de Feira de Santana, Feira de Santana, 2022.
dc.identifier.uri.fl_str_mv http://tede2.uefs.br:8080/handle/tede/1508
identifier_str_mv PEDREIRA, Laedson Silva. Predição de escorregamentos de encostas baseada em aprendizado de máquina. 2022. 124f. Dissertação (Programa de Pós-Graduação em Ciência da Computação) - Universidade Estadual de Feira de Santana, Feira de Santana, 2022.
url http://tede2.uefs.br:8080/handle/tede/1508
dc.language.iso.fl_str_mv por
language por
dc.relation.program.fl_str_mv 1974996533081274470
dc.relation.confidence.fl_str_mv 600
600
600
600
600
dc.relation.department.fl_str_mv 4335108523020347051
dc.relation.cnpq.fl_str_mv 3671711205811204509
-651669516009542875
-9166114729053747191
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Estadual de Feira de Santana
dc.publisher.program.fl_str_mv Programa de Pós-Graduação em Ciência da Computação
dc.publisher.initials.fl_str_mv UEFS
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv DEPARTAMENTO DE TECNOLOGIA
publisher.none.fl_str_mv Universidade Estadual de Feira de Santana
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações da UEFS
instname:Universidade Estadual de Feira de Santana (UEFS)
instacron:UEFS
instname_str Universidade Estadual de Feira de Santana (UEFS)
instacron_str UEFS
institution UEFS
reponame_str Biblioteca Digital de Teses e Dissertações da UEFS
collection Biblioteca Digital de Teses e Dissertações da UEFS
bitstream.url.fl_str_mv http://tede2.uefs.br:8080/bitstream/tede/1508/2/Dissertacao_Laedson_Final.pdf
http://tede2.uefs.br:8080/bitstream/tede/1508/1/license.txt
bitstream.checksum.fl_str_mv 3083e827e340c55b57d211cbf6062df9
7b5ba3d2445355f386edab96125d42b7
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da UEFS - Universidade Estadual de Feira de Santana (UEFS)
repository.mail.fl_str_mv bcuefs@uefs.br|| bcref@uefs.br||bcuefs@uefs.br
_version_ 1809289419441569792