Imobilização e caracterização de lipases para reações de transesterificação

Detalhes bibliográficos
Ano de defesa: 2012
Autor(a) principal: Barão, Carlos Eduardo
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Estadual de Maringá
Brasil
Departamento de Engenharia Química
Programa de Pós-Graduação em Engenharia Química
UEM
Maringá, PR
Centro de Tecnologia
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://repositorio.uem.br:8080/jspui/handle/1/3650
Resumo: The lipase from Thermomyces lanuginosus and Bacillus sp. ITP-001, free and immobilized in sol-gel matrices produced with TMOS and TEOS precursors in the presence of different additives and dried by the techniques of xerogel vacuum desiccator and aerogel supercritical CO2 was used in the transesterification of vegetable oil to determine the influence of these factors on the reaction. Initially free lipase enzyme was characterized by its hydrolytic and transesterification activities, giving the results of 504.4 U mg-1 and 1233.79 U g-1 at 37 ºC and it was found that lower temperatures give higher values of activities within the range studied. Further, when the free enzyme was used for the production of ethyl esters via a factorial design, it was found that lower temperatures (37 °C) and lower molar ratios of oil:ethanol (1:6) gave again the highest yields in esters, but temperature is the only factor of influence with 95 % confidence. In a second step the influence of moisture content was verified for the immobilized lipase with TEOS, dried as aerogel with PEG additive and through a factorial design 22 (varying moisture content and temperature), and it was found that higher moisture content (30 %) and lower temperatures (40 °C) provided the highest values of transesterification activity and that both factors, as their interaction, were influencing factors, with 95 % confidence. The biocatalyst at these conditions gave values of surface area of 502.4 m2 g-1, pore volume of 0.643 cm3 g-1 and average pore diameter of 51.18 Å. In the next step it was verified the influence of additive (ionic liquid) on the immobilization with TEOS xerogel and aerogel with enzymes from Thermomyces lanuginosus and Bacillus ITP 001. In this case high yields of immobilization were obtained as 232.4 % and 243.3 % for the ITP 001 enzyme and 83.9 % and 111.7 % for the enzyme from Thermomyces dried as xerogel and aerogel, respectively. The values of hydrolytic and transesterification activities at 37 °C were superior for the ITP enzyme and comparing the two types of drying studied, the aerogel provided higher values of activity. The characterization by BET technique demonstrated a greater surface area, pore volume and pore size in aerogel preparations for both enzymes and also gave greater surface roughness for biocatalyst particles of this type of drying. Finally, it was verified then the influence of the silica precursor (TMOS and TEOS) on the biocatalysts dried by the xerogel and aerogel techniques. The results of hydrolytic activity, esterification and transesterification at 37 °C again demonstrated the superiority of the aerogel preparations that gave high values for the transesterification activities with biocatalysts having TEOS as precursor, while for the other two types of activity studied it was observed superiority of the TMOS precursor. In characterizing by the BET technique the highest values for surface area and pore volume were obtained for xerogel prepared with TEOS (contradictory results to those obtained previously) and all preparations were composed of mesopores. The biocatalysts obtained were further characterized by SEM (demonstrating the roughness and material retained on surfaces of products) and by DSC and TGA, in which it was observed the behavior of the preparations with increasing temperature, observing defined stages of mass loss and heat flux. These preparations were also used in the production of ethyl esters under the conditions of mass amount of enzyme of 7.5 % relative to the mass of oil, at 37 °C and molar ratio oil:ethanol 1:9 for all preparations. Under these conditions, there was a much higher ester yield for the preparation using TMOS, particularly for that dried as xerogel compared to the precursor TEOS in both drying. The largest relative yields observed (as compared to the precursor TMOS and drying xerogel) were obtained in times of 48 h for drying xerogel with precursor TEOS (44%) and TMOS aerogel (60%), whereas for the TEOS precursor aerogel drying the highest yield was observed for 96 h (27 %). At the end, a cycle of reuse was performed with both biocatalysts obtained by aerogel and using reaction time of 48 h with the same conditions as initially defined and it was found that after one cycle, the precursor TMOS retained 91.4 % of its initial activity while the TEOS precursor remained with only 2.8%, confirming the high efficiency of the TMOS precur45sor in the production of ethyl esters.
id UEM-10_a090e55dd40f84f4b4311e8cbdaa93c7
oai_identifier_str oai:localhost:1/3650
network_acronym_str UEM-10
network_name_str Repositório Institucional da Universidade Estadual de Maringá (RI-UEM)
repository_id_str
spelling Imobilização e caracterização de lipases para reações de transesterificaçãoImmobilization and characterization of the lipase enzyme for transesterification reactionsLipasesImobilizaçãoTransesterificaçãoBrasil.EngenhariasEngenharia QuímicaThe lipase from Thermomyces lanuginosus and Bacillus sp. ITP-001, free and immobilized in sol-gel matrices produced with TMOS and TEOS precursors in the presence of different additives and dried by the techniques of xerogel vacuum desiccator and aerogel supercritical CO2 was used in the transesterification of vegetable oil to determine the influence of these factors on the reaction. Initially free lipase enzyme was characterized by its hydrolytic and transesterification activities, giving the results of 504.4 U mg-1 and 1233.79 U g-1 at 37 ºC and it was found that lower temperatures give higher values of activities within the range studied. Further, when the free enzyme was used for the production of ethyl esters via a factorial design, it was found that lower temperatures (37 °C) and lower molar ratios of oil:ethanol (1:6) gave again the highest yields in esters, but temperature is the only factor of influence with 95 % confidence. In a second step the influence of moisture content was verified for the immobilized lipase with TEOS, dried as aerogel with PEG additive and through a factorial design 22 (varying moisture content and temperature), and it was found that higher moisture content (30 %) and lower temperatures (40 °C) provided the highest values of transesterification activity and that both factors, as their interaction, were influencing factors, with 95 % confidence. The biocatalyst at these conditions gave values of surface area of 502.4 m2 g-1, pore volume of 0.643 cm3 g-1 and average pore diameter of 51.18 Å. In the next step it was verified the influence of additive (ionic liquid) on the immobilization with TEOS xerogel and aerogel with enzymes from Thermomyces lanuginosus and Bacillus ITP 001. In this case high yields of immobilization were obtained as 232.4 % and 243.3 % for the ITP 001 enzyme and 83.9 % and 111.7 % for the enzyme from Thermomyces dried as xerogel and aerogel, respectively. The values of hydrolytic and transesterification activities at 37 °C were superior for the ITP enzyme and comparing the two types of drying studied, the aerogel provided higher values of activity. The characterization by BET technique demonstrated a greater surface area, pore volume and pore size in aerogel preparations for both enzymes and also gave greater surface roughness for biocatalyst particles of this type of drying. Finally, it was verified then the influence of the silica precursor (TMOS and TEOS) on the biocatalysts dried by the xerogel and aerogel techniques. The results of hydrolytic activity, esterification and transesterification at 37 °C again demonstrated the superiority of the aerogel preparations that gave high values for the transesterification activities with biocatalysts having TEOS as precursor, while for the other two types of activity studied it was observed superiority of the TMOS precursor. In characterizing by the BET technique the highest values for surface area and pore volume were obtained for xerogel prepared with TEOS (contradictory results to those obtained previously) and all preparations were composed of mesopores. The biocatalysts obtained were further characterized by SEM (demonstrating the roughness and material retained on surfaces of products) and by DSC and TGA, in which it was observed the behavior of the preparations with increasing temperature, observing defined stages of mass loss and heat flux. These preparations were also used in the production of ethyl esters under the conditions of mass amount of enzyme of 7.5 % relative to the mass of oil, at 37 °C and molar ratio oil:ethanol 1:9 for all preparations. Under these conditions, there was a much higher ester yield for the preparation using TMOS, particularly for that dried as xerogel compared to the precursor TEOS in both drying. The largest relative yields observed (as compared to the precursor TMOS and drying xerogel) were obtained in times of 48 h for drying xerogel with precursor TEOS (44%) and TMOS aerogel (60%), whereas for the TEOS precursor aerogel drying the highest yield was observed for 96 h (27 %). At the end, a cycle of reuse was performed with both biocatalysts obtained by aerogel and using reaction time of 48 h with the same conditions as initially defined and it was found that after one cycle, the precursor TMOS retained 91.4 % of its initial activity while the TEOS precursor remained with only 2.8%, confirming the high efficiency of the TMOS precur45sor in the production of ethyl esters.A lipase de Thermomyces lanuginosus e de Bacillus sp. ITP-001, livres e imobilizadas em matrizes sol-gel produzidas com os precursores tetraetoxissilano (TEOS) e tetrametoxissilano TMOS, na presença de diferentes aditivos, e secas com as técnicas xerogel dessecador a vácuo e aerogel CO2 supercrítico foi utilizada em reações de transesterificação de óleo vegetal, para verificar a influência desses fatores sobre a reação. Inicialmente a lipase livre foi caracterizada quanto as suas atividades hidrolítica e de transesterificação, fornecendo os resultados de 504 U mg-1 e 1233 U g-1, a 37 ºC, respectivamente, e foi verificado que menores temperaturas fornecem maiores valores de atividades na faixa estudada. Na sequência, quando a enzima livre foi utilizada para a produção de ésteres etílicos por meio de um planejamento fatorial, comprovou-se que menores temperaturas (37 ºC) e menores razões molares óleo:álcool (1:6) forneciam novamente os maiores rendimentos em ésteres, mas sendo somente a temperatura um fator de influência com 95 % de confiança. Em uma segunda etapa verificou-se a influência da umidade da enzima lípase imobilizada com TEOS, seca em aerogel com aditivo PEG e através de um planejamento fatorial 22 (variando condições de umidade e temperatura), e constatou-se que maiores umidades (30 %) e menores temperaturas (40 ºC) forneciam os maiores valores de atividade de transesterificação e que tanto os fatores quanto a sua interação eram fatores de influencia, com 95 % de confiança. O biocatalisador nessas condições forneceu valores de área superficial de 502 m2 g-1, volume de poros de 0,643 cm3 g-1 e diâmetro médio de poros de 51,2 Å. Na etapa seguinte foi verificada a influência do aditivo (liquido iônico) na imobilização com TEOS xerogel e aerogel das enzimas de Thermomyces lanuginosus e de Bacillus sp ITP 001. Nesse caso foram obtidos altos rendimentos de imobilização, de 232,4 % e 243,3 % para lipase ITP 001 e 83,9 % e 111,7 % para a lipase de Thermomyces, respectivamente nas secagens xerogel e aerogel. Os valores de atividades hidrolítica e de transesterificação a 37 ºC foram superiores para a enzima ITP e comparando-se os dois tipos estudados de secagem, a forma aerogel forneceu maiores valores de atividade. A caracterização pela técnica BET demonstrou maior área superficial, volume de poros e tamanho de poros nas preparações aerogel para ambas as enzimas, além de se verificar uma maior rugosidade superficial da partícula de biocatalisador para esse tipo de secagem. Finalizando os estudos foi verificada então a influência do precursor de sílica (TEOS e TMOS) sobre os biocatalisadores secos pelas técnicas xerogel e aerogel. Os resultados de atividade hidrolítica, esterificação e transesterificação a 37 ºC demonstraram novamente a superioridade da preparação aerogel com altos valores nas atividades de transesterificação com precursor TEOS, enquanto para os outros dois tipos de atividade estudados foi observada a superioridade do precursor TMOS. Na caracterização por BET os maiores valores de área superficial e de volume de poros foram obtidos na preparação TEOS xerogel (resultados contraditórios aos obtidos anteriormente) e todas as preparações eram compostas de mesoporos. Os biocatalisadores obtidos foram ainda caracterizados por MEV (demonstrando a rugosidade e material retido nas superfícies dos produtos), por TGA e DSC, nas quais foi verificado o comportamento das preparações obtidas com o aumento da temperatura, observando-se estágios definidos de perdas de massa e fluxo de calor. Essas preparações ainda foram utilizadas na produção de ésteres etílicos nas condições de quantidade de massa de enzima de 7,5 % em relação à massa de óleo, temperatura de 37 ºC e razão molar óleo:álcool de 1:9, para todas as preparações. Nessas condições, verificou-se um rendimento muito superior da preparação utilizando TMOS, principalmente na secagem xerogel, quando comparada ao precursor TEOS, em ambas as secagens. Os maiores rendimentos relativos observados (em comparação ao precursor TMOS e secagem xerogel) foram obtidos nos tempos de 48 h para precursor TEOS com secagem xerogel (44%), e TMOS aerogel (60 %), enquanto para o precursor TEOS com secagem aerogel observou-se o maior rendimento em 96 h (27%). Ao final, foi realizado um ciclo de reutilização com ambos os biocatalisadores obtidos pela secagem aerogel, usando tempo de reação de 48 h com as mesmas condições definidas inicialmente e verificou-se que após um ciclo, o precursor TMOS reteve 91,4 % da sua atividade inicial, enquanto o precursor TEOS manteve apenas 2,8 %, confirmando a elevada eficiência do precursor TMOS na produção de ésteres etílicos.xv, 69 fUniversidade Estadual de MaringáBrasilDepartamento de Engenharia QuímicaPrograma de Pós-Graduação em Engenharia QuímicaUEMMaringá, PRCentro de TecnologiaFlávio Faria de MoraesGisella Maria Zanin [Orientador] - UEMNadia Krieger - UFPRLuiza Pedrina Vilxenski Calsavara - UEMCamila da Silva - UEMBarão, Carlos Eduardo2018-04-17T17:39:53Z2018-04-17T17:39:53Z2012info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesishttp://repositorio.uem.br:8080/jspui/handle/1/3650porinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da Universidade Estadual de Maringá (RI-UEM)instname:Universidade Estadual de Maringá (UEM)instacron:UEM2018-10-15T18:12:23Zoai:localhost:1/3650Repositório InstitucionalPUBhttp://repositorio.uem.br:8080/oai/requestopendoar:2024-04-23T14:56:47.872327Repositório Institucional da Universidade Estadual de Maringá (RI-UEM) - Universidade Estadual de Maringá (UEM)false
dc.title.none.fl_str_mv Imobilização e caracterização de lipases para reações de transesterificação
Immobilization and characterization of the lipase enzyme for transesterification reactions
title Imobilização e caracterização de lipases para reações de transesterificação
spellingShingle Imobilização e caracterização de lipases para reações de transesterificação
Barão, Carlos Eduardo
Lipases
Imobilização
Transesterificação
Brasil.
Engenharias
Engenharia Química
title_short Imobilização e caracterização de lipases para reações de transesterificação
title_full Imobilização e caracterização de lipases para reações de transesterificação
title_fullStr Imobilização e caracterização de lipases para reações de transesterificação
title_full_unstemmed Imobilização e caracterização de lipases para reações de transesterificação
title_sort Imobilização e caracterização de lipases para reações de transesterificação
author Barão, Carlos Eduardo
author_facet Barão, Carlos Eduardo
author_role author
dc.contributor.none.fl_str_mv Flávio Faria de Moraes
Gisella Maria Zanin [Orientador] - UEM
Nadia Krieger - UFPR
Luiza Pedrina Vilxenski Calsavara - UEM
Camila da Silva - UEM
dc.contributor.author.fl_str_mv Barão, Carlos Eduardo
dc.subject.por.fl_str_mv Lipases
Imobilização
Transesterificação
Brasil.
Engenharias
Engenharia Química
topic Lipases
Imobilização
Transesterificação
Brasil.
Engenharias
Engenharia Química
description The lipase from Thermomyces lanuginosus and Bacillus sp. ITP-001, free and immobilized in sol-gel matrices produced with TMOS and TEOS precursors in the presence of different additives and dried by the techniques of xerogel vacuum desiccator and aerogel supercritical CO2 was used in the transesterification of vegetable oil to determine the influence of these factors on the reaction. Initially free lipase enzyme was characterized by its hydrolytic and transesterification activities, giving the results of 504.4 U mg-1 and 1233.79 U g-1 at 37 ºC and it was found that lower temperatures give higher values of activities within the range studied. Further, when the free enzyme was used for the production of ethyl esters via a factorial design, it was found that lower temperatures (37 °C) and lower molar ratios of oil:ethanol (1:6) gave again the highest yields in esters, but temperature is the only factor of influence with 95 % confidence. In a second step the influence of moisture content was verified for the immobilized lipase with TEOS, dried as aerogel with PEG additive and through a factorial design 22 (varying moisture content and temperature), and it was found that higher moisture content (30 %) and lower temperatures (40 °C) provided the highest values of transesterification activity and that both factors, as their interaction, were influencing factors, with 95 % confidence. The biocatalyst at these conditions gave values of surface area of 502.4 m2 g-1, pore volume of 0.643 cm3 g-1 and average pore diameter of 51.18 Å. In the next step it was verified the influence of additive (ionic liquid) on the immobilization with TEOS xerogel and aerogel with enzymes from Thermomyces lanuginosus and Bacillus ITP 001. In this case high yields of immobilization were obtained as 232.4 % and 243.3 % for the ITP 001 enzyme and 83.9 % and 111.7 % for the enzyme from Thermomyces dried as xerogel and aerogel, respectively. The values of hydrolytic and transesterification activities at 37 °C were superior for the ITP enzyme and comparing the two types of drying studied, the aerogel provided higher values of activity. The characterization by BET technique demonstrated a greater surface area, pore volume and pore size in aerogel preparations for both enzymes and also gave greater surface roughness for biocatalyst particles of this type of drying. Finally, it was verified then the influence of the silica precursor (TMOS and TEOS) on the biocatalysts dried by the xerogel and aerogel techniques. The results of hydrolytic activity, esterification and transesterification at 37 °C again demonstrated the superiority of the aerogel preparations that gave high values for the transesterification activities with biocatalysts having TEOS as precursor, while for the other two types of activity studied it was observed superiority of the TMOS precursor. In characterizing by the BET technique the highest values for surface area and pore volume were obtained for xerogel prepared with TEOS (contradictory results to those obtained previously) and all preparations were composed of mesopores. The biocatalysts obtained were further characterized by SEM (demonstrating the roughness and material retained on surfaces of products) and by DSC and TGA, in which it was observed the behavior of the preparations with increasing temperature, observing defined stages of mass loss and heat flux. These preparations were also used in the production of ethyl esters under the conditions of mass amount of enzyme of 7.5 % relative to the mass of oil, at 37 °C and molar ratio oil:ethanol 1:9 for all preparations. Under these conditions, there was a much higher ester yield for the preparation using TMOS, particularly for that dried as xerogel compared to the precursor TEOS in both drying. The largest relative yields observed (as compared to the precursor TMOS and drying xerogel) were obtained in times of 48 h for drying xerogel with precursor TEOS (44%) and TMOS aerogel (60%), whereas for the TEOS precursor aerogel drying the highest yield was observed for 96 h (27 %). At the end, a cycle of reuse was performed with both biocatalysts obtained by aerogel and using reaction time of 48 h with the same conditions as initially defined and it was found that after one cycle, the precursor TMOS retained 91.4 % of its initial activity while the TEOS precursor remained with only 2.8%, confirming the high efficiency of the TMOS precur45sor in the production of ethyl esters.
publishDate 2012
dc.date.none.fl_str_mv 2012
2018-04-17T17:39:53Z
2018-04-17T17:39:53Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://repositorio.uem.br:8080/jspui/handle/1/3650
url http://repositorio.uem.br:8080/jspui/handle/1/3650
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Estadual de Maringá
Brasil
Departamento de Engenharia Química
Programa de Pós-Graduação em Engenharia Química
UEM
Maringá, PR
Centro de Tecnologia
publisher.none.fl_str_mv Universidade Estadual de Maringá
Brasil
Departamento de Engenharia Química
Programa de Pós-Graduação em Engenharia Química
UEM
Maringá, PR
Centro de Tecnologia
dc.source.none.fl_str_mv reponame:Repositório Institucional da Universidade Estadual de Maringá (RI-UEM)
instname:Universidade Estadual de Maringá (UEM)
instacron:UEM
instname_str Universidade Estadual de Maringá (UEM)
instacron_str UEM
institution UEM
reponame_str Repositório Institucional da Universidade Estadual de Maringá (RI-UEM)
collection Repositório Institucional da Universidade Estadual de Maringá (RI-UEM)
repository.name.fl_str_mv Repositório Institucional da Universidade Estadual de Maringá (RI-UEM) - Universidade Estadual de Maringá (UEM)
repository.mail.fl_str_mv
_version_ 1797150434014527488