Computa??o evolutiva para otimiza??o de carteiras de estrat?gias de negocia??o no mercado financeiro
| Ano de defesa: | 2022 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | |
| Tipo de documento: | Dissertação |
| Tipo de acesso: | Acesso aberto |
| Idioma: | por |
| Instituição de defesa: |
Universidade Estadual de Feira de Santana
|
| Programa de Pós-Graduação: |
Programa de P?s-Gradua??o em Ci?ncia da Computa??o
|
| Departamento: |
DEPARTAMENTO DE TECNOLOGIA
|
| País: |
Brasil
|
| Palavras-chave em Português: | |
| Palavras-chave em Inglês: | |
| Área do conhecimento CNPq: | |
| Link de acesso: | http://tede2.uefs.br:8080/handle/tede/1628 |
Resumo: | The digitalization of the nancial market has led to the emergence of automated trading strategies: the trading robots. While it is possible to use just one algorithm to perform nancial operations, it has become common to create investment portfolios with several trading strategies. When performing market operations, it is possible to distribute the assets among the automated strategies in an arbitrary manner. Di erent con gurations of these distributions, however, may lead to completely distinct levels of returns. Given a set of assets, the optimal distribution problem may be studied from a multi-objective perspective, as several market indices can be used to evaluate the strategy portfolio. A set of automated trading strategies in capital markets may be combined into a portfolio, aiming to maximize returns and minimize losses. The best combination for the portfolio requires assigning optimal weights to each strategy, considering di erent indicators from nancial market. In this work, the application of evolutionary algorithms based on a lexicographical approach and based on NSGA-II are proposed to optimize a portfolio of automated strategies applied to the Brazilian futures market. The experiments study several nancial indicators, with di erent rankings, as well as optimization and time period conditions, using historical data from mini futures contracts of Ibovespa and U.S. Dollar index. Experiments were performed in order to adjust the hyperparameters (e.g. initial population, crossover rate), evaluating the impact of the chosen objective functions and the time-frame window size, as well as the accumulated capital over the period. After the objective function experiments, the group of functions that optimized the Sortino ratio had superior accumulated capital in both evolutionary algorithms. In the experiments with varying time-frame window sizes, the \Highest Return" and the \Nearest Extreme Objective Values" NSGA solutions produced the highest average returns and also the highest average accumulated capital in all scenarios. Moreover, all evaluated solutions outperformed both the IPCA and the Selic benchmarks. Short In-Sample periods managed to reduce risk and also raised the return-to-risk ratio in Out-of-Sample time-frame windows. Longer Out-of-Sample periods, however, were able to raise pro tability levels and the accumulated capital across the entire time series. |
| id |
UEFS_a2f63bdd41aa86942101447960df84e1 |
|---|---|
| oai_identifier_str |
oai:tede2.uefs.br:8080:tede/1628 |
| network_acronym_str |
UEFS |
| network_name_str |
Biblioteca Digital de Teses e Dissertações da UEFS |
| repository_id_str |
|
| spelling |
Loula, Angelo Conradohttps://orcid.org/0000-0001-7802-1731http://lattes.cnpq.br/0704248561279452Rodrigues, Carlos Albertohttps://orcid.org/0000-0002-7663-8751Coorientador: Carlos Alberto Rodrigueshttps://orcid.org/0009-0000-2703-9691http://lattes.cnpq.br/1481639687731419Guedes, Anderson Cerqueira2024-02-23T14:04:23Z2022-11-28GUEDES, Anderson Cerqueira. Computa??o evolutiva para otimiza??o de carteiras de estrat?gias de negocia??o no mercado financeiro. 2022. 168 f. Disserta??o (Mestrado em Ci?ncia da Computa??o) - Departamento de Tecnologia, Universidade Estadual de Feira de Santana, Feira de Santana, 2022.http://tede2.uefs.br:8080/handle/tede/1628The digitalization of the nancial market has led to the emergence of automated trading strategies: the trading robots. While it is possible to use just one algorithm to perform nancial operations, it has become common to create investment portfolios with several trading strategies. When performing market operations, it is possible to distribute the assets among the automated strategies in an arbitrary manner. Di erent con gurations of these distributions, however, may lead to completely distinct levels of returns. Given a set of assets, the optimal distribution problem may be studied from a multi-objective perspective, as several market indices can be used to evaluate the strategy portfolio. A set of automated trading strategies in capital markets may be combined into a portfolio, aiming to maximize returns and minimize losses. The best combination for the portfolio requires assigning optimal weights to each strategy, considering di erent indicators from nancial market. In this work, the application of evolutionary algorithms based on a lexicographical approach and based on NSGA-II are proposed to optimize a portfolio of automated strategies applied to the Brazilian futures market. The experiments study several nancial indicators, with di erent rankings, as well as optimization and time period conditions, using historical data from mini futures contracts of Ibovespa and U.S. Dollar index. Experiments were performed in order to adjust the hyperparameters (e.g. initial population, crossover rate), evaluating the impact of the chosen objective functions and the time-frame window size, as well as the accumulated capital over the period. After the objective function experiments, the group of functions that optimized the Sortino ratio had superior accumulated capital in both evolutionary algorithms. In the experiments with varying time-frame window sizes, the \Highest Return" and the \Nearest Extreme Objective Values" NSGA solutions produced the highest average returns and also the highest average accumulated capital in all scenarios. Moreover, all evaluated solutions outperformed both the IPCA and the Selic benchmarks. Short In-Sample periods managed to reduce risk and also raised the return-to-risk ratio in Out-of-Sample time-frame windows. Longer Out-of-Sample periods, however, were able to raise pro tability levels and the accumulated capital across the entire time series.A digitaliza??o do mercado de capitais levou ao surgimento de estrat?gias de negocia??o automatizadas: os rob?s investidores. Embora seja poss?vel utilizar apenas um algoritmo para realizar opera??es financeiras, tornou-se comum a cria??o de carteiras de investimento com diversas estrat?gias de negocia??o. Ao realizar opera??es no mercado, e poss?vel distribuir os ativos entre as estrat?gias automatizadas de maneira arbitr?ria. Diferentes configura??es dessas distribui??es, no entanto, podem levar a diferentes n?veis de rentabilidades. Dado um conjunto de ativos, o problema da distribui??o ?tima pode ser estudado a partir de uma perspectiva multiobjetiva, pois diversos ?ndices de mercado podem ser utilizados para avaliar a carteira de estrategias. Um conjunto de estrategias automatizadas de negocia??o pode ser disposto em um portf?lio, buscando maximiza??o de rendimentos e minimiza??o de perdas. A melhor combina??o para o portf?lio requer a atribui??o de pesos ?timos para cada estrat?gia, considerando diversos indicadores utilizados no mercado financeiro. Neste trabalho, ? proposta a aplica??o de um Algoritmo Evolutivo com abordagem lexicogr?fica e um Algoritmo Evolutivo baseado no NSGA-II para otimizar um portf?lio de estrat?gias automatizadas aplicadas ao mercado futuro brasileiro. Os experimentos consideram diferentes indicadores financeiros, com diferentes ordena??es, al?m de condi??es de otimiza??o e de varia??es temporais, aplicando dados hist?ricos de minicontratos do ?ndice futuro do Ibovespa e do d?lar. Experimentos foram realizados com o intuito de ajustar v?rios par?metros, avaliando o impacto das fun??es-objetivo e do tamanho dos per?odos de tempo, al?m do capital acumulado ao longo do per?odo. Ap?s os experimentos com fun??es-objetivo, o grupo de fun??es que otimizou o ?ndice de S?rtino obteve capital acumulado superior nos dois algoritmos evolutivos. Nos experimentos com tamanhos de janelas, as solu??es do NSGA de ?Maior Retorno" e ?Pr?ximo ao Ideal" produziram as maiores medias de retorno e capital acumulado em todos os cen?rios e todas as solu??es obtiveram desempenho superior ao IPCA e a Selic. Per odos In-Sample curtos reduziram o risco e elevaram a propor c~ao entre retorno e riscoem janelas Out-of-Sample. Os per?odos Out-of-Sample mais extensos, no entanto, elevaram a rentabilidade e o capital acumulado em toda a s?rie temporal.Submitted by Renata Aline Souza Silva (rassilva@uefs.br) on 2024-02-23T14:04:23Z No. of bitstreams: 1 DISSERTA??O - ANDERSON CERQUEIRA GUEDES.pdf: 5504332 bytes, checksum: 23f3c95a3c6966b0b1619cebd6373f22 (MD5)Made available in DSpace on 2024-02-23T14:04:23Z (GMT). No. of bitstreams: 1 DISSERTA??O - ANDERSON CERQUEIRA GUEDES.pdf: 5504332 bytes, checksum: 23f3c95a3c6966b0b1619cebd6373f22 (MD5) Previous issue date: 2022-11-28application/pdfhttp://tede2.uefs.br:8080/retrieve/7541/DISSERTA%c3%87%c3%83O%20-%20ANDERSON%20CERQUEIRA%20GUEDES.pdf.jpgporUniversidade Estadual de Feira de SantanaPrograma de P?s-Gradua??o em Ci?ncia da Computa??oUEFSBrasilDEPARTAMENTO DE TECNOLOGIAComputa??o evolutivaOtimiza??o multiobjetivoAbordagem lexicogr?ficaNSGA-IIOtimiza??o de portf?lioContratos futurosWalk forwardEvolutionary computingMulti-objective optimizationLexicographical approachNSGA-IIPortfolio optimizationFutures contractsWalk forwardCIENCIA DA COMPUTACAO::SISTEMAS DE COMPUTACAOComputa??o evolutiva para otimiza??o de carteiras de estrat?gias de negocia??o no mercado financeiroinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesis-457052770699435245860060060043351085230203470518930092515683771531info:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UEFSinstname:Universidade Estadual de Feira de Santana (UEFS)instacron:UEFSTHUMBNAILDISSERTA??O - ANDERSON CERQUEIRA GUEDES.pdf.jpgDISSERTA??O - ANDERSON CERQUEIRA GUEDES.pdf.jpgimage/jpeg3340http://tede2.uefs.br:8080/bitstream/tede/1628/4/DISSERTA%C3%87%C3%83O+-+ANDERSON+CERQUEIRA+GUEDES.pdf.jpg402a4bfa02362f7744f6c5ddede5ca78MD54TEXTDISSERTA??O - ANDERSON CERQUEIRA GUEDES.pdf.txtDISSERTA??O - ANDERSON CERQUEIRA GUEDES.pdf.txttext/plain387943http://tede2.uefs.br:8080/bitstream/tede/1628/3/DISSERTA%C3%87%C3%83O+-+ANDERSON+CERQUEIRA+GUEDES.pdf.txt707edc8150d6912c224173261d1c0eceMD53ORIGINALDISSERTA??O - ANDERSON CERQUEIRA GUEDES.pdfDISSERTA??O - ANDERSON CERQUEIRA GUEDES.pdfapplication/pdf5504332http://tede2.uefs.br:8080/bitstream/tede/1628/2/DISSERTA%C3%87%C3%83O+-+ANDERSON+CERQUEIRA+GUEDES.pdf23f3c95a3c6966b0b1619cebd6373f22MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-82089http://tede2.uefs.br:8080/bitstream/tede/1628/1/license.txt7b5ba3d2445355f386edab96125d42b7MD51tede/16282025-09-10 01:39:44.912oai:tede2.uefs.br:8080:tede/1628Tk9UQTogQ09MT1FVRSBBUVVJIEEgU1VBIFBSP1BSSUEgTElDRU4/QQpFc3RhIGxpY2VuP2EgZGUgZXhlbXBsbyA/IGZvcm5lY2lkYSBhcGVuYXMgcGFyYSBmaW5zIGluZm9ybWF0aXZvcy4KCkxJQ0VOP0EgREUgRElTVFJJQlVJPz9PIE4/Ty1FWENMVVNJVkEKCkNvbSBhIGFwcmVzZW50YT8/byBkZXN0YSBsaWNlbj9hLCB2b2M/IChvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSA/IFVuaXZlcnNpZGFkZSAKWFhYIChTaWdsYSBkYSBVbml2ZXJzaWRhZGUpIG8gZGlyZWl0byBuP28tZXhjbHVzaXZvIGRlIHJlcHJvZHV6aXIsICB0cmFkdXppciAoY29uZm9ybWUgZGVmaW5pZG8gYWJhaXhvKSwgZS9vdSAKZGlzdHJpYnVpciBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhPz9vIChpbmNsdWluZG8gbyByZXN1bW8pIHBvciB0b2RvIG8gbXVuZG8gbm8gZm9ybWF0byBpbXByZXNzbyBlIGVsZXRyP25pY28gZSAKZW0gcXVhbHF1ZXIgbWVpbywgaW5jbHVpbmRvIG9zIGZvcm1hdG9zID91ZGlvIG91IHY/ZGVvLgoKVm9jPyBjb25jb3JkYSBxdWUgYSBTaWdsYSBkZSBVbml2ZXJzaWRhZGUgcG9kZSwgc2VtIGFsdGVyYXIgbyBjb250ZT9kbywgdHJhbnNwb3IgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YT8/byAKcGFyYSBxdWFscXVlciBtZWlvIG91IGZvcm1hdG8gcGFyYSBmaW5zIGRlIHByZXNlcnZhPz9vLgoKVm9jPyB0YW1iP20gY29uY29yZGEgcXVlIGEgU2lnbGEgZGUgVW5pdmVyc2lkYWRlIHBvZGUgbWFudGVyIG1haXMgZGUgdW1hIGM/cGlhIGEgc3VhIHRlc2Ugb3UgCmRpc3NlcnRhPz9vIHBhcmEgZmlucyBkZSBzZWd1cmFuP2EsIGJhY2stdXAgZSBwcmVzZXJ2YT8/by4KClZvYz8gZGVjbGFyYSBxdWUgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YT8/byA/IG9yaWdpbmFsIGUgcXVlIHZvYz8gdGVtIG8gcG9kZXIgZGUgY29uY2VkZXIgb3MgZGlyZWl0b3MgY29udGlkb3MgCm5lc3RhIGxpY2VuP2EuIFZvYz8gdGFtYj9tIGRlY2xhcmEgcXVlIG8gZGVwP3NpdG8gZGEgc3VhIHRlc2Ugb3UgZGlzc2VydGE/P28gbj9vLCBxdWUgc2VqYSBkZSBzZXUgCmNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3U/bS4KCkNhc28gYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YT8/byBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jPyBuP28gcG9zc3VpIGEgdGl0dWxhcmlkYWRlIGRvcyBkaXJlaXRvcyBhdXRvcmFpcywgdm9jPyAKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzcz9vIGlycmVzdHJpdGEgZG8gZGV0ZW50b3IgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIHBhcmEgY29uY2VkZXIgPyBTaWdsYSBkZSBVbml2ZXJzaWRhZGUgCm9zIGRpcmVpdG9zIGFwcmVzZW50YWRvcyBuZXN0YSBsaWNlbj9hLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3Q/IGNsYXJhbWVudGUgCmlkZW50aWZpY2FkbyBlIHJlY29uaGVjaWRvIG5vIHRleHRvIG91IG5vIGNvbnRlP2RvIGRhIHRlc2Ugb3UgZGlzc2VydGE/P28gb3JhIGRlcG9zaXRhZGEuCgpDQVNPIEEgVEVTRSBPVSBESVNTRVJUQT8/TyBPUkEgREVQT1NJVEFEQSBURU5IQSBTSURPIFJFU1VMVEFETyBERSBVTSBQQVRST0M/TklPIE9VIApBUE9JTyBERSBVTUEgQUc/TkNJQSBERSBGT01FTlRPIE9VIE9VVFJPIE9SR0FOSVNNTyBRVUUgTj9PIFNFSkEgQSBTSUdMQSBERSAKVU5JVkVSU0lEQURFLCBWT0M/IERFQ0xBUkEgUVVFIFJFU1BFSVRPVSBUT0RPUyBFIFFVQUlTUVVFUiBESVJFSVRPUyBERSBSRVZJUz9PIENPTU8gClRBTUI/TSBBUyBERU1BSVMgT0JSSUdBPz9FUyBFWElHSURBUyBQT1IgQ09OVFJBVE8gT1UgQUNPUkRPLgoKQSBTaWdsYSBkZSBVbml2ZXJzaWRhZGUgc2UgY29tcHJvbWV0ZSBhIGlkZW50aWZpY2FyIGNsYXJhbWVudGUgbyBzZXUgbm9tZSAocykgb3UgbyhzKSBub21lKHMpIGRvKHMpIApkZXRlbnRvcihlcykgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIGRhIHRlc2Ugb3UgZGlzc2VydGE/P28sIGUgbj9vIGZhcj8gcXVhbHF1ZXIgYWx0ZXJhPz9vLCBhbD9tIGRhcXVlbGFzIApjb25jZWRpZGFzIHBvciBlc3RhIGxpY2VuP2EuCg==Biblioteca Digital de Teses e Dissertaçõeshttp://tede2.uefs.br:8080/PUBhttp://tede2.uefs.br:8080/oai/requestbcuefs@uefs.br|| bcref@uefs.br||bcuefs@uefs.bropendoar:2025-09-10T04:39:44Biblioteca Digital de Teses e Dissertações da UEFS - Universidade Estadual de Feira de Santana (UEFS)false |
| dc.title.por.fl_str_mv |
Computa??o evolutiva para otimiza??o de carteiras de estrat?gias de negocia??o no mercado financeiro |
| title |
Computa??o evolutiva para otimiza??o de carteiras de estrat?gias de negocia??o no mercado financeiro |
| spellingShingle |
Computa??o evolutiva para otimiza??o de carteiras de estrat?gias de negocia??o no mercado financeiro Guedes, Anderson Cerqueira Computa??o evolutiva Otimiza??o multiobjetivo Abordagem lexicogr?fica NSGA-II Otimiza??o de portf?lio Contratos futuros Walk forward Evolutionary computing Multi-objective optimization Lexicographical approach NSGA-II Portfolio optimization Futures contracts Walk forward CIENCIA DA COMPUTACAO::SISTEMAS DE COMPUTACAO |
| title_short |
Computa??o evolutiva para otimiza??o de carteiras de estrat?gias de negocia??o no mercado financeiro |
| title_full |
Computa??o evolutiva para otimiza??o de carteiras de estrat?gias de negocia??o no mercado financeiro |
| title_fullStr |
Computa??o evolutiva para otimiza??o de carteiras de estrat?gias de negocia??o no mercado financeiro |
| title_full_unstemmed |
Computa??o evolutiva para otimiza??o de carteiras de estrat?gias de negocia??o no mercado financeiro |
| title_sort |
Computa??o evolutiva para otimiza??o de carteiras de estrat?gias de negocia??o no mercado financeiro |
| author |
Guedes, Anderson Cerqueira |
| author_facet |
Guedes, Anderson Cerqueira |
| author_role |
author |
| dc.contributor.advisor1.fl_str_mv |
Loula, Angelo Conrado |
| dc.contributor.advisor1ID.fl_str_mv |
https://orcid.org/0000-0001-7802-1731 |
| dc.contributor.advisor1Lattes.fl_str_mv |
http://lattes.cnpq.br/0704248561279452 |
| dc.contributor.advisor-co1.fl_str_mv |
Rodrigues, Carlos Alberto |
| dc.contributor.advisor-co1ID.fl_str_mv |
https://orcid.org/0000-0002-7663-8751 |
| dc.contributor.advisor-co1Lattes.fl_str_mv |
Coorientador: Carlos Alberto Rodrigues |
| dc.contributor.authorID.fl_str_mv |
https://orcid.org/0009-0000-2703-9691 |
| dc.contributor.authorLattes.fl_str_mv |
http://lattes.cnpq.br/1481639687731419 |
| dc.contributor.author.fl_str_mv |
Guedes, Anderson Cerqueira |
| contributor_str_mv |
Loula, Angelo Conrado Rodrigues, Carlos Alberto |
| dc.subject.por.fl_str_mv |
Computa??o evolutiva Otimiza??o multiobjetivo Abordagem lexicogr?fica NSGA-II Otimiza??o de portf?lio Contratos futuros Walk forward |
| topic |
Computa??o evolutiva Otimiza??o multiobjetivo Abordagem lexicogr?fica NSGA-II Otimiza??o de portf?lio Contratos futuros Walk forward Evolutionary computing Multi-objective optimization Lexicographical approach NSGA-II Portfolio optimization Futures contracts Walk forward CIENCIA DA COMPUTACAO::SISTEMAS DE COMPUTACAO |
| dc.subject.eng.fl_str_mv |
Evolutionary computing Multi-objective optimization Lexicographical approach NSGA-II Portfolio optimization Futures contracts Walk forward |
| dc.subject.cnpq.fl_str_mv |
CIENCIA DA COMPUTACAO::SISTEMAS DE COMPUTACAO |
| description |
The digitalization of the nancial market has led to the emergence of automated trading strategies: the trading robots. While it is possible to use just one algorithm to perform nancial operations, it has become common to create investment portfolios with several trading strategies. When performing market operations, it is possible to distribute the assets among the automated strategies in an arbitrary manner. Di erent con gurations of these distributions, however, may lead to completely distinct levels of returns. Given a set of assets, the optimal distribution problem may be studied from a multi-objective perspective, as several market indices can be used to evaluate the strategy portfolio. A set of automated trading strategies in capital markets may be combined into a portfolio, aiming to maximize returns and minimize losses. The best combination for the portfolio requires assigning optimal weights to each strategy, considering di erent indicators from nancial market. In this work, the application of evolutionary algorithms based on a lexicographical approach and based on NSGA-II are proposed to optimize a portfolio of automated strategies applied to the Brazilian futures market. The experiments study several nancial indicators, with di erent rankings, as well as optimization and time period conditions, using historical data from mini futures contracts of Ibovespa and U.S. Dollar index. Experiments were performed in order to adjust the hyperparameters (e.g. initial population, crossover rate), evaluating the impact of the chosen objective functions and the time-frame window size, as well as the accumulated capital over the period. After the objective function experiments, the group of functions that optimized the Sortino ratio had superior accumulated capital in both evolutionary algorithms. In the experiments with varying time-frame window sizes, the \Highest Return" and the \Nearest Extreme Objective Values" NSGA solutions produced the highest average returns and also the highest average accumulated capital in all scenarios. Moreover, all evaluated solutions outperformed both the IPCA and the Selic benchmarks. Short In-Sample periods managed to reduce risk and also raised the return-to-risk ratio in Out-of-Sample time-frame windows. Longer Out-of-Sample periods, however, were able to raise pro tability levels and the accumulated capital across the entire time series. |
| publishDate |
2022 |
| dc.date.issued.fl_str_mv |
2022-11-28 |
| dc.date.accessioned.fl_str_mv |
2024-02-23T14:04:23Z |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
| format |
masterThesis |
| status_str |
publishedVersion |
| dc.identifier.citation.fl_str_mv |
GUEDES, Anderson Cerqueira. Computa??o evolutiva para otimiza??o de carteiras de estrat?gias de negocia??o no mercado financeiro. 2022. 168 f. Disserta??o (Mestrado em Ci?ncia da Computa??o) - Departamento de Tecnologia, Universidade Estadual de Feira de Santana, Feira de Santana, 2022. |
| dc.identifier.uri.fl_str_mv |
http://tede2.uefs.br:8080/handle/tede/1628 |
| identifier_str_mv |
GUEDES, Anderson Cerqueira. Computa??o evolutiva para otimiza??o de carteiras de estrat?gias de negocia??o no mercado financeiro. 2022. 168 f. Disserta??o (Mestrado em Ci?ncia da Computa??o) - Departamento de Tecnologia, Universidade Estadual de Feira de Santana, Feira de Santana, 2022. |
| url |
http://tede2.uefs.br:8080/handle/tede/1628 |
| dc.language.iso.fl_str_mv |
por |
| language |
por |
| dc.relation.program.fl_str_mv |
-4570527706994352458 |
| dc.relation.confidence.fl_str_mv |
600 600 600 |
| dc.relation.department.fl_str_mv |
4335108523020347051 |
| dc.relation.cnpq.fl_str_mv |
8930092515683771531 |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.publisher.none.fl_str_mv |
Universidade Estadual de Feira de Santana |
| dc.publisher.program.fl_str_mv |
Programa de P?s-Gradua??o em Ci?ncia da Computa??o |
| dc.publisher.initials.fl_str_mv |
UEFS |
| dc.publisher.country.fl_str_mv |
Brasil |
| dc.publisher.department.fl_str_mv |
DEPARTAMENTO DE TECNOLOGIA |
| publisher.none.fl_str_mv |
Universidade Estadual de Feira de Santana |
| dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da UEFS instname:Universidade Estadual de Feira de Santana (UEFS) instacron:UEFS |
| instname_str |
Universidade Estadual de Feira de Santana (UEFS) |
| instacron_str |
UEFS |
| institution |
UEFS |
| reponame_str |
Biblioteca Digital de Teses e Dissertações da UEFS |
| collection |
Biblioteca Digital de Teses e Dissertações da UEFS |
| bitstream.url.fl_str_mv |
http://tede2.uefs.br:8080/bitstream/tede/1628/4/DISSERTA%C3%87%C3%83O+-+ANDERSON+CERQUEIRA+GUEDES.pdf.jpg http://tede2.uefs.br:8080/bitstream/tede/1628/3/DISSERTA%C3%87%C3%83O+-+ANDERSON+CERQUEIRA+GUEDES.pdf.txt http://tede2.uefs.br:8080/bitstream/tede/1628/2/DISSERTA%C3%87%C3%83O+-+ANDERSON+CERQUEIRA+GUEDES.pdf http://tede2.uefs.br:8080/bitstream/tede/1628/1/license.txt |
| bitstream.checksum.fl_str_mv |
402a4bfa02362f7744f6c5ddede5ca78 707edc8150d6912c224173261d1c0ece 23f3c95a3c6966b0b1619cebd6373f22 7b5ba3d2445355f386edab96125d42b7 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da UEFS - Universidade Estadual de Feira de Santana (UEFS) |
| repository.mail.fl_str_mv |
bcuefs@uefs.br|| bcref@uefs.br||bcuefs@uefs.br |
| _version_ |
1845618202579566592 |