Saife: Towards a Lightweight Threat Modeling Approach to Support Machine Learning Application Development.
| Ano de defesa: | 2024 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | |
| Tipo de documento: | Dissertação |
| Tipo de acesso: | Acesso aberto |
| Idioma: | eng |
| Instituição de defesa: |
Não Informado pela instituição
|
| Programa de Pós-Graduação: |
Não Informado pela instituição
|
| Departamento: |
Não Informado pela instituição
|
| País: |
Não Informado pela instituição
|
| Palavras-chave em Português: | |
| Área do conhecimento CNPq: | |
| Link de acesso: | https://repositorio.uel.br/handle/123456789/18541 |
Resumo: | With the growing popularization of the Artificial Intelligence (AI) field, the development of systems that rely on, at least, one of its subareas has also experienced a great increase. The recent adoption of AI techniques in common systems - such as mobile apps and household appliances - requires a higher level of attention, in order to ensure their safety and proper operation. In this scenario, assuring the adequate functioning of these solutions culminates, in most cases, in ensuring the security of the application and its data throughout the software development life cycle. Software developers, however, often find security-related tasks challenging to learn and execute, and frequently put them aside. Additionally, currently available threat modeling frameworks are difficult to integrate into software development life cycles, which prioritize agility and automation over extensive analysis and documentation. This work, therefore, proposes sAIfe, a new threat modeling method for security analysis of Machine Learning (ML) applications under development. sAIfe provides prescriptive steps, with graphical elements and results that include lists with threats and ready-made remediation suggestions for the analyzed system. This approach aims at simplifying the risk assessment process for the programmer, unveiling possible weaknesses and suggesting respective solutions in a practical way. Still in this work, sAIfe is tested on a real-world ML application, revealing positive results, with many potential issues and mitigation options detected by the method, which are registered in the form of a case study. Additionally, this study is compared to another one, carried out with an alternative method from the literature, highlighting sAIfe’s advantages. Finally, two validations are carried out: one with researchers in academia and another with developers in industry, returning great feedback on sAIfe’s ease of use and speed of application |
| id |
UEL_e4d15fdca8a799d5c8f613ceb21e5931 |
|---|---|
| oai_identifier_str |
oai:repositorio.uel.br:123456789/18541 |
| network_acronym_str |
UEL |
| network_name_str |
Repositório Institucional da UEL |
| repository_id_str |
|
| spelling |
Messas, Gabriel EstevesMenolli, André Luís Andrade7e4a3df5-e65d-48fc-957f-3727180682ca-1Meneguette, Rodolfo Ipolito895bcf08-a7ef-419b-8b8e-44f7f64d990d-15b4be1b9-6614-4657-b275-73a9b2e78360185d873c-996a-4746-ab7f-3fc3ccf3c82cZarpelão, Bruno BogazLondrina, Paraná75 p.2025-02-04T13:03:11Z2025-02-04T13:03:11Z2024-12-13https://repositorio.uel.br/handle/123456789/18541With the growing popularization of the Artificial Intelligence (AI) field, the development of systems that rely on, at least, one of its subareas has also experienced a great increase. The recent adoption of AI techniques in common systems - such as mobile apps and household appliances - requires a higher level of attention, in order to ensure their safety and proper operation. In this scenario, assuring the adequate functioning of these solutions culminates, in most cases, in ensuring the security of the application and its data throughout the software development life cycle. Software developers, however, often find security-related tasks challenging to learn and execute, and frequently put them aside. Additionally, currently available threat modeling frameworks are difficult to integrate into software development life cycles, which prioritize agility and automation over extensive analysis and documentation. This work, therefore, proposes sAIfe, a new threat modeling method for security analysis of Machine Learning (ML) applications under development. sAIfe provides prescriptive steps, with graphical elements and results that include lists with threats and ready-made remediation suggestions for the analyzed system. This approach aims at simplifying the risk assessment process for the programmer, unveiling possible weaknesses and suggesting respective solutions in a practical way. Still in this work, sAIfe is tested on a real-world ML application, revealing positive results, with many potential issues and mitigation options detected by the method, which are registered in the form of a case study. Additionally, this study is compared to another one, carried out with an alternative method from the literature, highlighting sAIfe’s advantages. Finally, two validations are carried out: one with researchers in academia and another with developers in industry, returning great feedback on sAIfe’s ease of use and speed of applicationCom a crescente popularização do campo da Inteligência Artificial (IA), o desenvolvimento de sistemas que empregam, pelo menos, uma de suas subáreas também tem experimentado um grande aumento. A recente adoção de técnicas de IA em sistemas comuns - como aplicativos para celular e equipamentos domésticos - requer um maior nível de atenção, a fim de garantir sua segurança e funcionamento adequado. Neste cenário, garantir o funcionamento adequado destas soluções culmina, na maioria dos casos, em garantir a segurança da aplicação e dos seus dados durante todo o ciclo de vida de desenvolvimento do software. Desenvolvedores de software, no entanto, muitas vezes consideram as tarefas relacionadas à segurança difíceis de aprender e executar, e frequentemente as deixam de lado. Além disso, os frameworks de modelagem de ameaças atualmente disponíveis são difíceis de integrar nos ciclos de vida de desenvolvimento de software, que priorizam a agilidade e a automação em detrimento de análises e documentação extensas. Este trabalho, portanto, propõe o sAIfe, um novo método de modelagem de ameaças para análise de segurança de aplicações de Machine Learning (ML) em desenvolvimento. O sAIfe fornece etapas prescritivas, com elementos gráficos e resultados que incluem listas com ameaças e sugestões de remediação já prontas para o sistema analizado. Esta abordagem visa simplificar e agilizar o processo de avaliação de risco para o programador, revelando possíveis fragilidades e sugerindo respectivas soluções de forma prática. Ainda neste trabalho, o sAIfe é testado numa aplicação de IA do mundo real, revelando resultados positivos, com muitos problemas potenciais e opções de mitigação detectados pelo método, que são registados na forma de um estudo de caso. Adicionalmente, este estudo é comparado a outro, realizado com um método alternativo da literatura, evidenciando as vantagens do sAIfe. Por último, são realizadas duas validações: uma com pesquisadores na academia e outra com desenvolvedores na indústria, retornando ótimos feedbacks sobre a facilidade de uso e a velocidade de aplicação do sAIfeengCiências Exatas e da Terra - Ciência da ComputaçãoCiências Exatas e da Terra - Ciência da ComputaçãoInteligência ArtiacialAprendizado de MáquinaSegurançaModelagem de AmeaçasArtiacial IntelligenceMachine LearningSecurityThreat ModelingSaife: Towards a Lightweight Threat Modeling Approach to Support Machine Learning Application Development.Saife: rumo a uma abordagem leve de modelagem de ameaças para apoiar o desenvolvimento de aplicativos de Aprendizado de Máquina.info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisCCE - Departamento de ComputaçãoPrograma de Pós-Graduação em Ciência da ComputaçãoUniversidade Estadual de Londrina - UEL-1-1reponame:Repositório Institucional da UELinstname:Universidade Estadual de Londrina (UEL)instacron:UELinfo:eu-repo/semantics/openAccessMestrado AcadêmicoCentro de Ciências ExatasORIGINALCE_COM_Me_2024_Messas_Gabriel_E.pdfCE_COM_Me_2024_Messas_Gabriel_E.pdftexto completo ID: 193069application/pdf977260https://repositorio.uel.br/bitstreams/862be64d-87bd-4ad0-b19b-5202d53f1495/download87893979c0ddf5ab654472679b82bc1cMD51CE_COM_Me_2024_Messas_Gabriel_E_Termo.pdfCE_COM_Me_2024_Messas_Gabriel_E_Termo.pdftermo de autorizaçãoapplication/pdf137083https://repositorio.uel.br/bitstreams/6e2b318d-6b03-4556-9408-756b83bbc857/download0d6bdc520ec3094154153cd1444e230eMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-8555https://repositorio.uel.br/bitstreams/e15ef84e-d31a-46bd-8224-83c90e63b81b/downloadb0875caec81dd1122312ab77c11250f1MD53TEXTCE_COM_Me_2024_Messas_Gabriel_E.pdf.txtCE_COM_Me_2024_Messas_Gabriel_E.pdf.txtExtracted texttext/plain148019https://repositorio.uel.br/bitstreams/1c4d5a62-392a-40cd-8bf4-60d7a7342a0f/downloadc508aacd65bdaa67c78298983c9b5e6bMD54CE_COM_Me_2024_Messas_Gabriel_E_Termo.pdf.txtCE_COM_Me_2024_Messas_Gabriel_E_Termo.pdf.txtExtracted texttext/plain2144https://repositorio.uel.br/bitstreams/f85fe0a5-0544-4263-ab41-a652930cd6e3/download6ccbb71e7ef8db1f39ed4eb6583e5a1dMD56THUMBNAILCE_COM_Me_2024_Messas_Gabriel_E.pdf.jpgCE_COM_Me_2024_Messas_Gabriel_E.pdf.jpgGenerated Thumbnailimage/jpeg3438https://repositorio.uel.br/bitstreams/e79171c0-fc86-426f-82b6-f8e55a12945b/download526eb7221dd5e44e9e296a92d6ed0be7MD55CE_COM_Me_2024_Messas_Gabriel_E_Termo.pdf.jpgCE_COM_Me_2024_Messas_Gabriel_E_Termo.pdf.jpgGenerated Thumbnailimage/jpeg4899https://repositorio.uel.br/bitstreams/684ac6e7-2305-4a9b-a9fa-6e671f834a58/downloada253ad0771f85ab291920ef165a4637bMD57123456789/185412025-02-05 03:07:33.379open.accessoai:repositorio.uel.br:123456789/18541https://repositorio.uel.brBiblioteca Digital de Teses e Dissertaçõeshttp://www.bibliotecadigital.uel.br/PUBhttp://www.bibliotecadigital.uel.br/OAI/oai2.phpbcuel@uel.br||opendoar:2025-02-05T06:07:33Repositório Institucional da UEL - Universidade Estadual de Londrina (UEL)falseQXV0b3Jpem8gYSBkaXZ1bGdhw6fDo28gbm8gUmVwb3NpdMOzcmlvIGRhIFVuaXZlcnNpZGFkZSBFc3RhZHVhbCBkZSBMb25kcmluYSAocmVwb3NpdG9yaW8udWVsLmJyKSwgZSBwZXJtaXRvIGEgcmVwcm9kdcOnw6NvIHRvdGFsIHBvciBtZWlvIGVsZXRyw7RuaWNvLCBzZW0gcmVzc2FyY2ltZW50byBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGEgT2JyYSwgYSBwYXJ0aXIgZGEgZGF0YSBpbmRpY2FkYSBubyBhcnF1aXZvIChiaXRzdHJlYW0pLCBvdSBhdMOpIHF1ZSBtYW5pZmVzdGHDp8OjbyBlbSBzZW50aWRvIGNvbnRyw6FyaW8gZGUgbWluaGEgcGFydGUgZGV0ZXJtaW5lIGEgY2Vzc2HDp8OjbyBkZXN0YSBhdXRvcml6YcOnw6NvLiBEZWNsYXJvLCB0YW1iw6ltLCBxdWUgbWUgcmVzcG9uc2FiaWxpem8gcGVsbyBjb250ZcO6ZG8gZGEgb2JyYSBvYmpldG8gZGVzdGEgYXV0b3JpemHDp8Ojbywgc2VuZG8gZGUgbWluaGEgcmVzcG9uc2FiaWxpZGFkZSBxdWFpc3F1ZXIgbWVkaWRhcyBqdWRpY2lhaXMgb3UgZXh0cmFqdWRpY2lhaXMgY29uY2VybmVudGVzIGFvIGNvbnRlw7pkby4K |
| dc.title.none.fl_str_mv |
Saife: Towards a Lightweight Threat Modeling Approach to Support Machine Learning Application Development. |
| dc.title.alternative.none.fl_str_mv |
Saife: rumo a uma abordagem leve de modelagem de ameaças para apoiar o desenvolvimento de aplicativos de Aprendizado de Máquina. |
| title |
Saife: Towards a Lightweight Threat Modeling Approach to Support Machine Learning Application Development. |
| spellingShingle |
Saife: Towards a Lightweight Threat Modeling Approach to Support Machine Learning Application Development. Messas, Gabriel Esteves Ciências Exatas e da Terra - Ciência da Computação Artiacial Intelligence Machine Learning Security Threat Modeling Ciências Exatas e da Terra - Ciência da Computação Inteligência Artiacial Aprendizado de Máquina Segurança Modelagem de Ameaças |
| title_short |
Saife: Towards a Lightweight Threat Modeling Approach to Support Machine Learning Application Development. |
| title_full |
Saife: Towards a Lightweight Threat Modeling Approach to Support Machine Learning Application Development. |
| title_fullStr |
Saife: Towards a Lightweight Threat Modeling Approach to Support Machine Learning Application Development. |
| title_full_unstemmed |
Saife: Towards a Lightweight Threat Modeling Approach to Support Machine Learning Application Development. |
| title_sort |
Saife: Towards a Lightweight Threat Modeling Approach to Support Machine Learning Application Development. |
| author |
Messas, Gabriel Esteves |
| author_facet |
Messas, Gabriel Esteves |
| author_role |
author |
| dc.contributor.banca.none.fl_str_mv |
Menolli, André Luís Andrade Meneguette, Rodolfo Ipolito |
| dc.contributor.author.fl_str_mv |
Messas, Gabriel Esteves |
| dc.contributor.authorID.fl_str_mv |
5b4be1b9-6614-4657-b275-73a9b2e78360 |
| dc.contributor.advisor1ID.fl_str_mv |
185d873c-996a-4746-ab7f-3fc3ccf3c82c |
| dc.contributor.advisor1.fl_str_mv |
Zarpelão, Bruno Bogaz |
| contributor_str_mv |
Zarpelão, Bruno Bogaz |
| dc.subject.cnpq.fl_str_mv |
Ciências Exatas e da Terra - Ciência da Computação |
| topic |
Ciências Exatas e da Terra - Ciência da Computação Artiacial Intelligence Machine Learning Security Threat Modeling Ciências Exatas e da Terra - Ciência da Computação Inteligência Artiacial Aprendizado de Máquina Segurança Modelagem de Ameaças |
| dc.subject.por.fl_str_mv |
Artiacial Intelligence Machine Learning Security Threat Modeling |
| dc.subject.capes.none.fl_str_mv |
Ciências Exatas e da Terra - Ciência da Computação |
| dc.subject.keywords.none.fl_str_mv |
Inteligência Artiacial Aprendizado de Máquina Segurança Modelagem de Ameaças |
| description |
With the growing popularization of the Artificial Intelligence (AI) field, the development of systems that rely on, at least, one of its subareas has also experienced a great increase. The recent adoption of AI techniques in common systems - such as mobile apps and household appliances - requires a higher level of attention, in order to ensure their safety and proper operation. In this scenario, assuring the adequate functioning of these solutions culminates, in most cases, in ensuring the security of the application and its data throughout the software development life cycle. Software developers, however, often find security-related tasks challenging to learn and execute, and frequently put them aside. Additionally, currently available threat modeling frameworks are difficult to integrate into software development life cycles, which prioritize agility and automation over extensive analysis and documentation. This work, therefore, proposes sAIfe, a new threat modeling method for security analysis of Machine Learning (ML) applications under development. sAIfe provides prescriptive steps, with graphical elements and results that include lists with threats and ready-made remediation suggestions for the analyzed system. This approach aims at simplifying the risk assessment process for the programmer, unveiling possible weaknesses and suggesting respective solutions in a practical way. Still in this work, sAIfe is tested on a real-world ML application, revealing positive results, with many potential issues and mitigation options detected by the method, which are registered in the form of a case study. Additionally, this study is compared to another one, carried out with an alternative method from the literature, highlighting sAIfe’s advantages. Finally, two validations are carried out: one with researchers in academia and another with developers in industry, returning great feedback on sAIfe’s ease of use and speed of application |
| publishDate |
2024 |
| dc.date.issued.fl_str_mv |
2024-12-13 |
| dc.date.accessioned.fl_str_mv |
2025-02-04T13:03:11Z |
| dc.date.available.fl_str_mv |
2025-02-04T13:03:11Z |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
| format |
masterThesis |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
https://repositorio.uel.br/handle/123456789/18541 |
| url |
https://repositorio.uel.br/handle/123456789/18541 |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.relation.confidence.fl_str_mv |
-1 -1 |
| dc.relation.departament.none.fl_str_mv |
CCE - Departamento de Computação |
| dc.relation.ppgname.none.fl_str_mv |
Programa de Pós-Graduação em Ciência da Computação |
| dc.relation.institutionname.none.fl_str_mv |
Universidade Estadual de Londrina - UEL |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.coverage.spatial.none.fl_str_mv |
Londrina, Paraná |
| dc.coverage.extent.none.fl_str_mv |
75 p. |
| dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UEL instname:Universidade Estadual de Londrina (UEL) instacron:UEL |
| instname_str |
Universidade Estadual de Londrina (UEL) |
| instacron_str |
UEL |
| institution |
UEL |
| reponame_str |
Repositório Institucional da UEL |
| collection |
Repositório Institucional da UEL |
| bitstream.url.fl_str_mv |
https://repositorio.uel.br/bitstreams/862be64d-87bd-4ad0-b19b-5202d53f1495/download https://repositorio.uel.br/bitstreams/6e2b318d-6b03-4556-9408-756b83bbc857/download https://repositorio.uel.br/bitstreams/e15ef84e-d31a-46bd-8224-83c90e63b81b/download https://repositorio.uel.br/bitstreams/1c4d5a62-392a-40cd-8bf4-60d7a7342a0f/download https://repositorio.uel.br/bitstreams/f85fe0a5-0544-4263-ab41-a652930cd6e3/download https://repositorio.uel.br/bitstreams/e79171c0-fc86-426f-82b6-f8e55a12945b/download https://repositorio.uel.br/bitstreams/684ac6e7-2305-4a9b-a9fa-6e671f834a58/download |
| bitstream.checksum.fl_str_mv |
87893979c0ddf5ab654472679b82bc1c 0d6bdc520ec3094154153cd1444e230e b0875caec81dd1122312ab77c11250f1 c508aacd65bdaa67c78298983c9b5e6b 6ccbb71e7ef8db1f39ed4eb6583e5a1d 526eb7221dd5e44e9e296a92d6ed0be7 a253ad0771f85ab291920ef165a4637b |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositório Institucional da UEL - Universidade Estadual de Londrina (UEL) |
| repository.mail.fl_str_mv |
bcuel@uel.br|| |
| _version_ |
1856675830069985280 |