Adapta??o do algoritmo gen?tico NSGA-DO ? problemas de otimiza??o multiobjetivo est?ticos e din?micos

Detalhes bibliográficos
Ano de defesa: 2023
Autor(a) principal: Machado, Jussara Gomes lattes
Orientador(a): Pires, Matheus Giovanni lattes
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Estadual de Feira de Santana
Programa de Pós-Graduação: Programa de P?s-Gradua??o em Ci?ncia da Computa??o
Departamento: DEPARTAMENTO DE TECNOLOGIA
País: Brasil
Palavras-chave em Português:
Palavras-chave em Inglês:
Área do conhecimento CNPq:
Link de acesso: http://tede2.uefs.br:8080/handle/tede/1565
Resumo: Evolutionary Algorithms (EAs) are useful in solving Multi-Objective Optimization Problems (MOOPs) because they allow finding different solutions with different compensations for the objectives. One class of EAs are Genetic Algorithms (GAs), which use parallel search and optimization techniques based on natural selection and genetic reproduction. A GA commonly applied in the resolution of MOOPs, both artificial and in the real world, is the NSGA-II, which is sometimes used as a basis for the development of other algorithms, such as the NSGA-DO. The field of Multi-objective Optimization (MOO) is consolidated, we currently have different benchmarks, performance metrics and efficient AEs. However, regarding the latter, what is observed is that the performance of the algorithms is proportional to their complexity, which induces researchers from other fields to continue to prefer the NSGA-II. Furthermore, interest in Multi-objective Dynamic Optimization (DMOO), in which the environment changes over time, has intensified only in recent years and there are many challenges in this emerging field of research. Regarding the NSGA-DO, it proposes modifications in part of the NSGA-II, and even having shown superior performance in other fields, the algorithm does not present satisfactory results when applied to continuous MOOPs. In this context, recognizing the simplicity and potential of the recent algorithm, as well as the need for advances in the field of DMOO, the objective of this research was the development of improvements to NSGA-DO, as well as the elucidation of important issues related to the field of DMOO. The methodology adopted here was divided into two phases partially interspersed. In the first phase, classified as a descriptive bibliographical research, review studies published in the field of DMOO were identified, described and analyzed. In the second phase, classified as an explanatory experimental research, the evolutionary strategy of the NSGA-DO was investigated and improvements were applied. As a result of the analysis of the studies, it can be seen that the main challenges in the field of DMOO revolve around detecting changes and responding to changes. In this process, a DMOA (Dynamic Multi-objective Algorithm) faces difficulties related to the preservation of diversity, convergence considering the new environment and recovery of possible unfeasible solutions. On experimentation, the modifications applied to NSGA-DO resulted in a new GA, Modified NSGA-DO (MNSGA-DO), which i surpasses NSGA-DO and even NSGA-II in problems with different characteristics . Also, a dynamic variant of MNSGA-DO was proposed, the Dynamic MNSGA-DO (D-MNSGA-DO), which achieved satisfactory performance, managing to track and respond to changes in the environment. With the results obtained, it can be concluded that the present study achieved its objectives by proposing a new GA with a simple strategy and able to solve MOOPS and DMOPs, as well as presenting a compilation of review studies published over the years, these in the field from DMOO
id UEFS_c61b4e229b405ee2f51c54af340a7a8b
oai_identifier_str oai:tede2.uefs.br:8080:tede/1565
network_acronym_str UEFS
network_name_str Biblioteca Digital de Teses e Dissertações da UEFS
repository_id_str
spelling Pires, Matheus Giovanni215536188-23http://lattes.cnpq.br/8293999476048705058190685-30https://orcid.org/0000-0003-1998-0304http://lattes.cnpq.br/3007515996243286Machado, Jussara Gomes2023-11-27T21:02:09Z2023-02-27MACHADO, Jussara Gomes. Adapta??o do algoritmo gen?tico NSGA-DO ? problemas de otimiza??o multiobjetivo est?ticos e din?micos, 2023, 122f., Disserta??o (Mestrado em Ci?ncia da Computa??o), Programa de P?s-Gradua??o em Ci?ncia da Computa??o, Universidade Estadual de Feira de Santana, Feira de Santana.http://tede2.uefs.br:8080/handle/tede/1565Evolutionary Algorithms (EAs) are useful in solving Multi-Objective Optimization Problems (MOOPs) because they allow finding different solutions with different compensations for the objectives. One class of EAs are Genetic Algorithms (GAs), which use parallel search and optimization techniques based on natural selection and genetic reproduction. A GA commonly applied in the resolution of MOOPs, both artificial and in the real world, is the NSGA-II, which is sometimes used as a basis for the development of other algorithms, such as the NSGA-DO. The field of Multi-objective Optimization (MOO) is consolidated, we currently have different benchmarks, performance metrics and efficient AEs. However, regarding the latter, what is observed is that the performance of the algorithms is proportional to their complexity, which induces researchers from other fields to continue to prefer the NSGA-II. Furthermore, interest in Multi-objective Dynamic Optimization (DMOO), in which the environment changes over time, has intensified only in recent years and there are many challenges in this emerging field of research. Regarding the NSGA-DO, it proposes modifications in part of the NSGA-II, and even having shown superior performance in other fields, the algorithm does not present satisfactory results when applied to continuous MOOPs. In this context, recognizing the simplicity and potential of the recent algorithm, as well as the need for advances in the field of DMOO, the objective of this research was the development of improvements to NSGA-DO, as well as the elucidation of important issues related to the field of DMOO. The methodology adopted here was divided into two phases partially interspersed. In the first phase, classified as a descriptive bibliographical research, review studies published in the field of DMOO were identified, described and analyzed. In the second phase, classified as an explanatory experimental research, the evolutionary strategy of the NSGA-DO was investigated and improvements were applied. As a result of the analysis of the studies, it can be seen that the main challenges in the field of DMOO revolve around detecting changes and responding to changes. In this process, a DMOA (Dynamic Multi-objective Algorithm) faces difficulties related to the preservation of diversity, convergence considering the new environment and recovery of possible unfeasible solutions. On experimentation, the modifications applied to NSGA-DO resulted in a new GA, Modified NSGA-DO (MNSGA-DO), which i surpasses NSGA-DO and even NSGA-II in problems with different characteristics . Also, a dynamic variant of MNSGA-DO was proposed, the Dynamic MNSGA-DO (D-MNSGA-DO), which achieved satisfactory performance, managing to track and respond to changes in the environment. With the results obtained, it can be concluded that the present study achieved its objectives by proposing a new GA with a simple strategy and able to solve MOOPS and DMOPs, as well as presenting a compilation of review studies published over the years, these in the field from DMOOAlgoritmos Evolutivos (AEs) s?o ?uteis na resolu??o de Problemas de Otimza??o Multiobjetivo (MOOPs) por possibilitar encontrar distintas solu??es com diferentes compensa??es para os objetivos. Uma classe de AEs s?o os Algoritmos Gen?ticos (AGs), que utilizam t?cnicas de busca e otimiza??o paralela baseadas na sele??o natural e reprodu??o gen?tica. Um AG comumente aplicado na resolu??o de MOOPs, artificiais e do mundo real, ?e o NSGA-II, que, por vezes, ?e utilizado como base no desenvolvimento de outros algoritmos, como o NSGA-DO. O campo da Otimiza??o Multiobjetivo (MOO) se apresenta consolidado, atualmente temos diferentes benchmarks, m?tricas de desempenho e AEs eficientes. Por?m, sobre esse ?ultimo, o que se observa ?e que o desempenho dos algoritmos ?e proporcional a sua complexidade, o que induz pesquisadores de outros campos a continuar preferindo oNSGA-II. Ainda, o interesse pela Otimiza??o Din?mica Muitiobjetivos (DMOO), em que o ambiente se modifica ao longo do tempo, se intensificou somente nos ?ultimos anos e muitos s?o os desafios desse emergente campo de pesquisa. Sobre o NSGA-DO, o mesmo prop?e modifica??es em parte do NSGA-II, e mesmo tendo mostrado desempenho superior em outros campos, o algoritmo n?o apresenta resultados satisfat?rios quando aplicado a MOOPs cont?nuos. Nesse contexto, reconhecendo a simplicidade e potencial do recente algoritmo, assim como a necessidade de avan?cos no campo da DMOO, o objetivo dessa pesquisa foi o desenvolvimento de melhorias ao NSGA-DO, assim como, a elucida??o de quest?es importantes relacionadas ao campo da DMOO. A metodologia aqui adotada foi dividida em duas fases parcialmente intercaladas. Na primeira fase, classificada como uma pesquisa bibliogr?fica descritiva, estudos de revis?o publicados no campo da DMOO foram identificados, descritos e analisados. Na segunda fase, classificada como uma pesquisa experimental explicativa, a estrat?egia evolutiva do NSGA-DO foi investigada e melhorias foram aplicadas. Como resultado da an?lise dos estudos pode-se perceber que os principais desafios do campo da DMOO giram em torno da detec??o de mudan?as e da resposta `as mudan?as. Nesse processo, um DMOA (Algoritmo Multiobjetivo Din?mico) enfrenta dificuldades relacionadas `a preserva??o da diversidade, converg?ncia considerando o novo ambiente e recupera?c?ao de poss??veis solu?c?oes invi?aveis. Sobre a experimenta- ?c?ao, as modifica?c?oes aplicadas ao NSGA-DO resultaram em um novo AG, o Modiiii fied NSGA-DO (MNSGA-DO), que supera o NSGA-DO e at?e mesmo o NSGA-II em problemas com diferentes caracter??sticas. Tamb?em, um variante din?amico do MNSGA-DO foi proposto, o Dynamic MNSGA-DO (D-MNSGA-DO), o qual obteve um desempenho satisfat?orio, conseguindo rastrear e responder `as mudan?cas de ambiente. Com os resultados obtidos, pode-se concluir que o presente estudo alcan?cou seus objetivos ao propor um novo AG de estrat?egia simples e apto a resolver MOOPS e DMOPs, assim como apresentou um compilado dos estudos de revis?o publicados ao longo dos anos, estes no campo da DMOO.Submitted by Daniela Costa (dmscosta@uefs.br) on 2023-11-27T21:02:09Z No. of bitstreams: 1 Dissertacao - Jussara_Gomes_Machado.pdf: 8888026 bytes, checksum: cee53a74516d26e522b6be1dbe0211b1 (MD5)Made available in DSpace on 2023-11-27T21:02:09Z (GMT). No. of bitstreams: 1 Dissertacao - Jussara_Gomes_Machado.pdf: 8888026 bytes, checksum: cee53a74516d26e522b6be1dbe0211b1 (MD5) Previous issue date: 2023-02-27Coordena??o de Aperfei?oamento de Pessoal de N?vel Superior - CAPESapplication/pdfhttp://tede2.uefs.br:8080/retrieve/7363/Dissertacao%20-%20Jussara_Gomes_Machado.pdf.jpgporUniversidade Estadual de Feira de SantanaPrograma de P?s-Gradua??o em Ci?ncia da Computa??oUEFSBrasilDEPARTAMENTO DE TECNOLOGIAOtimiza??o multiobjetivoOtimiza??o multiobjetivo din?micaAlgoritmos gen?ticosMulti-objective OptimizationDynamic Multi-Objective OptimizationGenetic AlgorithmsCIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAOAdapta??o do algoritmo gen?tico NSGA-DO ? problemas de otimiza??o multiobjetivo est?ticos e din?micosinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesis1974996533081274470600600600600433510852302034705136717112058112045092075167498588264571info:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UEFSinstname:Universidade Estadual de Feira de Santana (UEFS)instacron:UEFSTHUMBNAILDissertacao - Jussara_Gomes_Machado.pdf.jpgDissertacao - Jussara_Gomes_Machado.pdf.jpgimage/jpeg3374http://tede2.uefs.br:8080/bitstream/tede/1565/4/Dissertacao+-+Jussara_Gomes_Machado.pdf.jpgdeda1e774e497bf3aa6b7165f56ed1afMD54TEXTDissertacao - Jussara_Gomes_Machado.pdf.txtDissertacao - Jussara_Gomes_Machado.pdf.txttext/plain285937http://tede2.uefs.br:8080/bitstream/tede/1565/3/Dissertacao+-+Jussara_Gomes_Machado.pdf.txt8b60f411b8eb861bf7f6cacc46eebe2fMD53ORIGINALDissertacao - Jussara_Gomes_Machado.pdfDissertacao - Jussara_Gomes_Machado.pdfapplication/pdf8888026http://tede2.uefs.br:8080/bitstream/tede/1565/2/Dissertacao+-+Jussara_Gomes_Machado.pdfcee53a74516d26e522b6be1dbe0211b1MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-82165http://tede2.uefs.br:8080/bitstream/tede/1565/1/license.txtbd3efa91386c1718a7f26a329fdcb468MD51tede/15652025-09-10 01:36:45.16oai:tede2.uefs.br:8080:tede/1565Tk9UQTogQ09MT1FVRSBBUVVJIEEgU1VBIFBSw5NQUklBIExJQ0VOw4dBCkVzdGEgbGljZW7Dp2EgZGUgZXhlbXBsbyDDqSBmb3JuZWNpZGEgYXBlbmFzIHBhcmEgZmlucyBpbmZvcm1hdGl2b3MuCgpMSUNFTsOHQSBERSBESVNUUklCVUnDh8ODTyBOw4NPLUVYQ0xVU0lWQQoKQ29tIGEgYXByZXNlbnRhw6fDo28gZGVzdGEgbGljZW7Dp2EsIHZvY8OqIChvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSDDoCBVbml2ZXJzaWRhZGUgClhYWCAoU2lnbGEgZGEgVW5pdmVyc2lkYWRlKSBvIGRpcmVpdG8gbsOjby1leGNsdXNpdm8gZGUgcmVwcm9kdXppciwgIHRyYWR1emlyIChjb25mb3JtZSBkZWZpbmlkbyBhYmFpeG8pLCBlL291IApkaXN0cmlidWlyIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyAoaW5jbHVpbmRvIG8gcmVzdW1vKSBwb3IgdG9kbyBvIG11bmRvIG5vIGZvcm1hdG8gaW1wcmVzc28gZSBlbGV0csO0bmljbyBlIAplbSBxdWFscXVlciBtZWlvLCBpbmNsdWluZG8gb3MgZm9ybWF0b3Mgw6F1ZGlvIG91IHbDrWRlby4KClZvY8OqIGNvbmNvcmRhIHF1ZSBhIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBwb2RlLCBzZW0gYWx0ZXJhciBvIGNvbnRlw7pkbywgdHJhbnNwb3IgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIApwYXJhIHF1YWxxdWVyIG1laW8gb3UgZm9ybWF0byBwYXJhIGZpbnMgZGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIHRhbWLDqW0gY29uY29yZGEgcXVlIGEgU2lnbGEgZGUgVW5pdmVyc2lkYWRlIHBvZGUgbWFudGVyIG1haXMgZGUgdW1hIGPDs3BpYSBhIHN1YSB0ZXNlIG91IApkaXNzZXJ0YcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcyAKbmVzdGEgbGljZW7Dp2EuIFZvY8OqIHRhbWLDqW0gZGVjbGFyYSBxdWUgbyBkZXDDs3NpdG8gZGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBuw6NvLCBxdWUgc2VqYSBkZSBzZXUgCmNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3XDqW0uCgpDYXNvIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiAKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIMOgIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSAKb3MgZGlyZWl0b3MgYXByZXNlbnRhZG9zIG5lc3RhIGxpY2Vuw6dhLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3TDoSBjbGFyYW1lbnRlIAppZGVudGlmaWNhZG8gZSByZWNvbmhlY2lkbyBubyB0ZXh0byBvdSBubyBjb250ZcO6ZG8gZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIG9yYSBkZXBvc2l0YWRhLgoKQ0FTTyBBIFRFU0UgT1UgRElTU0VSVEHDh8ODTyBPUkEgREVQT1NJVEFEQSBURU5IQSBTSURPIFJFU1VMVEFETyBERSBVTSBQQVRST0PDjU5JTyBPVSAKQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBTSUdMQSBERSAKVU5JVkVSU0lEQURFLCBWT0PDiiBERUNMQVJBIFFVRSBSRVNQRUlUT1UgVE9ET1MgRSBRVUFJU1FVRVIgRElSRUlUT1MgREUgUkVWSVPDg08gQ09NTyAKVEFNQsOJTSBBUyBERU1BSVMgT0JSSUdBw4fDlUVTIEVYSUdJREFTIFBPUiBDT05UUkFUTyBPVSBBQ09SRE8uCgpBIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBzZSBjb21wcm9tZXRlIGEgaWRlbnRpZmljYXIgY2xhcmFtZW50ZSBvIHNldSBub21lIChzKSBvdSBvKHMpIG5vbWUocykgZG8ocykgCmRldGVudG9yKGVzKSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzIApjb25jZWRpZGFzIHBvciBlc3RhIGxpY2Vuw6dhLgo=Biblioteca Digital de Teses e Dissertaçõeshttp://tede2.uefs.br:8080/PUBhttp://tede2.uefs.br:8080/oai/requestbcuefs@uefs.br|| bcref@uefs.br||bcuefs@uefs.bropendoar:2025-09-10T04:36:45Biblioteca Digital de Teses e Dissertações da UEFS - Universidade Estadual de Feira de Santana (UEFS)false
dc.title.por.fl_str_mv Adapta??o do algoritmo gen?tico NSGA-DO ? problemas de otimiza??o multiobjetivo est?ticos e din?micos
title Adapta??o do algoritmo gen?tico NSGA-DO ? problemas de otimiza??o multiobjetivo est?ticos e din?micos
spellingShingle Adapta??o do algoritmo gen?tico NSGA-DO ? problemas de otimiza??o multiobjetivo est?ticos e din?micos
Machado, Jussara Gomes
Otimiza??o multiobjetivo
Otimiza??o multiobjetivo din?mica
Algoritmos gen?ticos
Multi-objective Optimization
Dynamic Multi-Objective Optimization
Genetic Algorithms
CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO
title_short Adapta??o do algoritmo gen?tico NSGA-DO ? problemas de otimiza??o multiobjetivo est?ticos e din?micos
title_full Adapta??o do algoritmo gen?tico NSGA-DO ? problemas de otimiza??o multiobjetivo est?ticos e din?micos
title_fullStr Adapta??o do algoritmo gen?tico NSGA-DO ? problemas de otimiza??o multiobjetivo est?ticos e din?micos
title_full_unstemmed Adapta??o do algoritmo gen?tico NSGA-DO ? problemas de otimiza??o multiobjetivo est?ticos e din?micos
title_sort Adapta??o do algoritmo gen?tico NSGA-DO ? problemas de otimiza??o multiobjetivo est?ticos e din?micos
author Machado, Jussara Gomes
author_facet Machado, Jussara Gomes
author_role author
dc.contributor.advisor1.fl_str_mv Pires, Matheus Giovanni
dc.contributor.advisor1ID.fl_str_mv 215536188-23
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/8293999476048705
dc.contributor.authorID.fl_str_mv 058190685-30
https://orcid.org/0000-0003-1998-0304
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/3007515996243286
dc.contributor.author.fl_str_mv Machado, Jussara Gomes
contributor_str_mv Pires, Matheus Giovanni
dc.subject.por.fl_str_mv Otimiza??o multiobjetivo
Otimiza??o multiobjetivo din?mica
Algoritmos gen?ticos
topic Otimiza??o multiobjetivo
Otimiza??o multiobjetivo din?mica
Algoritmos gen?ticos
Multi-objective Optimization
Dynamic Multi-Objective Optimization
Genetic Algorithms
CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO
dc.subject.eng.fl_str_mv Multi-objective Optimization
Dynamic Multi-Objective Optimization
Genetic Algorithms
dc.subject.cnpq.fl_str_mv CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO
description Evolutionary Algorithms (EAs) are useful in solving Multi-Objective Optimization Problems (MOOPs) because they allow finding different solutions with different compensations for the objectives. One class of EAs are Genetic Algorithms (GAs), which use parallel search and optimization techniques based on natural selection and genetic reproduction. A GA commonly applied in the resolution of MOOPs, both artificial and in the real world, is the NSGA-II, which is sometimes used as a basis for the development of other algorithms, such as the NSGA-DO. The field of Multi-objective Optimization (MOO) is consolidated, we currently have different benchmarks, performance metrics and efficient AEs. However, regarding the latter, what is observed is that the performance of the algorithms is proportional to their complexity, which induces researchers from other fields to continue to prefer the NSGA-II. Furthermore, interest in Multi-objective Dynamic Optimization (DMOO), in which the environment changes over time, has intensified only in recent years and there are many challenges in this emerging field of research. Regarding the NSGA-DO, it proposes modifications in part of the NSGA-II, and even having shown superior performance in other fields, the algorithm does not present satisfactory results when applied to continuous MOOPs. In this context, recognizing the simplicity and potential of the recent algorithm, as well as the need for advances in the field of DMOO, the objective of this research was the development of improvements to NSGA-DO, as well as the elucidation of important issues related to the field of DMOO. The methodology adopted here was divided into two phases partially interspersed. In the first phase, classified as a descriptive bibliographical research, review studies published in the field of DMOO were identified, described and analyzed. In the second phase, classified as an explanatory experimental research, the evolutionary strategy of the NSGA-DO was investigated and improvements were applied. As a result of the analysis of the studies, it can be seen that the main challenges in the field of DMOO revolve around detecting changes and responding to changes. In this process, a DMOA (Dynamic Multi-objective Algorithm) faces difficulties related to the preservation of diversity, convergence considering the new environment and recovery of possible unfeasible solutions. On experimentation, the modifications applied to NSGA-DO resulted in a new GA, Modified NSGA-DO (MNSGA-DO), which i surpasses NSGA-DO and even NSGA-II in problems with different characteristics . Also, a dynamic variant of MNSGA-DO was proposed, the Dynamic MNSGA-DO (D-MNSGA-DO), which achieved satisfactory performance, managing to track and respond to changes in the environment. With the results obtained, it can be concluded that the present study achieved its objectives by proposing a new GA with a simple strategy and able to solve MOOPS and DMOPs, as well as presenting a compilation of review studies published over the years, these in the field from DMOO
publishDate 2023
dc.date.accessioned.fl_str_mv 2023-11-27T21:02:09Z
dc.date.issued.fl_str_mv 2023-02-27
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv MACHADO, Jussara Gomes. Adapta??o do algoritmo gen?tico NSGA-DO ? problemas de otimiza??o multiobjetivo est?ticos e din?micos, 2023, 122f., Disserta??o (Mestrado em Ci?ncia da Computa??o), Programa de P?s-Gradua??o em Ci?ncia da Computa??o, Universidade Estadual de Feira de Santana, Feira de Santana.
dc.identifier.uri.fl_str_mv http://tede2.uefs.br:8080/handle/tede/1565
identifier_str_mv MACHADO, Jussara Gomes. Adapta??o do algoritmo gen?tico NSGA-DO ? problemas de otimiza??o multiobjetivo est?ticos e din?micos, 2023, 122f., Disserta??o (Mestrado em Ci?ncia da Computa??o), Programa de P?s-Gradua??o em Ci?ncia da Computa??o, Universidade Estadual de Feira de Santana, Feira de Santana.
url http://tede2.uefs.br:8080/handle/tede/1565
dc.language.iso.fl_str_mv por
language por
dc.relation.program.fl_str_mv 1974996533081274470
dc.relation.confidence.fl_str_mv 600
600
600
600
dc.relation.department.fl_str_mv 4335108523020347051
dc.relation.cnpq.fl_str_mv 3671711205811204509
dc.relation.sponsorship.fl_str_mv 2075167498588264571
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Estadual de Feira de Santana
dc.publisher.program.fl_str_mv Programa de P?s-Gradua??o em Ci?ncia da Computa??o
dc.publisher.initials.fl_str_mv UEFS
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv DEPARTAMENTO DE TECNOLOGIA
publisher.none.fl_str_mv Universidade Estadual de Feira de Santana
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações da UEFS
instname:Universidade Estadual de Feira de Santana (UEFS)
instacron:UEFS
instname_str Universidade Estadual de Feira de Santana (UEFS)
instacron_str UEFS
institution UEFS
reponame_str Biblioteca Digital de Teses e Dissertações da UEFS
collection Biblioteca Digital de Teses e Dissertações da UEFS
bitstream.url.fl_str_mv http://tede2.uefs.br:8080/bitstream/tede/1565/4/Dissertacao+-+Jussara_Gomes_Machado.pdf.jpg
http://tede2.uefs.br:8080/bitstream/tede/1565/3/Dissertacao+-+Jussara_Gomes_Machado.pdf.txt
http://tede2.uefs.br:8080/bitstream/tede/1565/2/Dissertacao+-+Jussara_Gomes_Machado.pdf
http://tede2.uefs.br:8080/bitstream/tede/1565/1/license.txt
bitstream.checksum.fl_str_mv deda1e774e497bf3aa6b7165f56ed1af
8b60f411b8eb861bf7f6cacc46eebe2f
cee53a74516d26e522b6be1dbe0211b1
bd3efa91386c1718a7f26a329fdcb468
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da UEFS - Universidade Estadual de Feira de Santana (UEFS)
repository.mail.fl_str_mv bcuefs@uefs.br|| bcref@uefs.br||bcuefs@uefs.br
_version_ 1845618201405161472