Uso de Few-shot Learning para lidar com o desbalanceamento severo de dados na classifica??o de les?es glomerulares
| Ano de defesa: | 2025 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | |
| Tipo de documento: | Dissertação |
| Tipo de acesso: | Acesso aberto |
| Idioma: | por |
| Instituição de defesa: |
Universidade Estadual de Feira de Santana
|
| Programa de Pós-Graduação: |
Programa de P?s-Gradua??o em Ci?ncia da Computa??o
|
| Departamento: |
DEPARTAMENTO DE CI?NCIAS EXATAS
|
| País: |
Brasil
|
| Palavras-chave em Português: | |
| Palavras-chave em Inglês: | |
| Área do conhecimento CNPq: | |
| Link de acesso: | http://tede2.uefs.br:8080/handle/tede/1929 |
Resumo: | In the field of nephropathology, the automatic classification of renal biopsy images is crucial for supporting patient diagnosis and treatment. Machine Learning (ML) techniques?particularly those based on Convolutional Neural Networks (CNNs)? have enabled the automation of this task, offering operational improvements. However, these techniques typically require large, balanced datasets to achieve strong performance and are negatively impacted in scenarios with limited data and class imbalance?conditions commonly found in the classification of rare renal lesions. This study presents an applied investigation of approaches for handling class imbalance, including well-established techniques from the literature and the use of Few-Shot Learning (FSL). The results demonstrate that it is possible to achieve F1- scores above 85% across different imbalance scenarios encountered in the analyzed lesion types, reaching scores above 90% even in cases with imbalance ratios as high as ? 1:30. Nevertheless, the experiments conducted in this study revealed that data imbalance, when considered in isolation, is not the sole factor influencing the final performance of ML models. |
| id |
UEFS_b49bbc6d2876d762556e0acb9aafb51b |
|---|---|
| oai_identifier_str |
oai:tede2.uefs.br:8080:tede/1929 |
| network_acronym_str |
UEFS |
| network_name_str |
Biblioteca Digital de Teses e Dissertações da UEFS |
| repository_id_str |
|
| spelling |
Duarte, Angelo Am?nciohttps://orcid.org/0000-0001-7446-1342http://lattes.cnpq.br/88215367920425046942960924343548http://lattes.cnpq.br/6942960924343548Santos, Alexsandro Silva2025-09-04T18:57:52Z2025-07-04SANTOS, Alexsandro Silva. Uso de Few-shot Learning para lidar com o desbalanceamento severo de dados na classifica??o de les?es glomerulares, 2025, 200 f., Disserta??o (mestrado) - Programa de P?s-Gradua??o em Ci?ncia da Computa??o, Universidade Estadual de Feira de Santana, Feira de Santana.http://tede2.uefs.br:8080/handle/tede/1929In the field of nephropathology, the automatic classification of renal biopsy images is crucial for supporting patient diagnosis and treatment. Machine Learning (ML) techniques?particularly those based on Convolutional Neural Networks (CNNs)? have enabled the automation of this task, offering operational improvements. However, these techniques typically require large, balanced datasets to achieve strong performance and are negatively impacted in scenarios with limited data and class imbalance?conditions commonly found in the classification of rare renal lesions. This study presents an applied investigation of approaches for handling class imbalance, including well-established techniques from the literature and the use of Few-Shot Learning (FSL). The results demonstrate that it is possible to achieve F1- scores above 85% across different imbalance scenarios encountered in the analyzed lesion types, reaching scores above 90% even in cases with imbalance ratios as high as ? 1:30. Nevertheless, the experiments conducted in this study revealed that data imbalance, when considered in isolation, is not the sole factor influencing the final performance of ML models.No contexto da nefropatologia, a classifica??o autom?tica de imagens de bi?psias renais ? essencial para apoiar o diagn?stico e tratamento de pacientes. T?cnicas de Machine Learning (ML), especialmente aquelas baseadas em redes neurais convolucionais (Convolutional Neural Networks ? CNN), t?m permitido a automatiza??o dessa tarefa, oferecendo ganhos operacionais. No entanto, essas t?cnicas geralmente requerem grandes volumes de dados balanceados para alcan?ar bom desempenho, sendo negativamente afetadas em cen?rios com escassez de dados e desbalanceamento de classes ? uma condi??o comum na classifica??o de les?es renais raras. Este trabalho apresenta um estudo aplicado de abordagens para lidar com o desbalanceamento de classes, incluindo o uso de t?cnicas consolidadas na literatura e a aplica??o do aprendizado com poucas amostras (Few-Shot Learning ? FSL). Os resultados demonstram que ? poss?vel atingir desempenho superior a 85% de F1- score em diferentes cen?rios de desbalanceamento, encontrados para as les?es aqui analisadas, chegando a n?meros superiores a 90% mesmo com taxas de desbalanceamento da ordem de ? 1:30. No entanto, os experimentos realizados neste estudo evidenciaram que o desbalanceamento de dados, considerado isoladamente, n?o ? o ?nico fator relevante no desempenho final dos modelos de ML.Submitted by Daniela Costa (dmscosta@uefs.br) on 2025-09-04T18:57:52Z No. of bitstreams: 1 Alexsandro Silva Santos - Disserta??o.pdf: 63965750 bytes, checksum: 2fcdba5b2c89292315064b02596f3f61 (MD5)Made available in DSpace on 2025-09-04T18:57:52Z (GMT). No. of bitstreams: 1 Alexsandro Silva Santos - Disserta??o.pdf: 63965750 bytes, checksum: 2fcdba5b2c89292315064b02596f3f61 (MD5) Previous issue date: 2025-07-04application/pdfhttp://tede2.uefs.br:8080/retrieve/7946/Alexsandro%20Silva%20Santos%20-%20Disserta%c3%a7%c3%a3o.pdf.jpgporUniversidade Estadual de Feira de SantanaPrograma de P?s-Gradua??o em Ci?ncia da Computa??oUEFSBrasilDEPARTAMENTO DE CI?NCIAS EXATASPatologia ComputacionalDesbalanceamento de classesFew-shot LearningComputational PathologyClass ImbalanceFew-shot LearningCIENCIAS EXATAS E DA TERRAUso de Few-shot Learning para lidar com o desbalanceamento severo de dados na classifica??o de les?es glomerularesinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesis19749965330812744706006006007994740082289590807-4537326059604784016info:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UEFSinstname:Universidade Estadual de Feira de Santana (UEFS)instacron:UEFSTHUMBNAILAlexsandro Silva Santos - Disserta??o.pdf.jpgAlexsandro Silva Santos - Disserta??o.pdf.jpgimage/jpeg3424http://tede2.uefs.br:8080/bitstream/tede/1929/4/Alexsandro+Silva+Santos+-+Disserta%C3%A7%C3%A3o.pdf.jpg89e227313964db0d85c273522f9ecb2bMD54TEXTAlexsandro Silva Santos - Disserta??o.pdf.txtAlexsandro Silva Santos - Disserta??o.pdf.txttext/plain338861http://tede2.uefs.br:8080/bitstream/tede/1929/3/Alexsandro+Silva+Santos+-+Disserta%C3%A7%C3%A3o.pdf.txt8668fecdded922fa9d7e0d816a8e6512MD53ORIGINALAlexsandro Silva Santos - Disserta??o.pdfAlexsandro Silva Santos - Disserta??o.pdfapplication/pdf63965750http://tede2.uefs.br:8080/bitstream/tede/1929/2/Alexsandro+Silva+Santos+-+Disserta%C3%A7%C3%A3o.pdf2fcdba5b2c89292315064b02596f3f61MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-82165http://tede2.uefs.br:8080/bitstream/tede/1929/1/license.txtbd3efa91386c1718a7f26a329fdcb468MD51tede/19292025-09-10 01:45:33.194oai:tede2.uefs.br:8080:tede/1929Tk9UQTogQ09MT1FVRSBBUVVJIEEgU1VBIFBSw5NQUklBIExJQ0VOw4dBCkVzdGEgbGljZW7Dp2EgZGUgZXhlbXBsbyDDqSBmb3JuZWNpZGEgYXBlbmFzIHBhcmEgZmlucyBpbmZvcm1hdGl2b3MuCgpMSUNFTsOHQSBERSBESVNUUklCVUnDh8ODTyBOw4NPLUVYQ0xVU0lWQQoKQ29tIGEgYXByZXNlbnRhw6fDo28gZGVzdGEgbGljZW7Dp2EsIHZvY8OqIChvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSDDoCBVbml2ZXJzaWRhZGUgClhYWCAoU2lnbGEgZGEgVW5pdmVyc2lkYWRlKSBvIGRpcmVpdG8gbsOjby1leGNsdXNpdm8gZGUgcmVwcm9kdXppciwgIHRyYWR1emlyIChjb25mb3JtZSBkZWZpbmlkbyBhYmFpeG8pLCBlL291IApkaXN0cmlidWlyIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyAoaW5jbHVpbmRvIG8gcmVzdW1vKSBwb3IgdG9kbyBvIG11bmRvIG5vIGZvcm1hdG8gaW1wcmVzc28gZSBlbGV0csO0bmljbyBlIAplbSBxdWFscXVlciBtZWlvLCBpbmNsdWluZG8gb3MgZm9ybWF0b3Mgw6F1ZGlvIG91IHbDrWRlby4KClZvY8OqIGNvbmNvcmRhIHF1ZSBhIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBwb2RlLCBzZW0gYWx0ZXJhciBvIGNvbnRlw7pkbywgdHJhbnNwb3IgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIApwYXJhIHF1YWxxdWVyIG1laW8gb3UgZm9ybWF0byBwYXJhIGZpbnMgZGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIHRhbWLDqW0gY29uY29yZGEgcXVlIGEgU2lnbGEgZGUgVW5pdmVyc2lkYWRlIHBvZGUgbWFudGVyIG1haXMgZGUgdW1hIGPDs3BpYSBhIHN1YSB0ZXNlIG91IApkaXNzZXJ0YcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcyAKbmVzdGEgbGljZW7Dp2EuIFZvY8OqIHRhbWLDqW0gZGVjbGFyYSBxdWUgbyBkZXDDs3NpdG8gZGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBuw6NvLCBxdWUgc2VqYSBkZSBzZXUgCmNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3XDqW0uCgpDYXNvIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiAKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIMOgIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSAKb3MgZGlyZWl0b3MgYXByZXNlbnRhZG9zIG5lc3RhIGxpY2Vuw6dhLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3TDoSBjbGFyYW1lbnRlIAppZGVudGlmaWNhZG8gZSByZWNvbmhlY2lkbyBubyB0ZXh0byBvdSBubyBjb250ZcO6ZG8gZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIG9yYSBkZXBvc2l0YWRhLgoKQ0FTTyBBIFRFU0UgT1UgRElTU0VSVEHDh8ODTyBPUkEgREVQT1NJVEFEQSBURU5IQSBTSURPIFJFU1VMVEFETyBERSBVTSBQQVRST0PDjU5JTyBPVSAKQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBTSUdMQSBERSAKVU5JVkVSU0lEQURFLCBWT0PDiiBERUNMQVJBIFFVRSBSRVNQRUlUT1UgVE9ET1MgRSBRVUFJU1FVRVIgRElSRUlUT1MgREUgUkVWSVPDg08gQ09NTyAKVEFNQsOJTSBBUyBERU1BSVMgT0JSSUdBw4fDlUVTIEVYSUdJREFTIFBPUiBDT05UUkFUTyBPVSBBQ09SRE8uCgpBIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBzZSBjb21wcm9tZXRlIGEgaWRlbnRpZmljYXIgY2xhcmFtZW50ZSBvIHNldSBub21lIChzKSBvdSBvKHMpIG5vbWUocykgZG8ocykgCmRldGVudG9yKGVzKSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzIApjb25jZWRpZGFzIHBvciBlc3RhIGxpY2Vuw6dhLgo=Biblioteca Digital de Teses e Dissertaçõeshttp://tede2.uefs.br:8080/PUBhttp://tede2.uefs.br:8080/oai/requestbcuefs@uefs.br|| bcref@uefs.br||bcuefs@uefs.bropendoar:2025-09-10T04:45:33Biblioteca Digital de Teses e Dissertações da UEFS - Universidade Estadual de Feira de Santana (UEFS)false |
| dc.title.por.fl_str_mv |
Uso de Few-shot Learning para lidar com o desbalanceamento severo de dados na classifica??o de les?es glomerulares |
| title |
Uso de Few-shot Learning para lidar com o desbalanceamento severo de dados na classifica??o de les?es glomerulares |
| spellingShingle |
Uso de Few-shot Learning para lidar com o desbalanceamento severo de dados na classifica??o de les?es glomerulares Santos, Alexsandro Silva Patologia Computacional Desbalanceamento de classes Few-shot Learning Computational Pathology Class Imbalance Few-shot Learning CIENCIAS EXATAS E DA TERRA |
| title_short |
Uso de Few-shot Learning para lidar com o desbalanceamento severo de dados na classifica??o de les?es glomerulares |
| title_full |
Uso de Few-shot Learning para lidar com o desbalanceamento severo de dados na classifica??o de les?es glomerulares |
| title_fullStr |
Uso de Few-shot Learning para lidar com o desbalanceamento severo de dados na classifica??o de les?es glomerulares |
| title_full_unstemmed |
Uso de Few-shot Learning para lidar com o desbalanceamento severo de dados na classifica??o de les?es glomerulares |
| title_sort |
Uso de Few-shot Learning para lidar com o desbalanceamento severo de dados na classifica??o de les?es glomerulares |
| author |
Santos, Alexsandro Silva |
| author_facet |
Santos, Alexsandro Silva |
| author_role |
author |
| dc.contributor.advisor1.fl_str_mv |
Duarte, Angelo Am?ncio |
| dc.contributor.advisor1ID.fl_str_mv |
https://orcid.org/0000-0001-7446-1342 |
| dc.contributor.advisor1Lattes.fl_str_mv |
http://lattes.cnpq.br/8821536792042504 |
| dc.contributor.authorID.fl_str_mv |
6942960924343548 |
| dc.contributor.authorLattes.fl_str_mv |
http://lattes.cnpq.br/6942960924343548 |
| dc.contributor.author.fl_str_mv |
Santos, Alexsandro Silva |
| contributor_str_mv |
Duarte, Angelo Am?ncio |
| dc.subject.por.fl_str_mv |
Patologia Computacional Desbalanceamento de classes Few-shot Learning |
| topic |
Patologia Computacional Desbalanceamento de classes Few-shot Learning Computational Pathology Class Imbalance Few-shot Learning CIENCIAS EXATAS E DA TERRA |
| dc.subject.eng.fl_str_mv |
Computational Pathology Class Imbalance Few-shot Learning |
| dc.subject.cnpq.fl_str_mv |
CIENCIAS EXATAS E DA TERRA |
| description |
In the field of nephropathology, the automatic classification of renal biopsy images is crucial for supporting patient diagnosis and treatment. Machine Learning (ML) techniques?particularly those based on Convolutional Neural Networks (CNNs)? have enabled the automation of this task, offering operational improvements. However, these techniques typically require large, balanced datasets to achieve strong performance and are negatively impacted in scenarios with limited data and class imbalance?conditions commonly found in the classification of rare renal lesions. This study presents an applied investigation of approaches for handling class imbalance, including well-established techniques from the literature and the use of Few-Shot Learning (FSL). The results demonstrate that it is possible to achieve F1- scores above 85% across different imbalance scenarios encountered in the analyzed lesion types, reaching scores above 90% even in cases with imbalance ratios as high as ? 1:30. Nevertheless, the experiments conducted in this study revealed that data imbalance, when considered in isolation, is not the sole factor influencing the final performance of ML models. |
| publishDate |
2025 |
| dc.date.accessioned.fl_str_mv |
2025-09-04T18:57:52Z |
| dc.date.issued.fl_str_mv |
2025-07-04 |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
| format |
masterThesis |
| status_str |
publishedVersion |
| dc.identifier.citation.fl_str_mv |
SANTOS, Alexsandro Silva. Uso de Few-shot Learning para lidar com o desbalanceamento severo de dados na classifica??o de les?es glomerulares, 2025, 200 f., Disserta??o (mestrado) - Programa de P?s-Gradua??o em Ci?ncia da Computa??o, Universidade Estadual de Feira de Santana, Feira de Santana. |
| dc.identifier.uri.fl_str_mv |
http://tede2.uefs.br:8080/handle/tede/1929 |
| identifier_str_mv |
SANTOS, Alexsandro Silva. Uso de Few-shot Learning para lidar com o desbalanceamento severo de dados na classifica??o de les?es glomerulares, 2025, 200 f., Disserta??o (mestrado) - Programa de P?s-Gradua??o em Ci?ncia da Computa??o, Universidade Estadual de Feira de Santana, Feira de Santana. |
| url |
http://tede2.uefs.br:8080/handle/tede/1929 |
| dc.language.iso.fl_str_mv |
por |
| language |
por |
| dc.relation.program.fl_str_mv |
1974996533081274470 |
| dc.relation.confidence.fl_str_mv |
600 600 600 |
| dc.relation.department.fl_str_mv |
7994740082289590807 |
| dc.relation.cnpq.fl_str_mv |
-4537326059604784016 |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.publisher.none.fl_str_mv |
Universidade Estadual de Feira de Santana |
| dc.publisher.program.fl_str_mv |
Programa de P?s-Gradua??o em Ci?ncia da Computa??o |
| dc.publisher.initials.fl_str_mv |
UEFS |
| dc.publisher.country.fl_str_mv |
Brasil |
| dc.publisher.department.fl_str_mv |
DEPARTAMENTO DE CI?NCIAS EXATAS |
| publisher.none.fl_str_mv |
Universidade Estadual de Feira de Santana |
| dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da UEFS instname:Universidade Estadual de Feira de Santana (UEFS) instacron:UEFS |
| instname_str |
Universidade Estadual de Feira de Santana (UEFS) |
| instacron_str |
UEFS |
| institution |
UEFS |
| reponame_str |
Biblioteca Digital de Teses e Dissertações da UEFS |
| collection |
Biblioteca Digital de Teses e Dissertações da UEFS |
| bitstream.url.fl_str_mv |
http://tede2.uefs.br:8080/bitstream/tede/1929/4/Alexsandro+Silva+Santos+-+Disserta%C3%A7%C3%A3o.pdf.jpg http://tede2.uefs.br:8080/bitstream/tede/1929/3/Alexsandro+Silva+Santos+-+Disserta%C3%A7%C3%A3o.pdf.txt http://tede2.uefs.br:8080/bitstream/tede/1929/2/Alexsandro+Silva+Santos+-+Disserta%C3%A7%C3%A3o.pdf http://tede2.uefs.br:8080/bitstream/tede/1929/1/license.txt |
| bitstream.checksum.fl_str_mv |
89e227313964db0d85c273522f9ecb2b 8668fecdded922fa9d7e0d816a8e6512 2fcdba5b2c89292315064b02596f3f61 bd3efa91386c1718a7f26a329fdcb468 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da UEFS - Universidade Estadual de Feira de Santana (UEFS) |
| repository.mail.fl_str_mv |
bcuefs@uefs.br|| bcref@uefs.br||bcuefs@uefs.br |
| _version_ |
1845618206137384960 |