Anti-incrustantes a base de cobre: revisão da literatura e análise bibliométrica
| Ano de defesa: | 2022 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | |
| Tipo de documento: | Dissertação |
| Tipo de acesso: | Acesso aberto |
| Idioma: | por |
| Instituição de defesa: |
Universidade do Estado do Rio de Janeiro
Centro de Tecnologia e Ciências::Faculdade de Oceanografia Brasil UERJ Programa de Pós-Graduação em Oceanografia |
| Programa de Pós-Graduação: |
Não Informado pela instituição
|
| Departamento: |
Não Informado pela instituição
|
| País: |
Não Informado pela instituição
|
| Palavras-chave em Português: | |
| Link de acesso: | http://www.bdtd.uerj.br/handle/1/20429 |
Resumo: | O uso de compostos de cobre como biocidas são comumente usados em revestimentos anti-incrustantes em navios. A proteção contra bioincrustação é essencial para um serviço eficiente de barcos e navios. Tecnologias anti-incrustantes que incorporam biocidas como cobre e tributilestanho foram desenvolvidas para evitar a instalação de organismos em embarcações, mas seu uso generalizado introduziu altos níveis de contaminação no meio ambiente e levantou preocupações sobre seus efeitos tóxicos nas comunidades marinhas. Este trabalho levantou o histórico do uso do cobre como biocida, e os principais impulsionadores do desenvolvimento e mudanças nas tecnologias das tintas anti- incrustantes. O uso da ferramenta “Bibliometrix” permitiu identificar a tendência atual nas pesquisas do tema deste estudo. A taxa de liberação de biocidas por pequenas embarcações é o principal foco das pesquisas atuais, junto dos biocidas de reforço e estudos de ecotoxicidade. Os últimos anos mostram uma mudança do foco nos temas de estudos fundamentais para os processos envolvidos na bioincrustação e no design de novos revestimentos e outras tecnologias. Apontamentos e desafios de pesquisas futuras também são discutidos no final, e espera-se que esta revisão impulsione e oriente o foco de futuras pesquisas de tecnologias anti-incrustantes. |
| id |
UERJ_ffebd2526cc676ddcfc007b7d0ca3386 |
|---|---|
| oai_identifier_str |
oai:www.bdtd.uerj.br:1/20429 |
| network_acronym_str |
UERJ |
| network_name_str |
Biblioteca Digital de Teses e Dissertações da UERJ |
| repository_id_str |
|
| spelling |
Anti-incrustantes a base de cobre: revisão da literatura e análise bibliométricatoxicity;tribultyltin;biocide;coating;Metal;toxicidade;tributilestanho;biocida;revestimento;bibliometrix;CIENCIAS EXATAS E DA TERRA::OCEANOGRAFIA::OCEANOGRAFIA QUIMICAO uso de compostos de cobre como biocidas são comumente usados em revestimentos anti-incrustantes em navios. A proteção contra bioincrustação é essencial para um serviço eficiente de barcos e navios. Tecnologias anti-incrustantes que incorporam biocidas como cobre e tributilestanho foram desenvolvidas para evitar a instalação de organismos em embarcações, mas seu uso generalizado introduziu altos níveis de contaminação no meio ambiente e levantou preocupações sobre seus efeitos tóxicos nas comunidades marinhas. Este trabalho levantou o histórico do uso do cobre como biocida, e os principais impulsionadores do desenvolvimento e mudanças nas tecnologias das tintas anti- incrustantes. O uso da ferramenta “Bibliometrix” permitiu identificar a tendência atual nas pesquisas do tema deste estudo. A taxa de liberação de biocidas por pequenas embarcações é o principal foco das pesquisas atuais, junto dos biocidas de reforço e estudos de ecotoxicidade. Os últimos anos mostram uma mudança do foco nos temas de estudos fundamentais para os processos envolvidos na bioincrustação e no design de novos revestimentos e outras tecnologias. Apontamentos e desafios de pesquisas futuras também são discutidos no final, e espera-se que esta revisão impulsione e oriente o foco de futuras pesquisas de tecnologias anti-incrustantes.The use of copper compounds as biocides are commonly used in antifouling coatings on ships. Biofouling protection is essential for efficient service of boats and ships. Antifouling technologies that incorporate biocides such as copper and tributyltin were developed to prevent the installation of organisms on vessels, but their widespread use has introduced high levels of contamination into the environment and raised concerns about their toxic effects on marine communities. This review covers the history of copper as the main drivers of development and changes in technologies. The use of the “Bibliometrix” tool allowed us to identify the current trend in research. The release rate of biocides for small vessels is the main focus of current research, along with booster biocides and ecotoxicity studies. Recent years have shown a shift in focus from fundamental study topics to processes developed in biofouling and the design of new coatings and other technologies. Points and challenges for future research are also discussed at the end, and it is hoped that this review will drive and guide the focus of future research on antifouling technologies.Universidade do Estado do Rio de JaneiroCentro de Tecnologia e Ciências::Faculdade de OceanografiaBrasilUERJPrograma de Pós-Graduação em OceanografiaFernandez, Marcos Antôniohttp://lattes.cnpq.br/3584753829279659Hamacher, Cláudiahttp://lattes.cnpq.br/6898423735044511Oliveira, Deloar Duda dehttp://lattes.cnpq.br/7121458866370743Skinner, Luis Felipehttp://lattes.cnpq.br/9748284881593806Oliveira, Gustavo Marceno de2023-10-05T19:46:18Z2022-12-16info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfOLIVEIRA, Gustavo Marceno de. Anti-incrustantes a base de cobre: revisão da literatura e análise bibliométrica. 2022. 71 f. Dissertação (Mestrado em Oceanografia) - Faculdade de Oceanografia, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, 2022.http://www.bdtd.uerj.br/handle/1/20429porADELEYE, A. S. et al. Release and detection of nanosized copper from a commercial antifouling paint. Water Research, [s.l.], 2016. ISSN: 0043-1354, DOI: 10.1016/j.watres.2016.06.056. ALMOND, K. M.; TROMBETTA, L. D. Copper pyrithione, a booster biocide, induces abnormal muscle and notochord architecture in zebrafish embryogenesis. Ecotoxicology, [s.l.], v. 26, no 7, p. 855–867, 2017a. ISSN: 15733017, DOI: 10.1007/s10646-017-1816-1. ALMOND, K. M.; TROMBETTA, L. D. Copper pyrithione , a booster biocide , induces abnormal muscle and notochord architecture in zebra fi sh embryogenesis. Ecotoxicology, [s.l.], p. 855–867, 2017b. ISSN: 1573-3017, DOI: 10.1007/s10646-017-1816-1. ALVARADO, R. U. A lei de Lotka e a produtividade dos autores. Perspectivas em Ciência da Informação, [s.l.], v. 14, no 3, p. 233–233, 2009. DOI: 10.1590/s1413- 99362009000300016. ALZIEU, C. Environmental impact of TBT: The French experience. Science of the Total Environment, [s.l.], v. 258, no 1–2, p. 99–102, 2000. ISSN: 00489697, DOI: 10.1016/S0048-9697(00)00510-6. ALZIEU, C. L. et al. Tin contamination in Arcachon Bay: Effects on oyster shell anomalies. Marine Pollution Bulletin, [s.l.], v. 17, no 11, p. 494–498, 1986. ISSN: 0025326X, DOI: 10.1016/0025-326X(86)90636-3. AMARA, I. et al. Antifouling processes and toxicity e ff ects of antifouling paints on marine environment . A review. Environmental Toxicology and Pharmacology, [s.l.], v. 57, no October 2017, p. 115–130, 2018. ISSN: 1382-6689, DOI: 10.1016/j.etap.2017.12.001. APOLINARIO, M.; COUTINHO, R. Understanding the biofouling of offshore and deep-sea structures. Advances in marine antifouling coatings and technologies. [s.l.]: Woodhead Publishing Limited, 2004. 132–147 p. DOI: 10.1533/9781845696313.1.132. BAO, V. W. W. et al. Synergistic toxic effects of zinc pyrithione and copper to 59 three marine species : Implications on setting appropriate water quality criteria. [s.l.], v. 57, p. 616–623, 2008. DOI: 10.1016/j.marpolbul.2008.03.041. BARBOSA, N. P. U. et al. Prediction of future risk of invasion by Limnoperna fortunei (Dunker, 1857) (Mollusca, Bivalvia, Mytilidae) in Brazil with cellular automata. Ecological Indicators, [s.l.], v. 92, no February, p. 30–39, 2018. ISSN: 1470160X, DOI: 10.1016/j.ecolind.2018.01.005. BASU, S. et al. Green biolubricant infused slippery surfaces to combat marine biofouling. Journal of Colloid and Interface Science, [s.l.], v. 568, p. 185–197, 2020. ISSN: 10957103, DOI: 10.1016/j.jcis.2020.02.049. BELLAS, J.; GRANMO, Å.; BEIRAS, R. Embryotoxicity of the antifouling biocide zinc pyrithione to sea urchin (Paracentrotus lividus) and mussel (Mytilus edulis). Marine Pollution Bulletin, [s.l.], v. 50, no 11, p. 1382–1385, 2005. ISSN: 0025326X, DOI: 10.1016/j.marpolbul.2005.06.010. BERGMAN, K.; ZIEGLER, F. Environmental impacts of alternative antifouling methods and use patterns of leisure boat owners. International Journal of Life Cycle Assessment, [s.l.], v. 24, no 4, p. 725–734, 2019. ISSN: 16147502, DOI: 10.1007/s11367-018-1525-x. BLABER, S. J. M. the Occurrence of a Penis-Like Outgrowth Behind the Right Tentacle in Spent Females of Nucella Lapillus (L.). Journal of Molluscan Studies, [s.l.], v. 39, no 2–3, p. 231–233, 1970. ISSN: 0260-1230, DOI: 10.1093/oxfordjournals.mollus.a065097. BOLTOVSKOY, D. Limnoperna fortunei: The ecology, distribution and control of a swiftly spreading invasive fouling mussel. Limnoperna Fortunei: The Ecology, Distribution and Control of a Swiftly Spreading Invasive Fouling Mussel, [s.l.], p. 1–476, 2015. ISBN: 9783319134949, DOI: 10.1007/978-3-319-13494-9. BRAITHWAITE, R. A.; MCEVOY, L. A. Marine biofouling on fish farms and its remediation. Advances in Marine Biology. [s.l.]: [s.n.], 2004. v. 47, 215–252 p. ISBN: 0120261480, ISSN: 00652881, DOI: 10.1016/S0065-2881(04)47003-5. BRIENT, J. A.; MANNING, M. J.; FREEMAN, M. H. Copper naphthenate - protecting America’s infrastructure for over 100 years and its potential for expanded use in Canada and Europe. Wood Material Science and Engineering, 60 [s.l.], v. 15, no 6, p. 368–376, 2020. ISSN: 17480280, DOI: 10.1080/17480272.2020.1837948. BROOKS, S.; WALDOCK, M. The use of copper as a biocide in marine antifouling paints. Advances in Marine Antifouling Coatings and Technologies. [s.l.]: Woodhead Publishing Limited, 2009. 492–521 p. ISBN: 9781845693862, DOI: 10.1533/9781845696313.3.492. BRYAN, G. W.; GIBBS, P. E.; BURT, G. R. THE DECLINE OF THE GASTROPOD NUCELLA LAPILLUS AROUND SOUTH-WEST ENGLAND : EVIDENCE FOR THE EFFECT OF TRIBUTYLTIN FROM ANTIFOULING PAINTS The common dogwhelk , Nucella lapillus ( L .), a stenoglossan gastropod , is found on rocky shores on both sides of th. [s.l.], p. 611–640, 1986. CALLOW, J. A.; CALLOW, M. E. Trends in the development of environmentally friendly fouling-resistant marine coatings. Nature Communications, [s.l.], v. 2, no 1, 2011. ISSN: 20411723, DOI: 10.1038/ncomms1251. CAO, S. et al. Progress of marine biofouling and antifouling technologies. Chinese Science Bulletin, [s.l.], v. 56, no 7, p. 598–612, 2011. ISSN: 10016538, DOI: 10.1007/s11434-010-4158-4. CARCHEN, A.; ATLAR, M. Four KPIs for the assessment of biofouling effect on ship performance. Ocean Engineering, [s.l.], v. 217, no September, p. 107971, 2020. ISSN: 00298018, DOI: 10.1016/j.oceaneng.2020.107971. CASTRO, Í. B.; WESTPHAL, E.; FILLMANN, G. TINTAS ANTI-INCRUSTANTES DE TERCEIRA GERAÇÃO: NOVOS BIOCIDAS NO AMBIENTE AQUÁTIC. Química Nova, [s.l.], v. 34, no 6, p. 1021–1031, 2011. CATALDO, D. et al. The introduced bivalve Limnoperna fortunei boosts Microcystis growth in Salto Grande reservoir (Argentina): Evidence from mesocosm experiments. Hydrobiologia, [s.l.], v. 680, no 1, p. 25–38, 2012. ISSN: 15735117, DOI: 10.1007/s10750-011-0897-8. CHAMBERS, L. D. et al. Modern approaches to marine antifouling coatings. Surface and Coatings Technology, [s.l.], v. 201, no 6, p. 3642–3652, 2006. ISSN: 02578972, DOI: 10.1016/j.surfcoat.2006.08.129. 61 CHAPMAN, P. M. The sediment quality triad approach to determining pollution- induced degradation. Science of the Total Environment, The, [s.l.], v. 97–98, no C, p. 815–825, 1990. ISSN: 00489697, DOI: 10.1016/0048-9697(90)90277-2. CHASSE, K. R.; SCARDINO, A. J.; SWAIN, G. W. Corrosion and fouling study of copper-based antifouling coatings on 5083 aluminum alloy. Progress in Organic Coatings, [s.l.], v. 141, no August 2019, p. 105555, 2020. ISSN: 03009440, DOI: 10.1016/j.porgcoat.2020.105555. CHEN, T. et al. Effects of copper pyrithione (CuPT) on apoptosis, ROS production, and gene expression in hemocytes of white shrimp Litopenaeus vannamei. Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, [s.l.], v. 256, no 1, p. 109323, 2022. ISSN: 18781659, DOI: 10.1016/j.cbpc.2022.109323. COBO, M. J.; HERRERA, F. An approach for detecting , quantifying , and visualizing the evolution of a research field : A practical application to the Fuzzy Sets Theory field. Journal of Informetrics, [s.l.], v. 5, no 1, p. 146–166, 2011. ISSN: 1751-1577, DOI: 10.1016/j.joi.2010.10.002. COOKSEY, K. E.; WIGGLESWORTH-COOKSEY, B. Adhesion of bacteria and diatoms to surfaces in the sea: A review. Aquatic Microbial Ecology, [s.l.], v. 9, no 1, p. 87–96, 1995. ISSN: 09483055, DOI: 10.3354/ame009087. DUPRAZ, V. et al. Combined effects of antifouling biocides on the growth of three marine microalgal species. Chemosphere, [s.l.], v. 209, p. 801–814, 2018. ISSN: 18791298, DOI: 10.1016/j.chemosphere.2018.06.139. EARLEY, P. J. et al. Life cycle contributions of copper from vessel painting and maintenance activities. Biofouling, [s.l.], v. 30, no 1, p. 51–68, 2014. ISSN: 08927014, DOI: 10.1080/08927014.2013.841891. EKLUND, B.; EKLUND, D. Pleasure boatyard soils are often highly contaminated. Environmental Management, [s.l.], v. 53, no 5, p. 930–946, 2014. ISBN: 0026701402493, ISSN: 14321009, DOI: 10.1007/s00267-014-0249-3. ELLIS, D. V.; AGAN PATTISINA, L. Widespread neogastropod imposex: A biological indicator of global TBT contamination? Marine Pollution Bulletin, [s.l.], v. 21, no 5, p. 248–253, 1990. ISSN: 0025326X, DOI: 10.1016/0025-326X(90)90344- 62 8. FARKAS, A. et al. Greenhouse gas emissions reduction potential by using antifouling coatings in a maritime transport industry. Journal of Cleaner Production, [s.l.], v. 295, 2021. ISSN: 09596526, DOI: 10.1016/j.jclepro.2021.126428. FERNANDEZ, M. A. et al. New approaches for monitoring the marine environment : the case of antifouling paints. [s.l.], v. 1, no 3, 2007. FROTA, M. N. et al. On-line cleaning technique for mitigation of biofouling in heat exchangers: A case study of a hydroelectric power plant in Brazil. Experimental Thermal and Fluid Science, [s.l.], v. 53, p. 197–206, 2014. ISSN: 08941777, DOI: 10.1016/j.expthermflusci.2013.12.006. GARFIELD, E.; SHER, I. H. KeyWords Plus®TM—algorithmic derivative indexing. Journal of the American Society for Information Science, [s.l.], v. 44, no 5, p. 298– 299, 1993. ISSN: 10974571, DOI: 10.1002/(SICI)1097-4571(199306)44:5<298::AID- ASI5>3.0.CO;2-A. GAZULHA, V. et al. Grazing impacts of the invasive bivalve Limnoperna fortunei (Dunker, 1857) on single-celled, colonial and filamentous cyanobacteria. Brazilian Journal of Biology, [s.l.], v. 72, no 1, p. 33–39, 2012. ISSN: 1678-4375, DOI: 10.1590/s1519-69842012000100004. GITTENS, J. E. et al. Current and emerging environmentally-friendly systems for fouling control in the marine environment. Biotechnology Advances, [s.l.], v. 31, no 8, p. 1738–1753, 2013. ISSN: 0734-9750, DOI: 10.1016/j.biotechadv.2013.09.002. GRUNNET, K. S.; DAHLLOF, I. Environmental fate of the antifouling compound zinc pyrithione in seawater. Environmental Toxicology and Chemistry, [s.l.], v. 24, n o 12, p. 3001–3006, 2005. ISSN: 07307268, DOI: 10.1897/04-627R.1. GUEDES, V. L. S.; BORSCHIVER, S. Bibliometria : Uma Ferramenta Estatística Para a Gestão Da Informação E Do Conhecimento , Em Sistemas De Informação , De Comunicação E De. CINFORM - Encontro Nacional de Ciência da Informação, [s.l.], p. 1–18, 2005. HALL, L. W.; ANDERSON, R. D. A Deterministic Ecological Risk Assessment for 63 Copper in European Saltwater Environments. [s.l.], v. 38, no 3, p. 207–218, 1999. HALL, L. W.; SCOTT, M. C.; KILLEN, W. D. Ecological risk assessment of copper and cadmium in surface waters of Chesapeake Bay watershed. Environmental Toxicology and Chemistry, [s.l.], v. 17, no 6, p. 1172–1189, 1998. ISSN: 07307268, DOI: 10.1897/1551-5028(1998)017<1172:ERAOCA>2.3.CO;2. HARINO, H. et al. Concentrations of booster biocides in sediment and clams from Vietnam. Journal of the Marine Biological Association of the United Kingdom, [s.l.], v. 86, no 5, p. 1163–1170, 2006. ISSN: 00253154, DOI: 10.1017/S0025315406014147. ______. Concentrations of antifouling biocides in sediment and mussel samples collected from Otsuchi Bay, Japan. Archives of Environmental Contamination and Toxicology, [s.l.], v. 52, no 2, p. 179–188, 2007. ISSN: 00904341, DOI: 10.1007/s00244-006-0087-2. HARKE, M. J. et al. A review of the global ecology, genomics, and biogeography of the toxic cyanobacterium, Microcystis spp. Harmful Algae, [s.l.], v. 54, p. 4–20, 2016. ISSN: 15689883, DOI: 10.1016/j.hal.2015.12.007. HELLIO, C.; YEBRA, D. M. Introduction. Advances in Marine Antifouling Coatings and Technologies, [s.l.], p. 1–15, 2009. ISBN: 9781845693862, DOI: 10.1533/9781845696313.1. HOLMES, L.; TURNER, A. Leaching of hydrophobic Cu and Zn from discarded marine antifouling paint residues : Evidence for transchelation of metal pyrithiones. Environmental Pollution, [s.l.], v. 157, no 12, p. 3440–3444, 2009. ISSN: 0269-7491, DOI: 10.1016/j.envpol.2009.06.018. HOWELL, D. J.; EVANS, S. M. Antifouling materials. Encyclopedia of Ocean Sciences. 3 ed. [s.l.]: Elsevier Ltd., 2019. 236–242 p. ISBN: 9780128130810, DOI: 10.1016/B978-0-12-813081-0.00764-3. HU, G. R. et al. In vitro assessment of copper naphthenate against the free- living stages of Ichthyophthirius multifiliis. Aquaculture Reports, [s.l.], v. 17, no 7, p. 100404, 2020. ISSN: 23525134, DOI: 10.1016/j.aqrep.2020.100404. HUGGETT, R. J. et al. ES&T Series: The marine biocide tributyltin. Assessing 64 and managing the environmental risks. Environmental Science and Technology, [s.l.], v. 26, no 2, p. 232–237, 1992. ISSN: 15205851, DOI: 10.1021/es00026a001. HUNG, O. S. et al. Effect of ultraviolet radiation on biofilms and subsequent larval settlement of Hydroides elegans. Marine Ecology Progress Series, [s.l.], v. 304, p. 155–166, 2005. ISSN: 01718630, DOI: 10.3354/meps304155. IGNACIO, B. L. et al. Bioinvasion in a Brazilian bay: Filling gaps in the knowledge of Southwestern Atlantic Biota. PLoS ONE, [s.l.], v. 5, no 9, p. 1–9, 2010. ISSN: 19326203, DOI: 10.1371/journal.pone.0013065. JIN, H. et al. Bioinspired marine antifouling coatings: Status, prospects, and future. Progress in Materials Science, [s.l.], v. 124, no September 2021, p. 100889, 2021. ISSN: 00796425, DOI: 10.1016/j.pmatsci.2021.100889. JONES, G. The battle against marine biofouling: A historical review. Advances in Marine Antifouling Coatings and Technologies. [s.l.]: Woodhead Publishing Limited, 2009. 19–45 p. ISBN: 9781845693862, DOI: 10.1533/9781845696313.1.19. KARLSSON, J.; YTREBERG, E.; EKLUND, B. Toxicity of anti-fouling paints for use on ships and leisure boats to non-target organisms representing three trophic levels. Environmental Pollution, [s.l.], v. 158, no 3, p. 681–687, 2010. ISSN: 02697491, DOI: 10.1016/j.envpol.2009.10.024. KETCHUM, B. W. et al. Evaluation of A by Leaching ete. [s.l.], p. 456–460, 1945. KONSTANTINOU, I. K.; ALBANIS, T. A. Worldwide occurrence and effects of antifouling paint booster biocides in the aquatic environment: A review. Environment International, [s.l.], v. 30, no 2, p. 235–248, 2004. ISSN: 18736750, DOI: 10.1016/S0160-4120(03)00176-4. KOUTSAFTIS, A.; AOYAMA, I. Toxicity of four antifouling biocides and their mixtures on the brine shrimp Artemia salina. Science of the Total Environment, [s.l.], v. 387, no 1–3, p. 166–174, 2007. ISSN: 00489697, DOI: 10.1016/j.scitotenv.2007.07.023. LAGERSTRÖM, M. et al. In situ release rates of Cu and Zn from commercial antifouling paints at di ff erent salinities. Marine Pollution Bulletin, [s.l.], v. 127, no October 2017, p. 289–296, 2018. ISSN: 0025-326X, DOI: 65 10.1016/j.marpolbul.2017.12.027. LAU, S. C. K.; HARDER, T.; QIAN, P. Induction of larval settlement in the serpulid polychaete Hydroides elegans (Haswell): Role of bacterial extracellular polymers . Biofouling, [s.l.], v. 19, no 3, p. 197–204, 2003. ISSN: 0892-7014, DOI: 10.1080/08927014.2003.10382982. LAVTIZAR, V. et al. The influence of seawater properties on toxicity of copper pyrithione and its degradation product to brine shrimp Artemia salina. Ecotoxicology and Environmental Safety, [s.l.], v. 147, no June 2017, p. 132–138, 2018. ISSN: 10902414, DOI: 10.1016/j.ecoenv.2017.08.039. LEUNG, T. L. F.; POULIN, R. Parasitism, commensalism, and mutualism: Exploring the many shades of symbioses. Vie et Milieu, [s.l.], v. 58, no 2, p. 107– 115, 2008. ISSN: 02408759. LI, C. et al. An experimental investigation into the effect of Cu 2 O particle size on antifouling roughness and hydrodynamic characteristics by using a turbulent fl ow channel. Ocean Engineering, [s.l.], v. 159, no January, p. 481–495, 2018. ISSN: 0029-8018, DOI: 10.1016/j.oceaneng.2018.01.042. LONG, E. R.; CHAPMAN, P. M. A Sediment Quality Triad: Measures of sediment contamination, toxicity and infaunal community composition in Puget Sound. Marine Pollution Bulletin, [s.l.], v. 16, no 10, p. 405–415, 1985. ISSN: 0025326X, DOI: 10.1016/0025-326X(85)90290-5. LUZ, B. L. P.; KITAHARA, M. V. Could the invasive scleractinians Tubastraea coccinea and T. tagusensis replace the dominant zoantharian Palythoa caribaeorum in the Brazilian subtidal? Coral Reefs, [s.l.], v. 36, no 3, p. 875, 2017. ISSN: 07224028, DOI: 10.1007/s00338-017-1578-5. MACKIE, D. S.; BERG, C. M. G. VAN DEN; READMAN, J. W. Determination of pyrithione in natural waters by cathodic stripping voltammetry. Analytica Chimica Acta, [s.l.], v. 511, no 1, p. 47–53, 2004. ISSN: 00032670, DOI: 10.1016/j.aca.2004.01.033. MAGIN, C. M.; COOPER, S. P.; BRENNAN, A. B. Non-toxic antifouling strategies. Materials Today, [s.l.], v. 13, no 4, p. 36–44, 2010. ISSN: 13697021, DOI: 10.1016/S1369-7021(10)70058-4. 66 MAKI, J. S. et al. Factors Controlling Attachment of Bryozoan Larvae: A Comparison of Bacterial Films and Unfilmed Surfaces. The Biological Bulletin, [s.l.], v. 177, no 2, p. 295–302, 1989. ISSN: 0006-3185, DOI: 10.2307/1541944. MANOJ, S.; MAHESH, S.; SRIKANTH, N. Review of Biofouling Paints on the Marine Vessel Sekar. 2018 Asian Conference on Energy, Power and Transportation Electrification (ACEPT), [s.l.], p. 1–6, 2018. ISBN: 9781538681367. MARALDO, K. Indirect estimation of degradation time for zinc pyrithione and copper pyrithione in seawater. [s.l.], v. 48, p. 894–901, 2004. DOI: 10.1016/j.marpolbul.2003.11.013. MARALDO, K.; DAHLLÖF, I. Seasonal variations in the effect of zinc pyrithione and copper pyrithione on pelagic phytoplankton communities. [s.l.], v. 69, p. 189–198, 2004. DOI: 10.1016/j.aquatox.2004.05.006. MARTÍN-RODRÍGUEZ, A. J. et al. From broad-spectrum biocides to quorum sensing disruptors and mussel repellents: Antifouling profile of alkyl triphenylphosphonium salts. PLoS ONE, [s.l.], v. 10, no 4, p. 1–30, 2015. ISSN: 19326203, DOI: 10.1371/journal.pone.0123652. MARTINS, S. E. et al. Review: Ecotoxicity of organic and organo-metallic antifouling co-biocides and implications for environmental hazard and risk assessments in aquatic ecosystems. Biofouling, [s.l.], v. 34, no 1, p. 34–52, 2017. ISSN: 10292454, DOI: 10.1080/08927014.2017.1404036. MATTHIESSEN, P.; GIBBS, P. E. Critical appraisal of the evidence for tributyltin- mediated endocrine disruption in mollusks. Environmental Toxicology and Chemistry, [s.l.], v. 17, no 1, p. 37–43, 1998. ISSN: 07307268, DOI: 10.1897/1551- 5028(1998)017<0037:CAOTEF>2.3.CO;2. MATTHIESSEN, P.; REED, J.; JOHNSON, M. Sources and potential effects of copper and zinc concentrations in the estuarine waters of Essex and Suffolk, United Kingdom. Marine Pollution Bulletin, [s.l.], v. 38, no 10, p. 908–920, 1999. ISSN: 0025326X, DOI: 10.1016/S0025-326X(99)00090-9. MOCHIDA, K. et al. Acute toxicity of pyrithione antifouling biocides and joint toxicity with copper to red sea bream (Pagrus major) and toy shrimp (Heptacarpus futilirostris). Environmental Toxicology and Chemistry, [s.l.], v. 25, no 67 11, p. 3058–3064, 2006. ISSN: 07307268, DOI: 10.1897/05-688R.1. ______. Comparative Biochemistry and Physiology , Part C Inhibition of acetylcholinesterase by metabolites of copper pyrithione ( CuPT ) and its possible involvement in vertebral deformity of a CuPT-exposed marine teleostean fi sh. Comparative Biochemistry and Physiology, Part C, [s.l.], v. 149, no 4, p. 624–630, 2009. ISSN: 1532-0456, DOI: 10.1016/j.cbpc.2009.01.003. MOHAMAT-YUSUFF, F. et al. Acute toxicity test of copper pyrithione on Javanese medaka and the behavioural stress symptoms. Marine Pollution Bulletin, [s.l.], v. 127, no December 2017, p. 150–153, 2018. ISSN: 18793363, DOI: 10.1016/j.marpolbul.2017.11.046. MOLINO, C. et al. Effect of marine antifouling paint particles waste on survival of natural Bermuda copepod communities. Marine Pollution Bulletin, [s.l.], v. 149, n o May, p. 110492, 2019. ISSN: 18793363, DOI: 10.1016/j.marpolbul.2019.110492. MOREIRA, P. S. da C.; GUIMARÃES, A. J. R.; TSUNODA, D. F. QUAL FERRAMENTA BIBLIOMÉTRICA ESCOLHER? um estudo comparativo entre softwares. P2P E Inovação, [s.l.], v. 6, p. 140–158, 2020. DOI: 10.21721/p2p.2020v6n2.p140-158. MOREIRA, T. S. G.; CREED, J. C. Invasive, non-indigenous corals in a tropical rocky shore environment: No evidence for generalist predation. Journal of Experimental Marine Biology and Ecology, [s.l.], v. 438, p. 7–13, 2012. ISSN: 00220981, DOI: 10.1016/j.jembe.2012.09.015. MUKHTAR, A. et al. Booster biocides levels in the major blood cockle (Tegillarca granosa L., 1758) cultivation areas along the coastal area of Peninsular Malaysia. Water (Switzerland), [s.l.], v. 12, no 6, 2020. ISBN: 6039769661, ISSN: 20734441, DOI: 10.3390/W12061616. NI, C. et al. Progress in Organic Coatings Study on the preparation and properties of new environmentally friendly antifouling acrylic metal salt resins containing indole derivative group. Progress in Organic Coatings, [s.l.], v. 148, no March, p. 105824, 2020. ISSN: 0300-9440, DOI: 10.1016/j.porgcoat.2020.105824. OLIVEIRA, D. D. De; ROJAS, E. G.; FERNANDEZ, M. A. dos S. Should TBT continue to be considered an issue in dredging port areas? A brief review of 68 the global evidence. Ocean and Coastal Management, [s.l.], v. 197, no July, 2020. ISSN: 09645691, DOI: 10.1016/j.ocecoaman.2020.105303. ONDUKA, T. et al. Toxicity of metal pyrithione photodegradation products to marine organisms with indirect evidence for their presence in seawater. Archives of Environmental Contamination and Toxicology, [s.l.], v. 58, no 4, p. 991– 997, 2010. ISSN: 00904341, DOI: 10.1007/s00244-009-9430-8. PAAVOLA, M.; OLENIN, S.; LEPPÄKOSKI, E. Are invasive species most successful in habitats of low native species richness across European brackish water seas? Estuarine, Coastal and Shelf Science, [s.l.], v. 64, no 4, p. 738–750, 2005. ISSN: 02727714, DOI: 10.1016/j.ecss.2005.03.021. PAGE, H. M.; DUGAN, J. E.; PILTZ, F. Fouling and Antifouling in Oil and Other Offshore Industries. Biofouling, [s.l.], p. 252–266, 2010. ISBN: 9781444315462, DOI: 10.1002/9781444315462.ch18. PARKER, I. M. et al. Impact: toward a framework for understanding the ecological effects of invaders. Biological Invasions, [s.l.], v. 1, p. 3–19, 1999. PARKS, R. et al. Antifouling biocides in discarded marine paint particles. Marine Pollution Bulletin, [s.l.], v. 60, no 8, p. 1226–1230, 2010. ISSN: 0025326X, DOI: 10.1016/j.marpolbul.2010.03.022. PAULA, A. F. DE; CREED, J. C. Two species of the coral Tubastraea (Cnidaria, Scleractinia) in Brazil: A case of accidental introduction. Bulletin of Marine Science, [s.l.], v. 74, no 1, p. 175–183, 2004. ISSN: 00074977. PAZ-VILLARRAGA, C. A.; CASTRO, Í. B.; FILLMANN, G. Biocides in antifouling paint formulations currently registered for use. Environmental Science and Pollution Research, [s.l.], v. 29, no 20, p. 30090–30101, 2022. ISSN: 16147499, DOI: 10.1007/s11356-021-17662-5. PESTANA, D. et al. P l (d , 1857) p , b. Papéis Avulsos de Zoologia (São Paulo), [s.l.], v. 50, no 34, p. 553–560, 2010. ISSN: 0031-1049. RALSTON, E.; SWAIN, G. Bioinspiration - The solution for biofouling control? Bioinspiration and Biomimetics, [s.l.], v. 4, no 1, 2009. ISSN: 17483182, DOI: 10.1088/1748-3182/4/1/015007. 69 ROJAS, E. G. SUBSÍDIOS PARA GESTÃO AMBIENTAL DOS IMPACTOS DAS TINTAS ANTI-INCRUSTANTES NO BRASIL. Tese (Doutorado) - Universidade Estadual Paulista, São Paulo, [s.l.], p. 188, 2019. SANTOS, L. A. H. do.; RIBEIRO, F. V.; CREED, J. C. Antagonism between invasive pest corals Tubastraea spp. and the native reef-builder Mussismilia hispida in the southwest Atlantic. Journal of Experimental Marine Biology and Ecology, [s.l.], v. 449, p. 69–76, 2013. ISSN: 00220981, DOI: 10.1016/j.jembe.2013.08.017. SARDAIN, A.; SARDAIN, E.; LEUNG, B. Global forecasts of shipping traffic and biological invasions to 2050. Nature Sustainability, [s.l.], 2019. ISSN: 2398-9629, DOI: 10.1038/s41893-019-0245-y. SCHIFF, K.; DIEHL, D.; VALKIRS, A. Copper emissions from antifouling paint on recreational vessels. Marine Pollution Bulletin, [s.l.], v. 48, no 3–4, p. 371–377, 2004. ISSN: 0025326X, DOI: 10.1016/j.marpolbul.2003.08.016. SILVA, E. R. et al. Eco-friendly non-biocide-release coatings for marine biofouling prevention. Science of the Total Environment, [s.l.], v. 650, p. 2499– 2511, 2019. ISSN: 18791026, DOI: 10.1016/j.scitotenv.2018.10.010. SINGH, N.; TURNER, A. Leaching of copper and zinc from spent antifouling paint particles. Environmental Pollution, [s.l.], v. 157, no 2, p. 371–376, 2009. ISSN: 02697491, DOI: 10.1016/j.envpol.2008.10.003. SMITH, B. S. SEXUALITY IN THE AMERICAN MUD SNAIL SAY. [s.l.], p. 377–378, 1971. SOROLDONI, S. et al. Are antifouling paint particles a continuous source of toxic chemicals to the marine environment ? [s.l.], v. 330, p. 76–82, 2017. ______. Potential ecotoxicity of metals leached from antifouling paint particles under different salinities. Ecotoxicology and Environmental Safety, [s.l.], v. 148, no July 2017, p. 447–452, 2018. ISSN: 10902414, DOI: 10.1016/j.ecoenv.2017.10.060. SOUSA, R. et al. Growth and extremely high production of the non-indigenous invasive species Corbicula fluminea (Müller, 1774): Possible implications for ecosystem functioning. Estuarine, Coastal and Shelf Science, [s.l.], v. 80, no 2, p. 70 289–295, 2008. ISSN: 02727714, DOI: 10.1016/j.ecss.2008.08.006. SRINIVASAN, M.; SWAIN, G. W. Managing the use of copper-based antifouling paints. Environmental Management, [s.l.], v. 39, no 3, p. 423–441, 2007. ISSN: 14321009, DOI: 10.1007/s00267-005-0030-8. TITLEY-O’NEAL, C. P.; MUNKITTRICK, K. R.; MACDONALD, B. A. The effects of organotin on female gastropods. Journal of Environmental Monitoring, [s.l.], v. 13, n o 9, p. 2360–2388, 2011. ISSN: 14640325, DOI: 10.1039/c1em10011d. TURLEY, P. A.; FENN, R. J.; RITTER, J. C. Pyrithiones as antifoulants: Environmental chemistry and preliminary risk assessment. Biofouling, [s.l.], v. 15, no 1–3, p. 175–182, 2000. ISSN: 08927014, DOI: 10.1080/08927010009386308. TURLEY, Patricia A. et al. Pyrithiones as antifoulants: Environmental fate and loss of toxicity. Biofouling, [s.l.], v. 21, no 1, p. 31–40, 2005. ISSN: 08927014, DOI: 10.1080/08927010500044351. TURNER, A. Marine pollution from antifouling paint particles. Marine Pollution Bulletin, [s.l.], v. 60, no 2, p. 159–171, 2010. ISSN: 0025326X, DOI: 10.1016/j.marpolbul.2009.12.004. UNITED STATES ENVIRONMENTAL PROTECTION AGENCY. Reregistration Eligibility Decision for Copper and Zinc Naphthenate Salts. [s.l.], no September, 2007. VALKIRS, A. O. et al. Measurement of copper release rates from antifouling paint under laboratory and in situ conditions: Implications for loading estimation to marine water bodies. Marine Pollution Bulletin, [s.l.], v. 46, no 6, p. 763–779, 2003. ISSN: 0025326X, DOI: 10.1016/S0025-326X(03)00044-4. VETERE, V. F. et al. Solubility and toxic effect of the cuprous thiocyanate antifouling pigment on barnacle larvae. Journal of Coatings Technology, [s.l.], v. 69, no 866, p. 39–45, 1997. ISSN: 03618773, DOI: 10.1007/bf02696144. WAHL, M. Ecological lever and interface ecology: epibiosis modulates the interactions between host and environment. Biofouling, [s.l.], v. 24, no 6, p. 427– 438, 2008. ISBN: 0892701080, ISSN: 10292454, DOI: 10.1080/08927010802339772. 71 WELLS, F. E.; MONIQUE, M. A quarter century of recovery of the whelk Thais orbita from tributyltin pollution off Perth, Western Australia Fred. Marine Pollution Bulletin, [s.l.], v. 158, no July 2019, p. 111408, 2020. ISSN: 0025-326X, DOI: 10.1016/j.marpolbul.2020.111408. WHOI. MARINE FOULING AND ITS PREVENTION. Naval Institute, Annaopolis, Maryland, [s.l.], no 580, 1952. XIE, Q. et al. Dynamic surface antifouling: mechanism and systems. Soft Matter, [s.l.], v. 15, no 6, p. 1087–1107, 2019. ISSN: 1744-683X, DOI: 10.1039/C8SM01853G. XU, M. et al. Experimental study on control of Limnoperna fortunei biofouling in water transfer tunnels. Journal of Hydro-Environment Research, [s.l.], v. 9, no 2, p. 248–258, 2015. ISSN: 15706443, DOI: 10.1016/j.jher.2014.06.006. YAN, S. et al. A state-of-the-art review on passivation and biofouling of Ti and its alloys in marine environments. Journal of Materials Science and Technology, [s.l.], v. 34, no 3, p. 421–435, 2018. ISSN: 10050302, DOI: 10.1016/j.jmst.2017.11.021. YEBRA, D. M.; KIIL, S.; DAM-JOHANSEN, K. Antifouling technology - Past, present and future steps towards efficient and environmentally friendly antifouling coatings. Progress in Organic Coatings, [s.l.], v. 50, no 2, p. 75–104, 2004. ISSN: 03009440, DOI: 10.1016/j.porgcoat.2003.06.001. YOUNG, C. F. T. The fouling and corrosion of iron ships; their causes and means of prevention, with the mode of application to the existing ironclads. The London Drawing Association, [s.l.], v. vii, p. 212, 1867. ISBN: 3663537137. YTREBERG, E.; KARLSSON, J.; EKLUND, B. Comparison of toxicity and release rates of Cu and Zn from anti-fouling paints leached in natural and artificial brackish seawater. Science of the Total Environment, [s.l.], v. 408, no 12, p. 2459– 2466, 2010. ISSN: 00489697, DOI: 10.1016/j.scitotenv.2010.02.036. ZHAO, L. et al. Layer-by-Layer-Assembled antifouling films with surface microtopography inspired by Laminaria japonica. Applied Surface Science, [s.l.], v. 511, p. 145564, 2020. ISSN: 01694332, DOI: 10.1016/j.apsusc.2020.145564.info:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UERJinstname:Universidade do Estado do Rio de Janeiro (UERJ)instacron:UERJ2024-02-27T18:03:55Zoai:www.bdtd.uerj.br:1/20429Biblioteca Digital de Teses e Dissertaçõeshttp://www.bdtd.uerj.br/PUBhttps://www.bdtd.uerj.br:8443/oai/requestbdtd.suporte@uerj.bropendoar:29032024-02-27T18:03:55Biblioteca Digital de Teses e Dissertações da UERJ - Universidade do Estado do Rio de Janeiro (UERJ)false |
| dc.title.none.fl_str_mv |
Anti-incrustantes a base de cobre: revisão da literatura e análise bibliométrica |
| title |
Anti-incrustantes a base de cobre: revisão da literatura e análise bibliométrica |
| spellingShingle |
Anti-incrustantes a base de cobre: revisão da literatura e análise bibliométrica Oliveira, Gustavo Marceno de toxicity; tribultyltin; biocide; coating; Metal; toxicidade; tributilestanho; biocida; revestimento; bibliometrix; CIENCIAS EXATAS E DA TERRA::OCEANOGRAFIA::OCEANOGRAFIA QUIMICA |
| title_short |
Anti-incrustantes a base de cobre: revisão da literatura e análise bibliométrica |
| title_full |
Anti-incrustantes a base de cobre: revisão da literatura e análise bibliométrica |
| title_fullStr |
Anti-incrustantes a base de cobre: revisão da literatura e análise bibliométrica |
| title_full_unstemmed |
Anti-incrustantes a base de cobre: revisão da literatura e análise bibliométrica |
| title_sort |
Anti-incrustantes a base de cobre: revisão da literatura e análise bibliométrica |
| author |
Oliveira, Gustavo Marceno de |
| author_facet |
Oliveira, Gustavo Marceno de |
| author_role |
author |
| dc.contributor.none.fl_str_mv |
Fernandez, Marcos Antônio http://lattes.cnpq.br/3584753829279659 Hamacher, Cláudia http://lattes.cnpq.br/6898423735044511 Oliveira, Deloar Duda de http://lattes.cnpq.br/7121458866370743 Skinner, Luis Felipe http://lattes.cnpq.br/9748284881593806 |
| dc.contributor.author.fl_str_mv |
Oliveira, Gustavo Marceno de |
| dc.subject.por.fl_str_mv |
toxicity; tribultyltin; biocide; coating; Metal; toxicidade; tributilestanho; biocida; revestimento; bibliometrix; CIENCIAS EXATAS E DA TERRA::OCEANOGRAFIA::OCEANOGRAFIA QUIMICA |
| topic |
toxicity; tribultyltin; biocide; coating; Metal; toxicidade; tributilestanho; biocida; revestimento; bibliometrix; CIENCIAS EXATAS E DA TERRA::OCEANOGRAFIA::OCEANOGRAFIA QUIMICA |
| description |
O uso de compostos de cobre como biocidas são comumente usados em revestimentos anti-incrustantes em navios. A proteção contra bioincrustação é essencial para um serviço eficiente de barcos e navios. Tecnologias anti-incrustantes que incorporam biocidas como cobre e tributilestanho foram desenvolvidas para evitar a instalação de organismos em embarcações, mas seu uso generalizado introduziu altos níveis de contaminação no meio ambiente e levantou preocupações sobre seus efeitos tóxicos nas comunidades marinhas. Este trabalho levantou o histórico do uso do cobre como biocida, e os principais impulsionadores do desenvolvimento e mudanças nas tecnologias das tintas anti- incrustantes. O uso da ferramenta “Bibliometrix” permitiu identificar a tendência atual nas pesquisas do tema deste estudo. A taxa de liberação de biocidas por pequenas embarcações é o principal foco das pesquisas atuais, junto dos biocidas de reforço e estudos de ecotoxicidade. Os últimos anos mostram uma mudança do foco nos temas de estudos fundamentais para os processos envolvidos na bioincrustação e no design de novos revestimentos e outras tecnologias. Apontamentos e desafios de pesquisas futuras também são discutidos no final, e espera-se que esta revisão impulsione e oriente o foco de futuras pesquisas de tecnologias anti-incrustantes. |
| publishDate |
2022 |
| dc.date.none.fl_str_mv |
2022-12-16 2023-10-05T19:46:18Z |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
| format |
masterThesis |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
OLIVEIRA, Gustavo Marceno de. Anti-incrustantes a base de cobre: revisão da literatura e análise bibliométrica. 2022. 71 f. Dissertação (Mestrado em Oceanografia) - Faculdade de Oceanografia, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, 2022. http://www.bdtd.uerj.br/handle/1/20429 |
| identifier_str_mv |
OLIVEIRA, Gustavo Marceno de. Anti-incrustantes a base de cobre: revisão da literatura e análise bibliométrica. 2022. 71 f. Dissertação (Mestrado em Oceanografia) - Faculdade de Oceanografia, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, 2022. |
| url |
http://www.bdtd.uerj.br/handle/1/20429 |
| dc.language.iso.fl_str_mv |
por |
| language |
por |
| dc.relation.none.fl_str_mv |
ADELEYE, A. S. et al. Release and detection of nanosized copper from a commercial antifouling paint. Water Research, [s.l.], 2016. ISSN: 0043-1354, DOI: 10.1016/j.watres.2016.06.056. ALMOND, K. M.; TROMBETTA, L. D. Copper pyrithione, a booster biocide, induces abnormal muscle and notochord architecture in zebrafish embryogenesis. Ecotoxicology, [s.l.], v. 26, no 7, p. 855–867, 2017a. ISSN: 15733017, DOI: 10.1007/s10646-017-1816-1. ALMOND, K. M.; TROMBETTA, L. D. Copper pyrithione , a booster biocide , induces abnormal muscle and notochord architecture in zebra fi sh embryogenesis. Ecotoxicology, [s.l.], p. 855–867, 2017b. ISSN: 1573-3017, DOI: 10.1007/s10646-017-1816-1. ALVARADO, R. U. A lei de Lotka e a produtividade dos autores. Perspectivas em Ciência da Informação, [s.l.], v. 14, no 3, p. 233–233, 2009. DOI: 10.1590/s1413- 99362009000300016. ALZIEU, C. Environmental impact of TBT: The French experience. Science of the Total Environment, [s.l.], v. 258, no 1–2, p. 99–102, 2000. ISSN: 00489697, DOI: 10.1016/S0048-9697(00)00510-6. ALZIEU, C. L. et al. Tin contamination in Arcachon Bay: Effects on oyster shell anomalies. Marine Pollution Bulletin, [s.l.], v. 17, no 11, p. 494–498, 1986. ISSN: 0025326X, DOI: 10.1016/0025-326X(86)90636-3. AMARA, I. et al. Antifouling processes and toxicity e ff ects of antifouling paints on marine environment . A review. Environmental Toxicology and Pharmacology, [s.l.], v. 57, no October 2017, p. 115–130, 2018. ISSN: 1382-6689, DOI: 10.1016/j.etap.2017.12.001. APOLINARIO, M.; COUTINHO, R. Understanding the biofouling of offshore and deep-sea structures. Advances in marine antifouling coatings and technologies. [s.l.]: Woodhead Publishing Limited, 2004. 132–147 p. DOI: 10.1533/9781845696313.1.132. BAO, V. W. W. et al. Synergistic toxic effects of zinc pyrithione and copper to 59 three marine species : Implications on setting appropriate water quality criteria. [s.l.], v. 57, p. 616–623, 2008. DOI: 10.1016/j.marpolbul.2008.03.041. BARBOSA, N. P. U. et al. Prediction of future risk of invasion by Limnoperna fortunei (Dunker, 1857) (Mollusca, Bivalvia, Mytilidae) in Brazil with cellular automata. Ecological Indicators, [s.l.], v. 92, no February, p. 30–39, 2018. ISSN: 1470160X, DOI: 10.1016/j.ecolind.2018.01.005. BASU, S. et al. Green biolubricant infused slippery surfaces to combat marine biofouling. Journal of Colloid and Interface Science, [s.l.], v. 568, p. 185–197, 2020. ISSN: 10957103, DOI: 10.1016/j.jcis.2020.02.049. BELLAS, J.; GRANMO, Å.; BEIRAS, R. Embryotoxicity of the antifouling biocide zinc pyrithione to sea urchin (Paracentrotus lividus) and mussel (Mytilus edulis). Marine Pollution Bulletin, [s.l.], v. 50, no 11, p. 1382–1385, 2005. ISSN: 0025326X, DOI: 10.1016/j.marpolbul.2005.06.010. BERGMAN, K.; ZIEGLER, F. Environmental impacts of alternative antifouling methods and use patterns of leisure boat owners. International Journal of Life Cycle Assessment, [s.l.], v. 24, no 4, p. 725–734, 2019. ISSN: 16147502, DOI: 10.1007/s11367-018-1525-x. BLABER, S. J. M. the Occurrence of a Penis-Like Outgrowth Behind the Right Tentacle in Spent Females of Nucella Lapillus (L.). Journal of Molluscan Studies, [s.l.], v. 39, no 2–3, p. 231–233, 1970. ISSN: 0260-1230, DOI: 10.1093/oxfordjournals.mollus.a065097. BOLTOVSKOY, D. Limnoperna fortunei: The ecology, distribution and control of a swiftly spreading invasive fouling mussel. Limnoperna Fortunei: The Ecology, Distribution and Control of a Swiftly Spreading Invasive Fouling Mussel, [s.l.], p. 1–476, 2015. ISBN: 9783319134949, DOI: 10.1007/978-3-319-13494-9. BRAITHWAITE, R. A.; MCEVOY, L. A. Marine biofouling on fish farms and its remediation. Advances in Marine Biology. [s.l.]: [s.n.], 2004. v. 47, 215–252 p. ISBN: 0120261480, ISSN: 00652881, DOI: 10.1016/S0065-2881(04)47003-5. BRIENT, J. A.; MANNING, M. J.; FREEMAN, M. H. Copper naphthenate - protecting America’s infrastructure for over 100 years and its potential for expanded use in Canada and Europe. Wood Material Science and Engineering, 60 [s.l.], v. 15, no 6, p. 368–376, 2020. ISSN: 17480280, DOI: 10.1080/17480272.2020.1837948. BROOKS, S.; WALDOCK, M. The use of copper as a biocide in marine antifouling paints. Advances in Marine Antifouling Coatings and Technologies. [s.l.]: Woodhead Publishing Limited, 2009. 492–521 p. ISBN: 9781845693862, DOI: 10.1533/9781845696313.3.492. BRYAN, G. W.; GIBBS, P. E.; BURT, G. R. THE DECLINE OF THE GASTROPOD NUCELLA LAPILLUS AROUND SOUTH-WEST ENGLAND : EVIDENCE FOR THE EFFECT OF TRIBUTYLTIN FROM ANTIFOULING PAINTS The common dogwhelk , Nucella lapillus ( L .), a stenoglossan gastropod , is found on rocky shores on both sides of th. [s.l.], p. 611–640, 1986. CALLOW, J. A.; CALLOW, M. E. Trends in the development of environmentally friendly fouling-resistant marine coatings. Nature Communications, [s.l.], v. 2, no 1, 2011. ISSN: 20411723, DOI: 10.1038/ncomms1251. CAO, S. et al. Progress of marine biofouling and antifouling technologies. Chinese Science Bulletin, [s.l.], v. 56, no 7, p. 598–612, 2011. ISSN: 10016538, DOI: 10.1007/s11434-010-4158-4. CARCHEN, A.; ATLAR, M. Four KPIs for the assessment of biofouling effect on ship performance. Ocean Engineering, [s.l.], v. 217, no September, p. 107971, 2020. ISSN: 00298018, DOI: 10.1016/j.oceaneng.2020.107971. CASTRO, Í. B.; WESTPHAL, E.; FILLMANN, G. TINTAS ANTI-INCRUSTANTES DE TERCEIRA GERAÇÃO: NOVOS BIOCIDAS NO AMBIENTE AQUÁTIC. Química Nova, [s.l.], v. 34, no 6, p. 1021–1031, 2011. CATALDO, D. et al. The introduced bivalve Limnoperna fortunei boosts Microcystis growth in Salto Grande reservoir (Argentina): Evidence from mesocosm experiments. Hydrobiologia, [s.l.], v. 680, no 1, p. 25–38, 2012. ISSN: 15735117, DOI: 10.1007/s10750-011-0897-8. CHAMBERS, L. D. et al. Modern approaches to marine antifouling coatings. Surface and Coatings Technology, [s.l.], v. 201, no 6, p. 3642–3652, 2006. ISSN: 02578972, DOI: 10.1016/j.surfcoat.2006.08.129. 61 CHAPMAN, P. M. The sediment quality triad approach to determining pollution- induced degradation. Science of the Total Environment, The, [s.l.], v. 97–98, no C, p. 815–825, 1990. ISSN: 00489697, DOI: 10.1016/0048-9697(90)90277-2. CHASSE, K. R.; SCARDINO, A. J.; SWAIN, G. W. Corrosion and fouling study of copper-based antifouling coatings on 5083 aluminum alloy. Progress in Organic Coatings, [s.l.], v. 141, no August 2019, p. 105555, 2020. ISSN: 03009440, DOI: 10.1016/j.porgcoat.2020.105555. CHEN, T. et al. Effects of copper pyrithione (CuPT) on apoptosis, ROS production, and gene expression in hemocytes of white shrimp Litopenaeus vannamei. Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, [s.l.], v. 256, no 1, p. 109323, 2022. ISSN: 18781659, DOI: 10.1016/j.cbpc.2022.109323. COBO, M. J.; HERRERA, F. An approach for detecting , quantifying , and visualizing the evolution of a research field : A practical application to the Fuzzy Sets Theory field. Journal of Informetrics, [s.l.], v. 5, no 1, p. 146–166, 2011. ISSN: 1751-1577, DOI: 10.1016/j.joi.2010.10.002. COOKSEY, K. E.; WIGGLESWORTH-COOKSEY, B. Adhesion of bacteria and diatoms to surfaces in the sea: A review. Aquatic Microbial Ecology, [s.l.], v. 9, no 1, p. 87–96, 1995. ISSN: 09483055, DOI: 10.3354/ame009087. DUPRAZ, V. et al. Combined effects of antifouling biocides on the growth of three marine microalgal species. Chemosphere, [s.l.], v. 209, p. 801–814, 2018. ISSN: 18791298, DOI: 10.1016/j.chemosphere.2018.06.139. EARLEY, P. J. et al. Life cycle contributions of copper from vessel painting and maintenance activities. Biofouling, [s.l.], v. 30, no 1, p. 51–68, 2014. ISSN: 08927014, DOI: 10.1080/08927014.2013.841891. EKLUND, B.; EKLUND, D. Pleasure boatyard soils are often highly contaminated. Environmental Management, [s.l.], v. 53, no 5, p. 930–946, 2014. ISBN: 0026701402493, ISSN: 14321009, DOI: 10.1007/s00267-014-0249-3. ELLIS, D. V.; AGAN PATTISINA, L. Widespread neogastropod imposex: A biological indicator of global TBT contamination? Marine Pollution Bulletin, [s.l.], v. 21, no 5, p. 248–253, 1990. ISSN: 0025326X, DOI: 10.1016/0025-326X(90)90344- 62 8. FARKAS, A. et al. Greenhouse gas emissions reduction potential by using antifouling coatings in a maritime transport industry. Journal of Cleaner Production, [s.l.], v. 295, 2021. ISSN: 09596526, DOI: 10.1016/j.jclepro.2021.126428. FERNANDEZ, M. A. et al. New approaches for monitoring the marine environment : the case of antifouling paints. [s.l.], v. 1, no 3, 2007. FROTA, M. N. et al. On-line cleaning technique for mitigation of biofouling in heat exchangers: A case study of a hydroelectric power plant in Brazil. Experimental Thermal and Fluid Science, [s.l.], v. 53, p. 197–206, 2014. ISSN: 08941777, DOI: 10.1016/j.expthermflusci.2013.12.006. GARFIELD, E.; SHER, I. H. KeyWords Plus®TM—algorithmic derivative indexing. Journal of the American Society for Information Science, [s.l.], v. 44, no 5, p. 298– 299, 1993. ISSN: 10974571, DOI: 10.1002/(SICI)1097-4571(199306)44:5<298::AID- ASI5>3.0.CO;2-A. GAZULHA, V. et al. Grazing impacts of the invasive bivalve Limnoperna fortunei (Dunker, 1857) on single-celled, colonial and filamentous cyanobacteria. Brazilian Journal of Biology, [s.l.], v. 72, no 1, p. 33–39, 2012. ISSN: 1678-4375, DOI: 10.1590/s1519-69842012000100004. GITTENS, J. E. et al. Current and emerging environmentally-friendly systems for fouling control in the marine environment. Biotechnology Advances, [s.l.], v. 31, no 8, p. 1738–1753, 2013. ISSN: 0734-9750, DOI: 10.1016/j.biotechadv.2013.09.002. GRUNNET, K. S.; DAHLLOF, I. Environmental fate of the antifouling compound zinc pyrithione in seawater. Environmental Toxicology and Chemistry, [s.l.], v. 24, n o 12, p. 3001–3006, 2005. ISSN: 07307268, DOI: 10.1897/04-627R.1. GUEDES, V. L. S.; BORSCHIVER, S. Bibliometria : Uma Ferramenta Estatística Para a Gestão Da Informação E Do Conhecimento , Em Sistemas De Informação , De Comunicação E De. CINFORM - Encontro Nacional de Ciência da Informação, [s.l.], p. 1–18, 2005. HALL, L. W.; ANDERSON, R. D. A Deterministic Ecological Risk Assessment for 63 Copper in European Saltwater Environments. [s.l.], v. 38, no 3, p. 207–218, 1999. HALL, L. W.; SCOTT, M. C.; KILLEN, W. D. Ecological risk assessment of copper and cadmium in surface waters of Chesapeake Bay watershed. Environmental Toxicology and Chemistry, [s.l.], v. 17, no 6, p. 1172–1189, 1998. ISSN: 07307268, DOI: 10.1897/1551-5028(1998)017<1172:ERAOCA>2.3.CO;2. HARINO, H. et al. Concentrations of booster biocides in sediment and clams from Vietnam. Journal of the Marine Biological Association of the United Kingdom, [s.l.], v. 86, no 5, p. 1163–1170, 2006. ISSN: 00253154, DOI: 10.1017/S0025315406014147. ______. Concentrations of antifouling biocides in sediment and mussel samples collected from Otsuchi Bay, Japan. Archives of Environmental Contamination and Toxicology, [s.l.], v. 52, no 2, p. 179–188, 2007. ISSN: 00904341, DOI: 10.1007/s00244-006-0087-2. HARKE, M. J. et al. A review of the global ecology, genomics, and biogeography of the toxic cyanobacterium, Microcystis spp. Harmful Algae, [s.l.], v. 54, p. 4–20, 2016. ISSN: 15689883, DOI: 10.1016/j.hal.2015.12.007. HELLIO, C.; YEBRA, D. M. Introduction. Advances in Marine Antifouling Coatings and Technologies, [s.l.], p. 1–15, 2009. ISBN: 9781845693862, DOI: 10.1533/9781845696313.1. HOLMES, L.; TURNER, A. Leaching of hydrophobic Cu and Zn from discarded marine antifouling paint residues : Evidence for transchelation of metal pyrithiones. Environmental Pollution, [s.l.], v. 157, no 12, p. 3440–3444, 2009. ISSN: 0269-7491, DOI: 10.1016/j.envpol.2009.06.018. HOWELL, D. J.; EVANS, S. M. Antifouling materials. Encyclopedia of Ocean Sciences. 3 ed. [s.l.]: Elsevier Ltd., 2019. 236–242 p. ISBN: 9780128130810, DOI: 10.1016/B978-0-12-813081-0.00764-3. HU, G. R. et al. In vitro assessment of copper naphthenate against the free- living stages of Ichthyophthirius multifiliis. Aquaculture Reports, [s.l.], v. 17, no 7, p. 100404, 2020. ISSN: 23525134, DOI: 10.1016/j.aqrep.2020.100404. HUGGETT, R. J. et al. ES&T Series: The marine biocide tributyltin. Assessing 64 and managing the environmental risks. Environmental Science and Technology, [s.l.], v. 26, no 2, p. 232–237, 1992. ISSN: 15205851, DOI: 10.1021/es00026a001. HUNG, O. S. et al. Effect of ultraviolet radiation on biofilms and subsequent larval settlement of Hydroides elegans. Marine Ecology Progress Series, [s.l.], v. 304, p. 155–166, 2005. ISSN: 01718630, DOI: 10.3354/meps304155. IGNACIO, B. L. et al. Bioinvasion in a Brazilian bay: Filling gaps in the knowledge of Southwestern Atlantic Biota. PLoS ONE, [s.l.], v. 5, no 9, p. 1–9, 2010. ISSN: 19326203, DOI: 10.1371/journal.pone.0013065. JIN, H. et al. Bioinspired marine antifouling coatings: Status, prospects, and future. Progress in Materials Science, [s.l.], v. 124, no September 2021, p. 100889, 2021. ISSN: 00796425, DOI: 10.1016/j.pmatsci.2021.100889. JONES, G. The battle against marine biofouling: A historical review. Advances in Marine Antifouling Coatings and Technologies. [s.l.]: Woodhead Publishing Limited, 2009. 19–45 p. ISBN: 9781845693862, DOI: 10.1533/9781845696313.1.19. KARLSSON, J.; YTREBERG, E.; EKLUND, B. Toxicity of anti-fouling paints for use on ships and leisure boats to non-target organisms representing three trophic levels. Environmental Pollution, [s.l.], v. 158, no 3, p. 681–687, 2010. ISSN: 02697491, DOI: 10.1016/j.envpol.2009.10.024. KETCHUM, B. W. et al. Evaluation of A by Leaching ete. [s.l.], p. 456–460, 1945. KONSTANTINOU, I. K.; ALBANIS, T. A. Worldwide occurrence and effects of antifouling paint booster biocides in the aquatic environment: A review. Environment International, [s.l.], v. 30, no 2, p. 235–248, 2004. ISSN: 18736750, DOI: 10.1016/S0160-4120(03)00176-4. KOUTSAFTIS, A.; AOYAMA, I. Toxicity of four antifouling biocides and their mixtures on the brine shrimp Artemia salina. Science of the Total Environment, [s.l.], v. 387, no 1–3, p. 166–174, 2007. ISSN: 00489697, DOI: 10.1016/j.scitotenv.2007.07.023. LAGERSTRÖM, M. et al. In situ release rates of Cu and Zn from commercial antifouling paints at di ff erent salinities. Marine Pollution Bulletin, [s.l.], v. 127, no October 2017, p. 289–296, 2018. ISSN: 0025-326X, DOI: 65 10.1016/j.marpolbul.2017.12.027. LAU, S. C. K.; HARDER, T.; QIAN, P. Induction of larval settlement in the serpulid polychaete Hydroides elegans (Haswell): Role of bacterial extracellular polymers . Biofouling, [s.l.], v. 19, no 3, p. 197–204, 2003. ISSN: 0892-7014, DOI: 10.1080/08927014.2003.10382982. LAVTIZAR, V. et al. The influence of seawater properties on toxicity of copper pyrithione and its degradation product to brine shrimp Artemia salina. Ecotoxicology and Environmental Safety, [s.l.], v. 147, no June 2017, p. 132–138, 2018. ISSN: 10902414, DOI: 10.1016/j.ecoenv.2017.08.039. LEUNG, T. L. F.; POULIN, R. Parasitism, commensalism, and mutualism: Exploring the many shades of symbioses. Vie et Milieu, [s.l.], v. 58, no 2, p. 107– 115, 2008. ISSN: 02408759. LI, C. et al. An experimental investigation into the effect of Cu 2 O particle size on antifouling roughness and hydrodynamic characteristics by using a turbulent fl ow channel. Ocean Engineering, [s.l.], v. 159, no January, p. 481–495, 2018. ISSN: 0029-8018, DOI: 10.1016/j.oceaneng.2018.01.042. LONG, E. R.; CHAPMAN, P. M. A Sediment Quality Triad: Measures of sediment contamination, toxicity and infaunal community composition in Puget Sound. Marine Pollution Bulletin, [s.l.], v. 16, no 10, p. 405–415, 1985. ISSN: 0025326X, DOI: 10.1016/0025-326X(85)90290-5. LUZ, B. L. P.; KITAHARA, M. V. Could the invasive scleractinians Tubastraea coccinea and T. tagusensis replace the dominant zoantharian Palythoa caribaeorum in the Brazilian subtidal? Coral Reefs, [s.l.], v. 36, no 3, p. 875, 2017. ISSN: 07224028, DOI: 10.1007/s00338-017-1578-5. MACKIE, D. S.; BERG, C. M. G. VAN DEN; READMAN, J. W. Determination of pyrithione in natural waters by cathodic stripping voltammetry. Analytica Chimica Acta, [s.l.], v. 511, no 1, p. 47–53, 2004. ISSN: 00032670, DOI: 10.1016/j.aca.2004.01.033. MAGIN, C. M.; COOPER, S. P.; BRENNAN, A. B. Non-toxic antifouling strategies. Materials Today, [s.l.], v. 13, no 4, p. 36–44, 2010. ISSN: 13697021, DOI: 10.1016/S1369-7021(10)70058-4. 66 MAKI, J. S. et al. Factors Controlling Attachment of Bryozoan Larvae: A Comparison of Bacterial Films and Unfilmed Surfaces. The Biological Bulletin, [s.l.], v. 177, no 2, p. 295–302, 1989. ISSN: 0006-3185, DOI: 10.2307/1541944. MANOJ, S.; MAHESH, S.; SRIKANTH, N. Review of Biofouling Paints on the Marine Vessel Sekar. 2018 Asian Conference on Energy, Power and Transportation Electrification (ACEPT), [s.l.], p. 1–6, 2018. ISBN: 9781538681367. MARALDO, K. Indirect estimation of degradation time for zinc pyrithione and copper pyrithione in seawater. [s.l.], v. 48, p. 894–901, 2004. DOI: 10.1016/j.marpolbul.2003.11.013. MARALDO, K.; DAHLLÖF, I. Seasonal variations in the effect of zinc pyrithione and copper pyrithione on pelagic phytoplankton communities. [s.l.], v. 69, p. 189–198, 2004. DOI: 10.1016/j.aquatox.2004.05.006. MARTÍN-RODRÍGUEZ, A. J. et al. From broad-spectrum biocides to quorum sensing disruptors and mussel repellents: Antifouling profile of alkyl triphenylphosphonium salts. PLoS ONE, [s.l.], v. 10, no 4, p. 1–30, 2015. ISSN: 19326203, DOI: 10.1371/journal.pone.0123652. MARTINS, S. E. et al. Review: Ecotoxicity of organic and organo-metallic antifouling co-biocides and implications for environmental hazard and risk assessments in aquatic ecosystems. Biofouling, [s.l.], v. 34, no 1, p. 34–52, 2017. ISSN: 10292454, DOI: 10.1080/08927014.2017.1404036. MATTHIESSEN, P.; GIBBS, P. E. Critical appraisal of the evidence for tributyltin- mediated endocrine disruption in mollusks. Environmental Toxicology and Chemistry, [s.l.], v. 17, no 1, p. 37–43, 1998. ISSN: 07307268, DOI: 10.1897/1551- 5028(1998)017<0037:CAOTEF>2.3.CO;2. MATTHIESSEN, P.; REED, J.; JOHNSON, M. Sources and potential effects of copper and zinc concentrations in the estuarine waters of Essex and Suffolk, United Kingdom. Marine Pollution Bulletin, [s.l.], v. 38, no 10, p. 908–920, 1999. ISSN: 0025326X, DOI: 10.1016/S0025-326X(99)00090-9. MOCHIDA, K. et al. Acute toxicity of pyrithione antifouling biocides and joint toxicity with copper to red sea bream (Pagrus major) and toy shrimp (Heptacarpus futilirostris). Environmental Toxicology and Chemistry, [s.l.], v. 25, no 67 11, p. 3058–3064, 2006. ISSN: 07307268, DOI: 10.1897/05-688R.1. ______. Comparative Biochemistry and Physiology , Part C Inhibition of acetylcholinesterase by metabolites of copper pyrithione ( CuPT ) and its possible involvement in vertebral deformity of a CuPT-exposed marine teleostean fi sh. Comparative Biochemistry and Physiology, Part C, [s.l.], v. 149, no 4, p. 624–630, 2009. ISSN: 1532-0456, DOI: 10.1016/j.cbpc.2009.01.003. MOHAMAT-YUSUFF, F. et al. Acute toxicity test of copper pyrithione on Javanese medaka and the behavioural stress symptoms. Marine Pollution Bulletin, [s.l.], v. 127, no December 2017, p. 150–153, 2018. ISSN: 18793363, DOI: 10.1016/j.marpolbul.2017.11.046. MOLINO, C. et al. Effect of marine antifouling paint particles waste on survival of natural Bermuda copepod communities. Marine Pollution Bulletin, [s.l.], v. 149, n o May, p. 110492, 2019. ISSN: 18793363, DOI: 10.1016/j.marpolbul.2019.110492. MOREIRA, P. S. da C.; GUIMARÃES, A. J. R.; TSUNODA, D. F. QUAL FERRAMENTA BIBLIOMÉTRICA ESCOLHER? um estudo comparativo entre softwares. P2P E Inovação, [s.l.], v. 6, p. 140–158, 2020. DOI: 10.21721/p2p.2020v6n2.p140-158. MOREIRA, T. S. G.; CREED, J. C. Invasive, non-indigenous corals in a tropical rocky shore environment: No evidence for generalist predation. Journal of Experimental Marine Biology and Ecology, [s.l.], v. 438, p. 7–13, 2012. ISSN: 00220981, DOI: 10.1016/j.jembe.2012.09.015. MUKHTAR, A. et al. Booster biocides levels in the major blood cockle (Tegillarca granosa L., 1758) cultivation areas along the coastal area of Peninsular Malaysia. Water (Switzerland), [s.l.], v. 12, no 6, 2020. ISBN: 6039769661, ISSN: 20734441, DOI: 10.3390/W12061616. NI, C. et al. Progress in Organic Coatings Study on the preparation and properties of new environmentally friendly antifouling acrylic metal salt resins containing indole derivative group. Progress in Organic Coatings, [s.l.], v. 148, no March, p. 105824, 2020. ISSN: 0300-9440, DOI: 10.1016/j.porgcoat.2020.105824. OLIVEIRA, D. D. De; ROJAS, E. G.; FERNANDEZ, M. A. dos S. Should TBT continue to be considered an issue in dredging port areas? A brief review of 68 the global evidence. Ocean and Coastal Management, [s.l.], v. 197, no July, 2020. ISSN: 09645691, DOI: 10.1016/j.ocecoaman.2020.105303. ONDUKA, T. et al. Toxicity of metal pyrithione photodegradation products to marine organisms with indirect evidence for their presence in seawater. Archives of Environmental Contamination and Toxicology, [s.l.], v. 58, no 4, p. 991– 997, 2010. ISSN: 00904341, DOI: 10.1007/s00244-009-9430-8. PAAVOLA, M.; OLENIN, S.; LEPPÄKOSKI, E. Are invasive species most successful in habitats of low native species richness across European brackish water seas? Estuarine, Coastal and Shelf Science, [s.l.], v. 64, no 4, p. 738–750, 2005. ISSN: 02727714, DOI: 10.1016/j.ecss.2005.03.021. PAGE, H. M.; DUGAN, J. E.; PILTZ, F. Fouling and Antifouling in Oil and Other Offshore Industries. Biofouling, [s.l.], p. 252–266, 2010. ISBN: 9781444315462, DOI: 10.1002/9781444315462.ch18. PARKER, I. M. et al. Impact: toward a framework for understanding the ecological effects of invaders. Biological Invasions, [s.l.], v. 1, p. 3–19, 1999. PARKS, R. et al. Antifouling biocides in discarded marine paint particles. Marine Pollution Bulletin, [s.l.], v. 60, no 8, p. 1226–1230, 2010. ISSN: 0025326X, DOI: 10.1016/j.marpolbul.2010.03.022. PAULA, A. F. DE; CREED, J. C. Two species of the coral Tubastraea (Cnidaria, Scleractinia) in Brazil: A case of accidental introduction. Bulletin of Marine Science, [s.l.], v. 74, no 1, p. 175–183, 2004. ISSN: 00074977. PAZ-VILLARRAGA, C. A.; CASTRO, Í. B.; FILLMANN, G. Biocides in antifouling paint formulations currently registered for use. Environmental Science and Pollution Research, [s.l.], v. 29, no 20, p. 30090–30101, 2022. ISSN: 16147499, DOI: 10.1007/s11356-021-17662-5. PESTANA, D. et al. P l (d , 1857) p , b. Papéis Avulsos de Zoologia (São Paulo), [s.l.], v. 50, no 34, p. 553–560, 2010. ISSN: 0031-1049. RALSTON, E.; SWAIN, G. Bioinspiration - The solution for biofouling control? Bioinspiration and Biomimetics, [s.l.], v. 4, no 1, 2009. ISSN: 17483182, DOI: 10.1088/1748-3182/4/1/015007. 69 ROJAS, E. G. SUBSÍDIOS PARA GESTÃO AMBIENTAL DOS IMPACTOS DAS TINTAS ANTI-INCRUSTANTES NO BRASIL. Tese (Doutorado) - Universidade Estadual Paulista, São Paulo, [s.l.], p. 188, 2019. SANTOS, L. A. H. do.; RIBEIRO, F. V.; CREED, J. C. Antagonism between invasive pest corals Tubastraea spp. and the native reef-builder Mussismilia hispida in the southwest Atlantic. Journal of Experimental Marine Biology and Ecology, [s.l.], v. 449, p. 69–76, 2013. ISSN: 00220981, DOI: 10.1016/j.jembe.2013.08.017. SARDAIN, A.; SARDAIN, E.; LEUNG, B. Global forecasts of shipping traffic and biological invasions to 2050. Nature Sustainability, [s.l.], 2019. ISSN: 2398-9629, DOI: 10.1038/s41893-019-0245-y. SCHIFF, K.; DIEHL, D.; VALKIRS, A. Copper emissions from antifouling paint on recreational vessels. Marine Pollution Bulletin, [s.l.], v. 48, no 3–4, p. 371–377, 2004. ISSN: 0025326X, DOI: 10.1016/j.marpolbul.2003.08.016. SILVA, E. R. et al. Eco-friendly non-biocide-release coatings for marine biofouling prevention. Science of the Total Environment, [s.l.], v. 650, p. 2499– 2511, 2019. ISSN: 18791026, DOI: 10.1016/j.scitotenv.2018.10.010. SINGH, N.; TURNER, A. Leaching of copper and zinc from spent antifouling paint particles. Environmental Pollution, [s.l.], v. 157, no 2, p. 371–376, 2009. ISSN: 02697491, DOI: 10.1016/j.envpol.2008.10.003. SMITH, B. S. SEXUALITY IN THE AMERICAN MUD SNAIL SAY. [s.l.], p. 377–378, 1971. SOROLDONI, S. et al. Are antifouling paint particles a continuous source of toxic chemicals to the marine environment ? [s.l.], v. 330, p. 76–82, 2017. ______. Potential ecotoxicity of metals leached from antifouling paint particles under different salinities. Ecotoxicology and Environmental Safety, [s.l.], v. 148, no July 2017, p. 447–452, 2018. ISSN: 10902414, DOI: 10.1016/j.ecoenv.2017.10.060. SOUSA, R. et al. Growth and extremely high production of the non-indigenous invasive species Corbicula fluminea (Müller, 1774): Possible implications for ecosystem functioning. Estuarine, Coastal and Shelf Science, [s.l.], v. 80, no 2, p. 70 289–295, 2008. ISSN: 02727714, DOI: 10.1016/j.ecss.2008.08.006. SRINIVASAN, M.; SWAIN, G. W. Managing the use of copper-based antifouling paints. Environmental Management, [s.l.], v. 39, no 3, p. 423–441, 2007. ISSN: 14321009, DOI: 10.1007/s00267-005-0030-8. TITLEY-O’NEAL, C. P.; MUNKITTRICK, K. R.; MACDONALD, B. A. The effects of organotin on female gastropods. Journal of Environmental Monitoring, [s.l.], v. 13, n o 9, p. 2360–2388, 2011. ISSN: 14640325, DOI: 10.1039/c1em10011d. TURLEY, P. A.; FENN, R. J.; RITTER, J. C. Pyrithiones as antifoulants: Environmental chemistry and preliminary risk assessment. Biofouling, [s.l.], v. 15, no 1–3, p. 175–182, 2000. ISSN: 08927014, DOI: 10.1080/08927010009386308. TURLEY, Patricia A. et al. Pyrithiones as antifoulants: Environmental fate and loss of toxicity. Biofouling, [s.l.], v. 21, no 1, p. 31–40, 2005. ISSN: 08927014, DOI: 10.1080/08927010500044351. TURNER, A. Marine pollution from antifouling paint particles. Marine Pollution Bulletin, [s.l.], v. 60, no 2, p. 159–171, 2010. ISSN: 0025326X, DOI: 10.1016/j.marpolbul.2009.12.004. UNITED STATES ENVIRONMENTAL PROTECTION AGENCY. Reregistration Eligibility Decision for Copper and Zinc Naphthenate Salts. [s.l.], no September, 2007. VALKIRS, A. O. et al. Measurement of copper release rates from antifouling paint under laboratory and in situ conditions: Implications for loading estimation to marine water bodies. Marine Pollution Bulletin, [s.l.], v. 46, no 6, p. 763–779, 2003. ISSN: 0025326X, DOI: 10.1016/S0025-326X(03)00044-4. VETERE, V. F. et al. Solubility and toxic effect of the cuprous thiocyanate antifouling pigment on barnacle larvae. Journal of Coatings Technology, [s.l.], v. 69, no 866, p. 39–45, 1997. ISSN: 03618773, DOI: 10.1007/bf02696144. WAHL, M. Ecological lever and interface ecology: epibiosis modulates the interactions between host and environment. Biofouling, [s.l.], v. 24, no 6, p. 427– 438, 2008. ISBN: 0892701080, ISSN: 10292454, DOI: 10.1080/08927010802339772. 71 WELLS, F. E.; MONIQUE, M. A quarter century of recovery of the whelk Thais orbita from tributyltin pollution off Perth, Western Australia Fred. Marine Pollution Bulletin, [s.l.], v. 158, no July 2019, p. 111408, 2020. ISSN: 0025-326X, DOI: 10.1016/j.marpolbul.2020.111408. WHOI. MARINE FOULING AND ITS PREVENTION. Naval Institute, Annaopolis, Maryland, [s.l.], no 580, 1952. XIE, Q. et al. Dynamic surface antifouling: mechanism and systems. Soft Matter, [s.l.], v. 15, no 6, p. 1087–1107, 2019. ISSN: 1744-683X, DOI: 10.1039/C8SM01853G. XU, M. et al. Experimental study on control of Limnoperna fortunei biofouling in water transfer tunnels. Journal of Hydro-Environment Research, [s.l.], v. 9, no 2, p. 248–258, 2015. ISSN: 15706443, DOI: 10.1016/j.jher.2014.06.006. YAN, S. et al. A state-of-the-art review on passivation and biofouling of Ti and its alloys in marine environments. Journal of Materials Science and Technology, [s.l.], v. 34, no 3, p. 421–435, 2018. ISSN: 10050302, DOI: 10.1016/j.jmst.2017.11.021. YEBRA, D. M.; KIIL, S.; DAM-JOHANSEN, K. Antifouling technology - Past, present and future steps towards efficient and environmentally friendly antifouling coatings. Progress in Organic Coatings, [s.l.], v. 50, no 2, p. 75–104, 2004. ISSN: 03009440, DOI: 10.1016/j.porgcoat.2003.06.001. YOUNG, C. F. T. The fouling and corrosion of iron ships; their causes and means of prevention, with the mode of application to the existing ironclads. The London Drawing Association, [s.l.], v. vii, p. 212, 1867. ISBN: 3663537137. YTREBERG, E.; KARLSSON, J.; EKLUND, B. Comparison of toxicity and release rates of Cu and Zn from anti-fouling paints leached in natural and artificial brackish seawater. Science of the Total Environment, [s.l.], v. 408, no 12, p. 2459– 2466, 2010. ISSN: 00489697, DOI: 10.1016/j.scitotenv.2010.02.036. ZHAO, L. et al. Layer-by-Layer-Assembled antifouling films with surface microtopography inspired by Laminaria japonica. Applied Surface Science, [s.l.], v. 511, p. 145564, 2020. ISSN: 01694332, DOI: 10.1016/j.apsusc.2020.145564. |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.publisher.none.fl_str_mv |
Universidade do Estado do Rio de Janeiro Centro de Tecnologia e Ciências::Faculdade de Oceanografia Brasil UERJ Programa de Pós-Graduação em Oceanografia |
| publisher.none.fl_str_mv |
Universidade do Estado do Rio de Janeiro Centro de Tecnologia e Ciências::Faculdade de Oceanografia Brasil UERJ Programa de Pós-Graduação em Oceanografia |
| dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da UERJ instname:Universidade do Estado do Rio de Janeiro (UERJ) instacron:UERJ |
| instname_str |
Universidade do Estado do Rio de Janeiro (UERJ) |
| instacron_str |
UERJ |
| institution |
UERJ |
| reponame_str |
Biblioteca Digital de Teses e Dissertações da UERJ |
| collection |
Biblioteca Digital de Teses e Dissertações da UERJ |
| repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da UERJ - Universidade do Estado do Rio de Janeiro (UERJ) |
| repository.mail.fl_str_mv |
bdtd.suporte@uerj.br |
| _version_ |
1829133703680360448 |