Estudo teórico de nanotubos de carbeto de silício (SiC) como material promissor para formação de espécies reativas de oxigênio para combate ao SARS-COV-2

Detalhes bibliográficos
Ano de defesa: 2025
Autor(a) principal: Silva, Diego Domingos lattes
Orientador(a): Santos, José Divino dos lattes
Banca de defesa: Santos, José Divino dos, Araújo, Olacir Alves de, Vargas, Marcos Reis
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Estadual de Goiás
Programa de Pós-Graduação: Programa de Pós-Graduação Stricto sensu em Ciências Moleculares
Departamento: UEG ::Coordenação de Mestrado Ciências Moleculares
País: Brasil
Palavras-chave em Português:
Palavras-chave em Inglês:
Área do conhecimento CNPq:
Link de acesso: http://www.bdtd.ueg.br/handle/tede/1763
Resumo: Silicon Carbide Nanotubes (SiCNT) are the main focus of this work. The models were generated using algorithms written in shell bash and AWK programming languages. For model optimization, semi-empirical calculations were performed with the MOPAC 2016 package for HF and DFT, calculations were performed using B3LYP (Becke Three Parameter Hybrid Functionals, Lee-Yang-Parr), CAMB3LYP (Counterpoise Corrected for Adsorption Mode - Becke Three Parameter Hybrid Functionals, Lee- Yang-Parr) and B3PW91 (Becke 3-parameter Perdew-Wang 91) hybrid functionals and 3-21G, 6-21G, 6-31G and 6-311G basis. The band gap of the optimized structure was determined by the |HOMO - LUMO| difference, with the intention of determining the conductivity of the nanotube model and comparing it with experimental values. Structural optimization descriptors such as bond distance, diameter and length of the model were determined, in addition to quantum molecular descriptors such as global hardness, electronegativity, electrophilicity index, chemical softness and chemical potential. The dynamics of the interactions of SiCNT with H2O and 3O2 molecules were studied in this work and the calculations of the fractional electron transfer, the individual energy shifts of the donor and acceptor were calculated. The optimized SiCNT model was of the zig-zag type with formula Si48C48H16, tube diameter of 8.3 Å, length of 16.71 Å, Si - C bond length of 1.72 Å, the band gap determined by the HF method based on 6-311G presented a value of 2.67 eV and influenced the choice of the HF method, due to its proximity to the experimental value studied. The values of the molecular descriptors found were electron affinity of 1.96 eV, ionization energy of 4.37 eV, chemical potential of -3.165 eV, electronegativity of 3.165 eV, global hardness of 1.205 eV, electrophilicity index of 4.156 eV and softness of 0.830 eV. The analysis of these molecular description parameters indicated favorable characteristics for the structure to interact with water and oxygen molecules and generate functionalized species. The interaction between the H2O molecule model and the 3O2 molecule produced the SiCNT-OH-H, SiCNT-O2, SiCNT-O2H-OH radicals with favorable energy variations. Subsequently, molecular docking was calculated between the radical models and the SARS-CoV-2 Spike protein, presenting values of energy and affinity variations that make the proposed study valid.
id UEG-2_c22772dfd104d26b1d2a76726c8cdac1
oai_identifier_str oai:tede2:tede/1763
network_acronym_str UEG-2
network_name_str Biblioteca Digital Brasileira de Teses e Dissertações da UEG
repository_id_str
spelling Santos, José Divino doshttp://lattes.cnpq.br/2279900314020119Santos, José Divino dosAraújo, Olacir Alves deVargas, Marcos Reishttp://lattes.cnpq.br/1318574418419578Silva, Diego Domingos2025-08-11T17:40:53Z2025-03-06SILVA, D. D. Estudo teórico de nanotubos de carbeto de silício (SiC) como material promissor para formação de espécies reativas de oxigênio para combate ao SARS-COV-2. 2025. 72 f. Dissertação (Mestrado em Ciências Moleculares) - Câmpus Central - Sede: Anápolis - CET - Henrique Santillo, Universidade Estadual de Goiás, Anápolis, GO.http://www.bdtd.ueg.br/handle/tede/1763Silicon Carbide Nanotubes (SiCNT) are the main focus of this work. The models were generated using algorithms written in shell bash and AWK programming languages. For model optimization, semi-empirical calculations were performed with the MOPAC 2016 package for HF and DFT, calculations were performed using B3LYP (Becke Three Parameter Hybrid Functionals, Lee-Yang-Parr), CAMB3LYP (Counterpoise Corrected for Adsorption Mode - Becke Three Parameter Hybrid Functionals, Lee- Yang-Parr) and B3PW91 (Becke 3-parameter Perdew-Wang 91) hybrid functionals and 3-21G, 6-21G, 6-31G and 6-311G basis. The band gap of the optimized structure was determined by the |HOMO - LUMO| difference, with the intention of determining the conductivity of the nanotube model and comparing it with experimental values. Structural optimization descriptors such as bond distance, diameter and length of the model were determined, in addition to quantum molecular descriptors such as global hardness, electronegativity, electrophilicity index, chemical softness and chemical potential. The dynamics of the interactions of SiCNT with H2O and 3O2 molecules were studied in this work and the calculations of the fractional electron transfer, the individual energy shifts of the donor and acceptor were calculated. The optimized SiCNT model was of the zig-zag type with formula Si48C48H16, tube diameter of 8.3 Å, length of 16.71 Å, Si - C bond length of 1.72 Å, the band gap determined by the HF method based on 6-311G presented a value of 2.67 eV and influenced the choice of the HF method, due to its proximity to the experimental value studied. The values of the molecular descriptors found were electron affinity of 1.96 eV, ionization energy of 4.37 eV, chemical potential of -3.165 eV, electronegativity of 3.165 eV, global hardness of 1.205 eV, electrophilicity index of 4.156 eV and softness of 0.830 eV. The analysis of these molecular description parameters indicated favorable characteristics for the structure to interact with water and oxygen molecules and generate functionalized species. The interaction between the H2O molecule model and the 3O2 molecule produced the SiCNT-OH-H, SiCNT-O2, SiCNT-O2H-OH radicals with favorable energy variations. Subsequently, molecular docking was calculated between the radical models and the SARS-CoV-2 Spike protein, presenting values of energy and affinity variations that make the proposed study valid.Os nanotubos de Carbeto de Silício (SiCNT) são o foco principal deste trabalho. Os modelos foram gerados utilizando algoritmos escritos em linguagem de programação shell bash e AWK. Para otimização do modelo, cálculos semi empíricos foram realizados com o pacote MOPAC 2016 e cálculos em nível de HF e DFT, foram realizados utilizando funcionais híbridos B3LYP (Becke Three Parameter Hybrid Functionals, Lee-Yang-Parr), CAMB3LYP(Counterpoise Corrected for Adsorption Mode - Becke Three Parameter Hybrid Functionals, Lee-Yang-Parr) e B3PW91 (Becke 3- parameter Perdew-Wang 91) e base 3-21G, 6-21G, 6-31G e 6-311G. O gap da estrutura otimizada foi determinado pela diferença |HOMO - LUMO|, com a intenção de determinar a condutividade do modelo de nanotubo e compará-la com valores experimentais pesquisados. Descritores de otimização estrutural como distância de ligação, diâmetro e comprimento do modelo foram determinados, além de descritores moleculares quânticos como dureza global, eletronegatividade, índice de eletrofilicidade, suavidade química e potencial químico. A dinâmica das interações do SiCNT com as moléculas de H2O e 3O2 foi estudado nesse trabalho e os cálculos da transferência fracionada de elétrons, os deslocamentos de energia individual do doador e do aceitador foram calculados. O modelo de SiCNT otimizado foi do tipo zig- zag apresentando fórmula Si48C48H16 , diâmetro do tubo de 8,3 Å, comprimento de 16,71 Å, comprimento de ligação Si - C de 1,72 Å, o gap determinado pelo método HF base 6-311G apresentou um valor foi de 2,67 eV e influenciou na escolha, por sua proximidade com valor experimental pesquisado, do método HF. Os valores dos descritores moleculares encontrados foram afinidade eletrônica de 1,96 eV, energia de ionização de 4,37 eV, potencial químico de -3,165 eV, eletronegatividade de 3,165 eV, dureza global de 1,205 eV, índice de eletrofilicidade de 4,156 eV e suavidade de 0,830 eV. A análise destes parâmetros de descrição molecular indicou características favoráveis para a estrutura interagir com as moléculas de água e oxigênio e gerar espécies funcionalizadas. A interação entre o modelo a molécula de H2O e a molécula de 3O2 produziu os radicais SiCNT-OH-H, SiCNT-O2, SiCNT-O2H-OH com variações de energia favoráveis. Posteriormente o docking molecular foi calculado entre os modelos radicalares e a proteína Spike do SARS-CoV-2, apresentando valores de variações de energia e de afinidade que tornam válido o estudo proposto.Submitted by Sandra Barbosa (sandra.barbosa@ueg.br) on 2025-08-11T17:40:41Z No. of bitstreams: 2 DIEGO DOMINGOS SILVA_DISSERTALÇÃO_MCM.pdf: 6537283 bytes, checksum: a5ac2039513c89a7e691bd62eec36ed2 (MD5) license.txt: 2109 bytes, checksum: b76a28645f58b21aeda00ac459312a65 (MD5)Approved for entry into archive by Sandra Barbosa (sandra.barbosa@ueg.br) on 2025-08-11T17:40:53Z (GMT) No. of bitstreams: 2 DIEGO DOMINGOS SILVA_DISSERTALÇÃO_MCM.pdf: 6537283 bytes, checksum: a5ac2039513c89a7e691bd62eec36ed2 (MD5) license.txt: 2109 bytes, checksum: b76a28645f58b21aeda00ac459312a65 (MD5)Made available in DSpace on 2025-08-11T17:40:53Z (GMT). No. of bitstreams: 2 DIEGO DOMINGOS SILVA_DISSERTALÇÃO_MCM.pdf: 6537283 bytes, checksum: a5ac2039513c89a7e691bd62eec36ed2 (MD5) license.txt: 2109 bytes, checksum: b76a28645f58b21aeda00ac459312a65 (MD5) Previous issue date: 2025-03-06application/pdfporUniversidade Estadual de GoiásPrograma de Pós-Graduação Stricto sensu em Ciências MolecularesUEGBrasilUEG ::Coordenação de Mestrado Ciências MolecularesNanotuboCarbeto de SilícioEspécies reativas de oxigênioNanotubeSilicon carbideReactive oxygen speciesCIENCIAS EXATAS E DA TERRA::QUIMICAEstudo teórico de nanotubos de carbeto de silício (SiC) como material promissor para formação de espécies reativas de oxigênio para combate ao SARS-COV-2Theoretical study of silicon carbide (SiC) nanotubes as a promising material for formation of reactive oxygen species to combat SARS-COV-2info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesis-8570043875938568561500500600-80264457475642234381571700325303117195info:eu-repo/semantics/openAccessreponame:Biblioteca Digital Brasileira de Teses e Dissertações da UEGinstname:Universidade Estadual de Goiás (UEG)instacron:UEGORIGINALDIEGO DOMINGOS SILVA_DISSERTALÇÃO_MCM.pdfDIEGO DOMINGOS SILVA_DISSERTALÇÃO_MCM.pdfapplication/pdf6537283http://10.20.60.80:8080/tede/bitstream/tede/1763/2/DIEGO+DOMINGOS+SILVA_DISSERTAL%C3%87%C3%83O_MCM.pdfa5ac2039513c89a7e691bd62eec36ed2MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-82109http://10.20.60.80:8080/tede/bitstream/tede/1763/1/license.txtb76a28645f58b21aeda00ac459312a65MD51tede/17632025-08-11 14:40:53.254oai:tede2:tede/1763Q29uc2lkZXJhbmRvIGEgIExlaSBuwrogOTYxMC85OCwgYXV0b3Jpem8gYSBpbXByZXNzw6NvIGUvb3UgZG93bmxvYWQsIGEgdMOtdHVsbyBkZSBkaXZ1bGdhw6fDo28gZGEgcHJvZHXDp8OjbyBjaWVudMOtZmljYSBwcm9kdXppZGEgbmEgVW5pdmVyc2lkYWRlIEVzdGFkdWFsIGRlIEdvacOhcy4KCkNvbSBhIGFwcmVzZW50YcOnw6NvIGRlc3RhIGxpY2Vuw6dhLCB2b2PDqiAobyBhdXRvciAoZXMpIG91IG8gdGl0dWxhciBkb3MgZGlyZWl0b3MgZGUgYXV0b3IpIGNvbmNlZGUgw6AgVW5pdmVyc2lkYWRlIEVzdGFkdWFsIGRlIEdvacOhcyAoVUVHKSBvIGRpcmVpdG8gbsOjby1leGNsdXNpdm8gZGUgcmVwcm9kdXppciwgIHRyYWR1emlyIChjb25mb3JtZSBkZWZpbmlkbyBhYmFpeG8pLCBlL291IApkaXN0cmlidWlyIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyAoaW5jbHVpbmRvIG8gcmVzdW1vKSBwb3IgdG9kbyBvIG11bmRvIG5vIGZvcm1hdG8gaW1wcmVzc28gZSBlbGV0csO0bmljbyBlIAplbSBxdWFscXVlciBtZWlvLCBpbmNsdWluZG8gb3MgZm9ybWF0b3Mgw6F1ZGlvIG91IHbDrWRlby4KClZvY8OqIGNvbmNvcmRhIHF1ZSBhIFVFRyBwb2RlLCBzZW0gYWx0ZXJhciBvIGNvbnRlw7pkbywgdHJhbnNwb3IgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIApwYXJhIHF1YWxxdWVyIG1laW8gb3UgZm9ybWF0byBwYXJhIGZpbnMgZGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIHRhbWLDqW0gY29uY29yZGEgcXVlIGEgVUVHIHBvZGUgbWFudGVyIG1haXMgZGUgdW1hIGPDs3BpYSBhIHN1YSB0ZXNlIG91IApkaXNzZXJ0YcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcyAKbmVzdGEgbGljZW7Dp2EuIFZvY8OqIHRhbWLDqW0gZGVjbGFyYSBxdWUgbyBkZXDDs3NpdG8gZGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBuw6NvLCBxdWUgc2VqYSBkZSBzZXUgCmNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3XDqW0uCgpDYXNvIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiAKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIMOgIFVFRwpvcyBkaXJlaXRvcyBhcHJlc2VudGFkb3MgbmVzdGEgbGljZW7Dp2EsIGUgcXVlIGVzc2UgbWF0ZXJpYWwgZGUgcHJvcHJpZWRhZGUgZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUgCmlkZW50aWZpY2FkbyBlIHJlY29uaGVjaWRvIG5vIHRleHRvIG91IG5vIGNvbnRlw7pkbyBkYSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gb3JhIGRlcG9zaXRhZGEuCgpDQVNPIEEgVEVTRSBPVSBESVNTRVJUQcOHw4NPIE9SQSBERVBPU0lUQURBIFRFTkhBIFNJRE8gUkVTVUxUQURPIERFIFVNIFBBVFJPQ8ONTklPIE9VIApBUE9JTyBERSBVTUEgQUfDik5DSUEgREUgRk9NRU5UTyBPVSBPVVRSTyBPUkdBTklTTU8gUVVFIE7Dg08gU0VKQSBBIFVFRwpWT0PDiiBERUNMQVJBIFFVRSBSRVNQRUlUT1UgVE9ET1MgRSBRVUFJU1FVRVIgRElSRUlUT1MgREUgUkVWSVPDg08gQ09NTyAKVEFNQsOJTSBBUyBERU1BSVMgT0JSSUdBw4fDlUVTIEVYSUdJREFTIFBPUiBDT05UUkFUTyBPVSBBQ09SRE8uCgpBIFVuaXZlcnNpZGFkZSBFc3RhZHVhbCBkZSBHb2nDoXMgc2UgY29tcHJvbWV0ZSBhIGlkZW50aWZpY2FyIGNsYXJhbWVudGUgbyBzZXUgbm9tZSAocykgb3UgbyhzKSBub21lKHMpIGRvKHMpIApkZXRlbnRvcihlcykgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIGRhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbywgZSBuw6NvIGZhcsOhIHF1YWxxdWVyIGFsdGVyYcOnw6NvLCBhbMOpbSBkYXF1ZWxhcyAKY29uY2VkaWRhcyBwb3IgZXN0YSBsaWNlbsOnYS4KBiblioteca Digital de Teses e Dissertaçõeshttps://www.bdtd.ueg.br/PUBhttps://www.bdtd.ueg.br/oai/requestbibliotecaunucet@ueg.br||opendoar:2025-08-11T17:40:53Biblioteca Digital Brasileira de Teses e Dissertações da UEG - Universidade Estadual de Goiás (UEG)false
dc.title.por.fl_str_mv Estudo teórico de nanotubos de carbeto de silício (SiC) como material promissor para formação de espécies reativas de oxigênio para combate ao SARS-COV-2
dc.title.alternative.por.fl_str_mv Theoretical study of silicon carbide (SiC) nanotubes as a promising material for formation of reactive oxygen species to combat SARS-COV-2
title Estudo teórico de nanotubos de carbeto de silício (SiC) como material promissor para formação de espécies reativas de oxigênio para combate ao SARS-COV-2
spellingShingle Estudo teórico de nanotubos de carbeto de silício (SiC) como material promissor para formação de espécies reativas de oxigênio para combate ao SARS-COV-2
Silva, Diego Domingos
Nanotubo
Carbeto de Silício
Espécies reativas de oxigênio
Nanotube
Silicon carbide
Reactive oxygen species
CIENCIAS EXATAS E DA TERRA::QUIMICA
title_short Estudo teórico de nanotubos de carbeto de silício (SiC) como material promissor para formação de espécies reativas de oxigênio para combate ao SARS-COV-2
title_full Estudo teórico de nanotubos de carbeto de silício (SiC) como material promissor para formação de espécies reativas de oxigênio para combate ao SARS-COV-2
title_fullStr Estudo teórico de nanotubos de carbeto de silício (SiC) como material promissor para formação de espécies reativas de oxigênio para combate ao SARS-COV-2
title_full_unstemmed Estudo teórico de nanotubos de carbeto de silício (SiC) como material promissor para formação de espécies reativas de oxigênio para combate ao SARS-COV-2
title_sort Estudo teórico de nanotubos de carbeto de silício (SiC) como material promissor para formação de espécies reativas de oxigênio para combate ao SARS-COV-2
author Silva, Diego Domingos
author_facet Silva, Diego Domingos
author_role author
dc.contributor.advisor1.fl_str_mv Santos, José Divino dos
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/2279900314020119
dc.contributor.referee1.fl_str_mv Santos, José Divino dos
dc.contributor.referee2.fl_str_mv Araújo, Olacir Alves de
dc.contributor.referee3.fl_str_mv Vargas, Marcos Reis
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/1318574418419578
dc.contributor.author.fl_str_mv Silva, Diego Domingos
contributor_str_mv Santos, José Divino dos
Santos, José Divino dos
Araújo, Olacir Alves de
Vargas, Marcos Reis
dc.subject.por.fl_str_mv Nanotubo
Carbeto de Silício
Espécies reativas de oxigênio
topic Nanotubo
Carbeto de Silício
Espécies reativas de oxigênio
Nanotube
Silicon carbide
Reactive oxygen species
CIENCIAS EXATAS E DA TERRA::QUIMICA
dc.subject.eng.fl_str_mv Nanotube
Silicon carbide
Reactive oxygen species
dc.subject.cnpq.fl_str_mv CIENCIAS EXATAS E DA TERRA::QUIMICA
description Silicon Carbide Nanotubes (SiCNT) are the main focus of this work. The models were generated using algorithms written in shell bash and AWK programming languages. For model optimization, semi-empirical calculations were performed with the MOPAC 2016 package for HF and DFT, calculations were performed using B3LYP (Becke Three Parameter Hybrid Functionals, Lee-Yang-Parr), CAMB3LYP (Counterpoise Corrected for Adsorption Mode - Becke Three Parameter Hybrid Functionals, Lee- Yang-Parr) and B3PW91 (Becke 3-parameter Perdew-Wang 91) hybrid functionals and 3-21G, 6-21G, 6-31G and 6-311G basis. The band gap of the optimized structure was determined by the |HOMO - LUMO| difference, with the intention of determining the conductivity of the nanotube model and comparing it with experimental values. Structural optimization descriptors such as bond distance, diameter and length of the model were determined, in addition to quantum molecular descriptors such as global hardness, electronegativity, electrophilicity index, chemical softness and chemical potential. The dynamics of the interactions of SiCNT with H2O and 3O2 molecules were studied in this work and the calculations of the fractional electron transfer, the individual energy shifts of the donor and acceptor were calculated. The optimized SiCNT model was of the zig-zag type with formula Si48C48H16, tube diameter of 8.3 Å, length of 16.71 Å, Si - C bond length of 1.72 Å, the band gap determined by the HF method based on 6-311G presented a value of 2.67 eV and influenced the choice of the HF method, due to its proximity to the experimental value studied. The values of the molecular descriptors found were electron affinity of 1.96 eV, ionization energy of 4.37 eV, chemical potential of -3.165 eV, electronegativity of 3.165 eV, global hardness of 1.205 eV, electrophilicity index of 4.156 eV and softness of 0.830 eV. The analysis of these molecular description parameters indicated favorable characteristics for the structure to interact with water and oxygen molecules and generate functionalized species. The interaction between the H2O molecule model and the 3O2 molecule produced the SiCNT-OH-H, SiCNT-O2, SiCNT-O2H-OH radicals with favorable energy variations. Subsequently, molecular docking was calculated between the radical models and the SARS-CoV-2 Spike protein, presenting values of energy and affinity variations that make the proposed study valid.
publishDate 2025
dc.date.accessioned.fl_str_mv 2025-08-11T17:40:53Z
dc.date.issued.fl_str_mv 2025-03-06
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv SILVA, D. D. Estudo teórico de nanotubos de carbeto de silício (SiC) como material promissor para formação de espécies reativas de oxigênio para combate ao SARS-COV-2. 2025. 72 f. Dissertação (Mestrado em Ciências Moleculares) - Câmpus Central - Sede: Anápolis - CET - Henrique Santillo, Universidade Estadual de Goiás, Anápolis, GO.
dc.identifier.uri.fl_str_mv http://www.bdtd.ueg.br/handle/tede/1763
identifier_str_mv SILVA, D. D. Estudo teórico de nanotubos de carbeto de silício (SiC) como material promissor para formação de espécies reativas de oxigênio para combate ao SARS-COV-2. 2025. 72 f. Dissertação (Mestrado em Ciências Moleculares) - Câmpus Central - Sede: Anápolis - CET - Henrique Santillo, Universidade Estadual de Goiás, Anápolis, GO.
url http://www.bdtd.ueg.br/handle/tede/1763
dc.language.iso.fl_str_mv por
language por
dc.relation.program.fl_str_mv -8570043875938568561
dc.relation.confidence.fl_str_mv 500
500
600
dc.relation.department.fl_str_mv -8026445747564223438
dc.relation.cnpq.fl_str_mv 1571700325303117195
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Estadual de Goiás
dc.publisher.program.fl_str_mv Programa de Pós-Graduação Stricto sensu em Ciências Moleculares
dc.publisher.initials.fl_str_mv UEG
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv UEG ::Coordenação de Mestrado Ciências Moleculares
publisher.none.fl_str_mv Universidade Estadual de Goiás
dc.source.none.fl_str_mv reponame:Biblioteca Digital Brasileira de Teses e Dissertações da UEG
instname:Universidade Estadual de Goiás (UEG)
instacron:UEG
instname_str Universidade Estadual de Goiás (UEG)
instacron_str UEG
institution UEG
reponame_str Biblioteca Digital Brasileira de Teses e Dissertações da UEG
collection Biblioteca Digital Brasileira de Teses e Dissertações da UEG
bitstream.url.fl_str_mv http://10.20.60.80:8080/tede/bitstream/tede/1763/2/DIEGO+DOMINGOS+SILVA_DISSERTAL%C3%87%C3%83O_MCM.pdf
http://10.20.60.80:8080/tede/bitstream/tede/1763/1/license.txt
bitstream.checksum.fl_str_mv a5ac2039513c89a7e691bd62eec36ed2
b76a28645f58b21aeda00ac459312a65
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Biblioteca Digital Brasileira de Teses e Dissertações da UEG - Universidade Estadual de Goiás (UEG)
repository.mail.fl_str_mv bibliotecaunucet@ueg.br||
_version_ 1856218606736506880