Estimativa da produtividade da soja com redes neurais artificiais

Detalhes bibliográficos
Ano de defesa: 2016
Autor(a) principal: Alves, Guiliano Rangel lattes
Orientador(a): Teixeira, Itamar Rosa lattes
Banca de defesa: Melo, Francisco Ramos de, Leandro, Wilson Mozena
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Estadual de Goiás
Programa de Pós-Graduação: Programa de Pós-Graduação Stricto sensu em Engenharia Agrícola
Departamento: UEG ::Coordenação de Mestrado em Engenharia Agrícola
País: Brasil
Palavras-chave em Português:
MLP
Palavras-chave em Inglês:
Área do conhecimento CNPq:
Link de acesso: http://www.bdtd.ueg.br/tede/handle/tede/209
Resumo: Nowadays, to estimate soybeans productivity are used complex statistical models, which turns limited the access to this practice. An alternative to these models is use of computer systems applying Artificial Intelligence (AI). On this line of system, an option is apply Artificial Neural Networks (ANN), which has the capacity of learning through examples of problems presented. This work aimed then: evaluate the possibility of using the Multilayer Perception (MLP) ANN to estimate the productivity of soybean based on the growing habits, seeding density and agronomical characteristics; define the relevant parameters during the ANN developing to evaluate the agronomical characteristics and its relation with soybean productivity; develop and choose an ANN architecture to solve the proposed problem. To realize the work were used agronomical data of the soybean culture obtained on experiments leaded on 2013/2014 harvest at Anapolis-GO, which data were normalized on compatible range to work with the ANN and then done the training of the several ANNs, to choose the ANN with best performance. After the network training were realized a performance analysis of each one to select the ANN with the most appropriate answer to the problem. The chosen ANN indicated a success range of 98% with the training data and 72% with the validation data. This can be considered a high level of achievement, mostly if considered the complexity of factors involved on the estimative of the soy productivity. The ANN application of the kind MLP on the conducted experiment data shows that is possible to estimate the soy productivity based on agronomical characteristics, growing habits and seeding density through AI.
id UEG-2_bc5d7ef3e2c5c47f3ad5a1035f1451fc
oai_identifier_str oai:tede2:tede/209
network_acronym_str UEG-2
network_name_str Biblioteca Digital Brasileira de Teses e Dissertações da UEG
repository_id_str
spelling Teixeira, Itamar Rosahttps://orcid.org/0000-0001-6936-5823http://lattes.cnpq.br/3448759504226115Melo, Francisco Ramos deLeandro, Wilson Mozenahttp://lattes.cnpq.br/8899770804780669Alves, Guiliano Rangel2020-03-25T19:31:31Z2016-04-29ALVES, Guiliano Rangel. Estimativa da produtividade da soja com redes neurais artificiais. 2016. 76 f. Dissertação (Mestrado em Engenharia Agrícola) -Câmpus Central - Sede: Anápolis - CET, Universidade Estadual de Goiás, Anápolis.http://www.bdtd.ueg.br/tede/handle/tede/209Nowadays, to estimate soybeans productivity are used complex statistical models, which turns limited the access to this practice. An alternative to these models is use of computer systems applying Artificial Intelligence (AI). On this line of system, an option is apply Artificial Neural Networks (ANN), which has the capacity of learning through examples of problems presented. This work aimed then: evaluate the possibility of using the Multilayer Perception (MLP) ANN to estimate the productivity of soybean based on the growing habits, seeding density and agronomical characteristics; define the relevant parameters during the ANN developing to evaluate the agronomical characteristics and its relation with soybean productivity; develop and choose an ANN architecture to solve the proposed problem. To realize the work were used agronomical data of the soybean culture obtained on experiments leaded on 2013/2014 harvest at Anapolis-GO, which data were normalized on compatible range to work with the ANN and then done the training of the several ANNs, to choose the ANN with best performance. After the network training were realized a performance analysis of each one to select the ANN with the most appropriate answer to the problem. The chosen ANN indicated a success range of 98% with the training data and 72% with the validation data. This can be considered a high level of achievement, mostly if considered the complexity of factors involved on the estimative of the soy productivity. The ANN application of the kind MLP on the conducted experiment data shows that is possible to estimate the soy productivity based on agronomical characteristics, growing habits and seeding density through AI.Atualmente, para estimar a produtividade da soja são utilizados modelos estatísticos complexos, que torna restrito o acesso a essa prática. Uma alternativa a estes modelos é a utilização de sistemas computacionais empregando Inteligência Artificial (IA). Nesta linha de sistemas, um caminho é o emprego de Redes Neurais Artificiais (RNA), que possui a capacidade de aprendizagem por meio de exemplos de problemas apresentados. Este trabalho teve por objetivo: avaliar a possibilidade da utilização de RNA do tipo Multilayer Perceptron (MLP) para estimar a produtividade da soja baseada nos hábitos de crescimento, densidade de semeadura e características agronômicas; definir os parâmetros relevantes durante o desenvolvimento da RNA para avaliação das características agronômicas e sua relação com a produtividade da soja; desenvolver e selecionar uma arquitetura de RNA para solução do problema proposto. Para realizar o trabalho foram utilizados dados agronômicos da cultura da soja obtidos em experimento conduzido na safra 2013/2014 em Anápolis-GO, cujos os dados foram normalizados em intervalo compatível para trabalho com RNA e em seguida feito o treinamento de várias RNAs para a escolha da RNA com melhor performance. Após o treinamento das redes, foi realizada a análise de performance de cada uma para seleção da RNA com a performance mais adequada ao problema. A RNA selecionada apresentou um índice de acerto de 98% com os dados do treinamento e um acerto de 72% com dados de validação, este nível de acerto pode ser considerado alto, principalmente se for considerada a complexidade de fatores envolvidos na estimativa da produtividade da soja. A aplicação das RNAs do tipo MLP nos dados do experimento conduzido demonstram que é possível estimar a produtividade da soja baseando-se nas características agronômicas, hábito de crescimento e densidade populacional por meio da IA.Submitted by Sandra Barbosa (sandrabarbosa632@gmail.com) on 2020-03-25T17:10:06Z No. of bitstreams: 2 GUILIANO_RANGEL_ALVES.pdf: 1780052 bytes, checksum: 87a148d1590d2618109754f833f6fb65 (MD5) license.txt: 2164 bytes, checksum: 487fc01a7f793a0341d58b02c947dec7 (MD5)Made available in DSpace on 2020-03-25T19:31:31Z (GMT). No. of bitstreams: 2 GUILIANO_RANGEL_ALVES.pdf: 1780052 bytes, checksum: 87a148d1590d2618109754f833f6fb65 (MD5) license.txt: 2164 bytes, checksum: 487fc01a7f793a0341d58b02c947dec7 (MD5) Previous issue date: 2016-04-29Fundação de Apoio à pesquisa do Estado de Goiás - FAPEGapplication/pdfporUniversidade Estadual de GoiásPrograma de Pós-Graduação Stricto sensu em Engenharia AgrícolaUEGBrasilUEG ::Coordenação de Mestrado em Engenharia AgrícolaGlycine maxCaracterísticas agronômicasMLPperceptronAgronomic characteristicsMLPPerceptronGlycine maxCIENCIAS AGRARIAS::ENGENHARIA AGRICOLAEstimativa da produtividade da soja com redes neurais artificiaisinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesis-6972928616621901761500500600600-81442318734664517591854457215887615553683313996279746998info:eu-repo/semantics/openAccessreponame:Biblioteca Digital Brasileira de Teses e Dissertações da UEGinstname:Universidade Estadual de Goiás (UEG)instacron:UEGORIGINALGUILIANO_RANGEL_ALVES.pdfGUILIANO_RANGEL_ALVES.pdfapplication/pdf1780052http://10.20.60.80:8080/tede/bitstream/tede/209/2/GUILIANO_RANGEL_ALVES.pdf87a148d1590d2618109754f833f6fb65MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-82164http://10.20.60.80:8080/tede/bitstream/tede/209/1/license.txt487fc01a7f793a0341d58b02c947dec7MD51tede/2092020-03-25 16:31:31.554oai:tede2:tede/209Q29uc2lkZXJhbmRvIGEgIExlaSBuwrogOTYxMC85OCwgYXV0b3Jpem8gYSBpbXByZXNzw6NvIGUvb3UgZG93bmxvYWQsIGEgdMOtdHVsbyBkZSBkaXZ1bGdhw6fDo28gZGEgcHJvZHXDp8OjbyBjaWVudMOtZmljYSBwcm9kdXppZGEgbmEgVW5pdmVyc2lkYWRlIEVzdGFkdWFsIGRlIEdvacOhcy4NCg0KQ29tIGEgYXByZXNlbnRhw6fDo28gZGVzdGEgbGljZW7Dp2EsIHZvY8OqIChvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSDDoCBVbml2ZXJzaWRhZGUgDQpVbml2ZXJzaWRhZGUgRXN0YWR1YWwgZGUgR29pw6FzIChVRUcpIG8gZGlyZWl0byBuw6NvLWV4Y2x1c2l2byBkZSByZXByb2R1emlyLCAgdHJhZHV6aXIgKGNvbmZvcm1lIGRlZmluaWRvIGFiYWl4byksIGUvb3UgDQpkaXN0cmlidWlyIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyAoaW5jbHVpbmRvIG8gcmVzdW1vKSBwb3IgdG9kbyBvIG11bmRvIG5vIGZvcm1hdG8gaW1wcmVzc28gZSBlbGV0csO0bmljbyBlIA0KZW0gcXVhbHF1ZXIgbWVpbywgaW5jbHVpbmRvIG9zIGZvcm1hdG9zIMOhdWRpbyBvdSB2w61kZW8uDQoNClZvY8OqIGNvbmNvcmRhIHF1ZSBhIFVFRyBwb2RlLCBzZW0gYWx0ZXJhciBvIGNvbnRlw7pkbywgdHJhbnNwb3IgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIA0KcGFyYSBxdWFscXVlciBtZWlvIG91IGZvcm1hdG8gcGFyYSBmaW5zIGRlIHByZXNlcnZhw6fDo28uDQoNClZvY8OqIHRhbWLDqW0gY29uY29yZGEgcXVlIGEgVUVHIHBvZGUgbWFudGVyIG1haXMgZGUgdW1hIGPDs3BpYSBhIHN1YSB0ZXNlIG91IA0KZGlzc2VydGHDp8OjbyBwYXJhIGZpbnMgZGUgc2VndXJhbsOnYSwgYmFjay11cCBlIHByZXNlcnZhw6fDo28uDQoNClZvY8OqIGRlY2xhcmEgcXVlIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcyANCm5lc3RhIGxpY2Vuw6dhLiBWb2PDqiB0YW1iw6ltIGRlY2xhcmEgcXVlIG8gZGVww7NzaXRvIGRhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gbsOjbywgcXVlIHNlamEgZGUgc2V1IA0KY29uaGVjaW1lbnRvLCBpbmZyaW5nZSBkaXJlaXRvcyBhdXRvcmFpcyBkZSBuaW5ndcOpbS4NCg0KQ2FzbyBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gY29udGVuaGEgbWF0ZXJpYWwgcXVlIHZvY8OqIG7Do28gcG9zc3VpIGEgdGl0dWxhcmlkYWRlIGRvcyBkaXJlaXRvcyBhdXRvcmFpcywgdm9jw6ogDQpkZWNsYXJhIHF1ZSBvYnRldmUgYSBwZXJtaXNzw6NvIGlycmVzdHJpdGEgZG8gZGV0ZW50b3IgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIHBhcmEgY29uY2VkZXIgw6AgU2lnbGEgZGUgVW5pdmVyc2lkYWRlIA0Kb3MgZGlyZWl0b3MgYXByZXNlbnRhZG9zIG5lc3RhIGxpY2Vuw6dhLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3TDoSBjbGFyYW1lbnRlIA0KaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3Ugbm8gY29udGXDumRvIGRhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBvcmEgZGVwb3NpdGFkYS4NCg0KQ0FTTyBBIFRFU0UgT1UgRElTU0VSVEHDh8ODTyBPUkEgREVQT1NJVEFEQSBURU5IQSBTSURPIFJFU1VMVEFETyBERSBVTSBQQVRST0PDjU5JTyBPVSANCkFQT0lPIERFIFVNQSBBR8OKTkNJQSBERSBGT01FTlRPIE9VIE9VVFJPIE9SR0FOSVNNTyBRVUUgTsODTyBTRUpBIEEgU0lHTEEgREUgDQpVTklWRVJTSURBREUsIFZPQ8OKIERFQ0xBUkEgUVVFIFJFU1BFSVRPVSBUT0RPUyBFIFFVQUlTUVVFUiBESVJFSVRPUyBERSBSRVZJU8ODTyBDT01PIA0KVEFNQsOJTSBBUyBERU1BSVMgT0JSSUdBw4fDlUVTIEVYSUdJREFTIFBPUiBDT05UUkFUTyBPVSBBQ09SRE8uDQoNCkEgVUVHIHNlIGNvbXByb21ldGUgYSBpZGVudGlmaWNhciBjbGFyYW1lbnRlIG8gc2V1IG5vbWUgKHMpIG91IG8ocykgbm9tZShzKSBkbyhzKSANCmRldGVudG9yKGVzKSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzIA0KY29uY2VkaWRhcyBwb3IgZXN0YSBsaWNlbsOnYS4NCg==Biblioteca Digital de Teses e Dissertaçõeshttps://www.bdtd.ueg.br/PUBhttps://www.bdtd.ueg.br/oai/requestbibliotecaunucet@ueg.br||opendoar:2020-03-25T19:31:31Biblioteca Digital Brasileira de Teses e Dissertações da UEG - Universidade Estadual de Goiás (UEG)false
dc.title.por.fl_str_mv Estimativa da produtividade da soja com redes neurais artificiais
title Estimativa da produtividade da soja com redes neurais artificiais
spellingShingle Estimativa da produtividade da soja com redes neurais artificiais
Alves, Guiliano Rangel
Glycine max
Características agronômicas
MLP
perceptron
Agronomic characteristics
MLP
Perceptron
Glycine max
CIENCIAS AGRARIAS::ENGENHARIA AGRICOLA
title_short Estimativa da produtividade da soja com redes neurais artificiais
title_full Estimativa da produtividade da soja com redes neurais artificiais
title_fullStr Estimativa da produtividade da soja com redes neurais artificiais
title_full_unstemmed Estimativa da produtividade da soja com redes neurais artificiais
title_sort Estimativa da produtividade da soja com redes neurais artificiais
author Alves, Guiliano Rangel
author_facet Alves, Guiliano Rangel
author_role author
dc.contributor.advisor1.fl_str_mv Teixeira, Itamar Rosa
dc.contributor.advisor1ID.fl_str_mv https://orcid.org/0000-0001-6936-5823
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/3448759504226115
dc.contributor.referee1.fl_str_mv Melo, Francisco Ramos de
dc.contributor.referee2.fl_str_mv Leandro, Wilson Mozena
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/8899770804780669
dc.contributor.author.fl_str_mv Alves, Guiliano Rangel
contributor_str_mv Teixeira, Itamar Rosa
Melo, Francisco Ramos de
Leandro, Wilson Mozena
dc.subject.por.fl_str_mv Glycine max
Características agronômicas
MLP
perceptron
Agronomic characteristics
MLP
Perceptron
topic Glycine max
Características agronômicas
MLP
perceptron
Agronomic characteristics
MLP
Perceptron
Glycine max
CIENCIAS AGRARIAS::ENGENHARIA AGRICOLA
dc.subject.eng.fl_str_mv Glycine max
dc.subject.cnpq.fl_str_mv CIENCIAS AGRARIAS::ENGENHARIA AGRICOLA
description Nowadays, to estimate soybeans productivity are used complex statistical models, which turns limited the access to this practice. An alternative to these models is use of computer systems applying Artificial Intelligence (AI). On this line of system, an option is apply Artificial Neural Networks (ANN), which has the capacity of learning through examples of problems presented. This work aimed then: evaluate the possibility of using the Multilayer Perception (MLP) ANN to estimate the productivity of soybean based on the growing habits, seeding density and agronomical characteristics; define the relevant parameters during the ANN developing to evaluate the agronomical characteristics and its relation with soybean productivity; develop and choose an ANN architecture to solve the proposed problem. To realize the work were used agronomical data of the soybean culture obtained on experiments leaded on 2013/2014 harvest at Anapolis-GO, which data were normalized on compatible range to work with the ANN and then done the training of the several ANNs, to choose the ANN with best performance. After the network training were realized a performance analysis of each one to select the ANN with the most appropriate answer to the problem. The chosen ANN indicated a success range of 98% with the training data and 72% with the validation data. This can be considered a high level of achievement, mostly if considered the complexity of factors involved on the estimative of the soy productivity. The ANN application of the kind MLP on the conducted experiment data shows that is possible to estimate the soy productivity based on agronomical characteristics, growing habits and seeding density through AI.
publishDate 2016
dc.date.issued.fl_str_mv 2016-04-29
dc.date.accessioned.fl_str_mv 2020-03-25T19:31:31Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv ALVES, Guiliano Rangel. Estimativa da produtividade da soja com redes neurais artificiais. 2016. 76 f. Dissertação (Mestrado em Engenharia Agrícola) -Câmpus Central - Sede: Anápolis - CET, Universidade Estadual de Goiás, Anápolis.
dc.identifier.uri.fl_str_mv http://www.bdtd.ueg.br/tede/handle/tede/209
identifier_str_mv ALVES, Guiliano Rangel. Estimativa da produtividade da soja com redes neurais artificiais. 2016. 76 f. Dissertação (Mestrado em Engenharia Agrícola) -Câmpus Central - Sede: Anápolis - CET, Universidade Estadual de Goiás, Anápolis.
url http://www.bdtd.ueg.br/tede/handle/tede/209
dc.language.iso.fl_str_mv por
language por
dc.relation.program.fl_str_mv -6972928616621901761
dc.relation.confidence.fl_str_mv 500
500
600
600
dc.relation.department.fl_str_mv -814423187346645175
dc.relation.cnpq.fl_str_mv 9185445721588761555
dc.relation.sponsorship.fl_str_mv 3683313996279746998
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Estadual de Goiás
dc.publisher.program.fl_str_mv Programa de Pós-Graduação Stricto sensu em Engenharia Agrícola
dc.publisher.initials.fl_str_mv UEG
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv UEG ::Coordenação de Mestrado em Engenharia Agrícola
publisher.none.fl_str_mv Universidade Estadual de Goiás
dc.source.none.fl_str_mv reponame:Biblioteca Digital Brasileira de Teses e Dissertações da UEG
instname:Universidade Estadual de Goiás (UEG)
instacron:UEG
instname_str Universidade Estadual de Goiás (UEG)
instacron_str UEG
institution UEG
reponame_str Biblioteca Digital Brasileira de Teses e Dissertações da UEG
collection Biblioteca Digital Brasileira de Teses e Dissertações da UEG
bitstream.url.fl_str_mv http://10.20.60.80:8080/tede/bitstream/tede/209/2/GUILIANO_RANGEL_ALVES.pdf
http://10.20.60.80:8080/tede/bitstream/tede/209/1/license.txt
bitstream.checksum.fl_str_mv 87a148d1590d2618109754f833f6fb65
487fc01a7f793a0341d58b02c947dec7
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Biblioteca Digital Brasileira de Teses e Dissertações da UEG - Universidade Estadual de Goiás (UEG)
repository.mail.fl_str_mv bibliotecaunucet@ueg.br||
_version_ 1856218586916323328