Uso de Few-shot Learning para lidar com o desbalanceamento severo de dados na classifica??o de les?es glomerulares

Detalhes bibliográficos
Ano de defesa: 2025
Autor(a) principal: Santos, Alexsandro Silva lattes
Orientador(a): Duarte, Angelo Am?ncio lattes
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Estadual de Feira de Santana
Programa de Pós-Graduação: Programa de P?s-Gradua??o em Ci?ncia da Computa??o
Departamento: DEPARTAMENTO DE CI?NCIAS EXATAS
País: Brasil
Palavras-chave em Português:
Palavras-chave em Inglês:
Área do conhecimento CNPq:
Link de acesso: http://tede2.uefs.br:8080/handle/tede/1929
Resumo: In the field of nephropathology, the automatic classification of renal biopsy images is crucial for supporting patient diagnosis and treatment. Machine Learning (ML) techniques?particularly those based on Convolutional Neural Networks (CNNs)? have enabled the automation of this task, offering operational improvements. However, these techniques typically require large, balanced datasets to achieve strong performance and are negatively impacted in scenarios with limited data and class imbalance?conditions commonly found in the classification of rare renal lesions. This study presents an applied investigation of approaches for handling class imbalance, including well-established techniques from the literature and the use of Few-Shot Learning (FSL). The results demonstrate that it is possible to achieve F1- scores above 85% across different imbalance scenarios encountered in the analyzed lesion types, reaching scores above 90% even in cases with imbalance ratios as high as ? 1:30. Nevertheless, the experiments conducted in this study revealed that data imbalance, when considered in isolation, is not the sole factor influencing the final performance of ML models.
id UEFS_b49bbc6d2876d762556e0acb9aafb51b
oai_identifier_str oai:tede2.uefs.br:8080:tede/1929
network_acronym_str UEFS
network_name_str Biblioteca Digital de Teses e Dissertações da UEFS
repository_id_str
spelling Duarte, Angelo Am?nciohttps://orcid.org/0000-0001-7446-1342http://lattes.cnpq.br/88215367920425046942960924343548http://lattes.cnpq.br/6942960924343548Santos, Alexsandro Silva2025-09-04T18:57:52Z2025-07-04SANTOS, Alexsandro Silva. Uso de Few-shot Learning para lidar com o desbalanceamento severo de dados na classifica??o de les?es glomerulares, 2025, 200 f., Disserta??o (mestrado) - Programa de P?s-Gradua??o em Ci?ncia da Computa??o, Universidade Estadual de Feira de Santana, Feira de Santana.http://tede2.uefs.br:8080/handle/tede/1929In the field of nephropathology, the automatic classification of renal biopsy images is crucial for supporting patient diagnosis and treatment. Machine Learning (ML) techniques?particularly those based on Convolutional Neural Networks (CNNs)? have enabled the automation of this task, offering operational improvements. However, these techniques typically require large, balanced datasets to achieve strong performance and are negatively impacted in scenarios with limited data and class imbalance?conditions commonly found in the classification of rare renal lesions. This study presents an applied investigation of approaches for handling class imbalance, including well-established techniques from the literature and the use of Few-Shot Learning (FSL). The results demonstrate that it is possible to achieve F1- scores above 85% across different imbalance scenarios encountered in the analyzed lesion types, reaching scores above 90% even in cases with imbalance ratios as high as ? 1:30. Nevertheless, the experiments conducted in this study revealed that data imbalance, when considered in isolation, is not the sole factor influencing the final performance of ML models.No contexto da nefropatologia, a classifica??o autom?tica de imagens de bi?psias renais ? essencial para apoiar o diagn?stico e tratamento de pacientes. T?cnicas de Machine Learning (ML), especialmente aquelas baseadas em redes neurais convolucionais (Convolutional Neural Networks ? CNN), t?m permitido a automatiza??o dessa tarefa, oferecendo ganhos operacionais. No entanto, essas t?cnicas geralmente requerem grandes volumes de dados balanceados para alcan?ar bom desempenho, sendo negativamente afetadas em cen?rios com escassez de dados e desbalanceamento de classes ? uma condi??o comum na classifica??o de les?es renais raras. Este trabalho apresenta um estudo aplicado de abordagens para lidar com o desbalanceamento de classes, incluindo o uso de t?cnicas consolidadas na literatura e a aplica??o do aprendizado com poucas amostras (Few-Shot Learning ? FSL). Os resultados demonstram que ? poss?vel atingir desempenho superior a 85% de F1- score em diferentes cen?rios de desbalanceamento, encontrados para as les?es aqui analisadas, chegando a n?meros superiores a 90% mesmo com taxas de desbalanceamento da ordem de ? 1:30. No entanto, os experimentos realizados neste estudo evidenciaram que o desbalanceamento de dados, considerado isoladamente, n?o ? o ?nico fator relevante no desempenho final dos modelos de ML.Submitted by Daniela Costa (dmscosta@uefs.br) on 2025-09-04T18:57:52Z No. of bitstreams: 1 Alexsandro Silva Santos - Disserta??o.pdf: 63965750 bytes, checksum: 2fcdba5b2c89292315064b02596f3f61 (MD5)Made available in DSpace on 2025-09-04T18:57:52Z (GMT). No. of bitstreams: 1 Alexsandro Silva Santos - Disserta??o.pdf: 63965750 bytes, checksum: 2fcdba5b2c89292315064b02596f3f61 (MD5) Previous issue date: 2025-07-04application/pdfhttp://tede2.uefs.br:8080/retrieve/7946/Alexsandro%20Silva%20Santos%20-%20Disserta%c3%a7%c3%a3o.pdf.jpgporUniversidade Estadual de Feira de SantanaPrograma de P?s-Gradua??o em Ci?ncia da Computa??oUEFSBrasilDEPARTAMENTO DE CI?NCIAS EXATASPatologia ComputacionalDesbalanceamento de classesFew-shot LearningComputational PathologyClass ImbalanceFew-shot LearningCIENCIAS EXATAS E DA TERRAUso de Few-shot Learning para lidar com o desbalanceamento severo de dados na classifica??o de les?es glomerularesinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesis19749965330812744706006006007994740082289590807-4537326059604784016info:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UEFSinstname:Universidade Estadual de Feira de Santana (UEFS)instacron:UEFSTHUMBNAILAlexsandro Silva Santos - Disserta??o.pdf.jpgAlexsandro Silva Santos - Disserta??o.pdf.jpgimage/jpeg3424http://tede2.uefs.br:8080/bitstream/tede/1929/4/Alexsandro+Silva+Santos+-+Disserta%C3%A7%C3%A3o.pdf.jpg89e227313964db0d85c273522f9ecb2bMD54TEXTAlexsandro Silva Santos - Disserta??o.pdf.txtAlexsandro Silva Santos - Disserta??o.pdf.txttext/plain338861http://tede2.uefs.br:8080/bitstream/tede/1929/3/Alexsandro+Silva+Santos+-+Disserta%C3%A7%C3%A3o.pdf.txt8668fecdded922fa9d7e0d816a8e6512MD53ORIGINALAlexsandro Silva Santos - Disserta??o.pdfAlexsandro Silva Santos - Disserta??o.pdfapplication/pdf63965750http://tede2.uefs.br:8080/bitstream/tede/1929/2/Alexsandro+Silva+Santos+-+Disserta%C3%A7%C3%A3o.pdf2fcdba5b2c89292315064b02596f3f61MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-82165http://tede2.uefs.br:8080/bitstream/tede/1929/1/license.txtbd3efa91386c1718a7f26a329fdcb468MD51tede/19292025-09-10 01:45:33.194oai:tede2.uefs.br:8080:tede/1929Tk9UQTogQ09MT1FVRSBBUVVJIEEgU1VBIFBSw5NQUklBIExJQ0VOw4dBCkVzdGEgbGljZW7Dp2EgZGUgZXhlbXBsbyDDqSBmb3JuZWNpZGEgYXBlbmFzIHBhcmEgZmlucyBpbmZvcm1hdGl2b3MuCgpMSUNFTsOHQSBERSBESVNUUklCVUnDh8ODTyBOw4NPLUVYQ0xVU0lWQQoKQ29tIGEgYXByZXNlbnRhw6fDo28gZGVzdGEgbGljZW7Dp2EsIHZvY8OqIChvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSDDoCBVbml2ZXJzaWRhZGUgClhYWCAoU2lnbGEgZGEgVW5pdmVyc2lkYWRlKSBvIGRpcmVpdG8gbsOjby1leGNsdXNpdm8gZGUgcmVwcm9kdXppciwgIHRyYWR1emlyIChjb25mb3JtZSBkZWZpbmlkbyBhYmFpeG8pLCBlL291IApkaXN0cmlidWlyIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyAoaW5jbHVpbmRvIG8gcmVzdW1vKSBwb3IgdG9kbyBvIG11bmRvIG5vIGZvcm1hdG8gaW1wcmVzc28gZSBlbGV0csO0bmljbyBlIAplbSBxdWFscXVlciBtZWlvLCBpbmNsdWluZG8gb3MgZm9ybWF0b3Mgw6F1ZGlvIG91IHbDrWRlby4KClZvY8OqIGNvbmNvcmRhIHF1ZSBhIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBwb2RlLCBzZW0gYWx0ZXJhciBvIGNvbnRlw7pkbywgdHJhbnNwb3IgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIApwYXJhIHF1YWxxdWVyIG1laW8gb3UgZm9ybWF0byBwYXJhIGZpbnMgZGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIHRhbWLDqW0gY29uY29yZGEgcXVlIGEgU2lnbGEgZGUgVW5pdmVyc2lkYWRlIHBvZGUgbWFudGVyIG1haXMgZGUgdW1hIGPDs3BpYSBhIHN1YSB0ZXNlIG91IApkaXNzZXJ0YcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcyAKbmVzdGEgbGljZW7Dp2EuIFZvY8OqIHRhbWLDqW0gZGVjbGFyYSBxdWUgbyBkZXDDs3NpdG8gZGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBuw6NvLCBxdWUgc2VqYSBkZSBzZXUgCmNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3XDqW0uCgpDYXNvIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiAKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIMOgIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSAKb3MgZGlyZWl0b3MgYXByZXNlbnRhZG9zIG5lc3RhIGxpY2Vuw6dhLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3TDoSBjbGFyYW1lbnRlIAppZGVudGlmaWNhZG8gZSByZWNvbmhlY2lkbyBubyB0ZXh0byBvdSBubyBjb250ZcO6ZG8gZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIG9yYSBkZXBvc2l0YWRhLgoKQ0FTTyBBIFRFU0UgT1UgRElTU0VSVEHDh8ODTyBPUkEgREVQT1NJVEFEQSBURU5IQSBTSURPIFJFU1VMVEFETyBERSBVTSBQQVRST0PDjU5JTyBPVSAKQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBTSUdMQSBERSAKVU5JVkVSU0lEQURFLCBWT0PDiiBERUNMQVJBIFFVRSBSRVNQRUlUT1UgVE9ET1MgRSBRVUFJU1FVRVIgRElSRUlUT1MgREUgUkVWSVPDg08gQ09NTyAKVEFNQsOJTSBBUyBERU1BSVMgT0JSSUdBw4fDlUVTIEVYSUdJREFTIFBPUiBDT05UUkFUTyBPVSBBQ09SRE8uCgpBIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBzZSBjb21wcm9tZXRlIGEgaWRlbnRpZmljYXIgY2xhcmFtZW50ZSBvIHNldSBub21lIChzKSBvdSBvKHMpIG5vbWUocykgZG8ocykgCmRldGVudG9yKGVzKSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzIApjb25jZWRpZGFzIHBvciBlc3RhIGxpY2Vuw6dhLgo=Biblioteca Digital de Teses e Dissertaçõeshttp://tede2.uefs.br:8080/PUBhttp://tede2.uefs.br:8080/oai/requestbcuefs@uefs.br|| bcref@uefs.br||bcuefs@uefs.bropendoar:2025-09-10T04:45:33Biblioteca Digital de Teses e Dissertações da UEFS - Universidade Estadual de Feira de Santana (UEFS)false
dc.title.por.fl_str_mv Uso de Few-shot Learning para lidar com o desbalanceamento severo de dados na classifica??o de les?es glomerulares
title Uso de Few-shot Learning para lidar com o desbalanceamento severo de dados na classifica??o de les?es glomerulares
spellingShingle Uso de Few-shot Learning para lidar com o desbalanceamento severo de dados na classifica??o de les?es glomerulares
Santos, Alexsandro Silva
Patologia Computacional
Desbalanceamento de classes
Few-shot Learning
Computational Pathology
Class Imbalance
Few-shot Learning
CIENCIAS EXATAS E DA TERRA
title_short Uso de Few-shot Learning para lidar com o desbalanceamento severo de dados na classifica??o de les?es glomerulares
title_full Uso de Few-shot Learning para lidar com o desbalanceamento severo de dados na classifica??o de les?es glomerulares
title_fullStr Uso de Few-shot Learning para lidar com o desbalanceamento severo de dados na classifica??o de les?es glomerulares
title_full_unstemmed Uso de Few-shot Learning para lidar com o desbalanceamento severo de dados na classifica??o de les?es glomerulares
title_sort Uso de Few-shot Learning para lidar com o desbalanceamento severo de dados na classifica??o de les?es glomerulares
author Santos, Alexsandro Silva
author_facet Santos, Alexsandro Silva
author_role author
dc.contributor.advisor1.fl_str_mv Duarte, Angelo Am?ncio
dc.contributor.advisor1ID.fl_str_mv https://orcid.org/0000-0001-7446-1342
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/8821536792042504
dc.contributor.authorID.fl_str_mv 6942960924343548
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/6942960924343548
dc.contributor.author.fl_str_mv Santos, Alexsandro Silva
contributor_str_mv Duarte, Angelo Am?ncio
dc.subject.por.fl_str_mv Patologia Computacional
Desbalanceamento de classes
Few-shot Learning
topic Patologia Computacional
Desbalanceamento de classes
Few-shot Learning
Computational Pathology
Class Imbalance
Few-shot Learning
CIENCIAS EXATAS E DA TERRA
dc.subject.eng.fl_str_mv Computational Pathology
Class Imbalance
Few-shot Learning
dc.subject.cnpq.fl_str_mv CIENCIAS EXATAS E DA TERRA
description In the field of nephropathology, the automatic classification of renal biopsy images is crucial for supporting patient diagnosis and treatment. Machine Learning (ML) techniques?particularly those based on Convolutional Neural Networks (CNNs)? have enabled the automation of this task, offering operational improvements. However, these techniques typically require large, balanced datasets to achieve strong performance and are negatively impacted in scenarios with limited data and class imbalance?conditions commonly found in the classification of rare renal lesions. This study presents an applied investigation of approaches for handling class imbalance, including well-established techniques from the literature and the use of Few-Shot Learning (FSL). The results demonstrate that it is possible to achieve F1- scores above 85% across different imbalance scenarios encountered in the analyzed lesion types, reaching scores above 90% even in cases with imbalance ratios as high as ? 1:30. Nevertheless, the experiments conducted in this study revealed that data imbalance, when considered in isolation, is not the sole factor influencing the final performance of ML models.
publishDate 2025
dc.date.accessioned.fl_str_mv 2025-09-04T18:57:52Z
dc.date.issued.fl_str_mv 2025-07-04
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv SANTOS, Alexsandro Silva. Uso de Few-shot Learning para lidar com o desbalanceamento severo de dados na classifica??o de les?es glomerulares, 2025, 200 f., Disserta??o (mestrado) - Programa de P?s-Gradua??o em Ci?ncia da Computa??o, Universidade Estadual de Feira de Santana, Feira de Santana.
dc.identifier.uri.fl_str_mv http://tede2.uefs.br:8080/handle/tede/1929
identifier_str_mv SANTOS, Alexsandro Silva. Uso de Few-shot Learning para lidar com o desbalanceamento severo de dados na classifica??o de les?es glomerulares, 2025, 200 f., Disserta??o (mestrado) - Programa de P?s-Gradua??o em Ci?ncia da Computa??o, Universidade Estadual de Feira de Santana, Feira de Santana.
url http://tede2.uefs.br:8080/handle/tede/1929
dc.language.iso.fl_str_mv por
language por
dc.relation.program.fl_str_mv 1974996533081274470
dc.relation.confidence.fl_str_mv 600
600
600
dc.relation.department.fl_str_mv 7994740082289590807
dc.relation.cnpq.fl_str_mv -4537326059604784016
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Estadual de Feira de Santana
dc.publisher.program.fl_str_mv Programa de P?s-Gradua??o em Ci?ncia da Computa??o
dc.publisher.initials.fl_str_mv UEFS
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv DEPARTAMENTO DE CI?NCIAS EXATAS
publisher.none.fl_str_mv Universidade Estadual de Feira de Santana
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações da UEFS
instname:Universidade Estadual de Feira de Santana (UEFS)
instacron:UEFS
instname_str Universidade Estadual de Feira de Santana (UEFS)
instacron_str UEFS
institution UEFS
reponame_str Biblioteca Digital de Teses e Dissertações da UEFS
collection Biblioteca Digital de Teses e Dissertações da UEFS
bitstream.url.fl_str_mv http://tede2.uefs.br:8080/bitstream/tede/1929/4/Alexsandro+Silva+Santos+-+Disserta%C3%A7%C3%A3o.pdf.jpg
http://tede2.uefs.br:8080/bitstream/tede/1929/3/Alexsandro+Silva+Santos+-+Disserta%C3%A7%C3%A3o.pdf.txt
http://tede2.uefs.br:8080/bitstream/tede/1929/2/Alexsandro+Silva+Santos+-+Disserta%C3%A7%C3%A3o.pdf
http://tede2.uefs.br:8080/bitstream/tede/1929/1/license.txt
bitstream.checksum.fl_str_mv 89e227313964db0d85c273522f9ecb2b
8668fecdded922fa9d7e0d816a8e6512
2fcdba5b2c89292315064b02596f3f61
bd3efa91386c1718a7f26a329fdcb468
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da UEFS - Universidade Estadual de Feira de Santana (UEFS)
repository.mail.fl_str_mv bcuefs@uefs.br|| bcref@uefs.br||bcuefs@uefs.br
_version_ 1845618206137384960