Reconhecimento e segmentação do mycobacterium tuberculosis em imagens de microscopia de campo claro utilizando as características de cor e o algoritmo backpropagation

Detalhes bibliográficos
Ano de defesa: 2012
Autor(a) principal: Levy, Pamela Campos
Outros Autores: http://lattes.cnpq.br/7559325279193704
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal do Amazonas
Faculdade de Tecnologia
BR
UFAM
Programa de Pós-graduação em Engenharia Elétrica
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://tede.ufam.edu.br/handle/tede/3292
Resumo: A tuberculose (TB) é uma doença infectocontagiosa, transmitida pelo bacilo de Koch, ou Mycobacterium tuberculosis. Estima-se que 1,4 milhões de pessoas morreram de tuberculose em 2010. Cerca de 95% dessas mortes ocorreram em países subdesenvolvidos ou em desenvolvimento. No Brasil, a cada ano são registrados mais de 68 mil novos casos. Atualmente, o Amazonas é o estado brasileiro com a maior taxa de incidência da doença. Um dos métodos de diagnóstico da TB, adotado pelo Ministério da Saúde, é o exame de baciloscopia de campo claro. A baciloscopia consiste na contagem dos bacilos em lâminas contendo amostras de escarro do paciente, preparadas e coradas de acordo com metodologia padronizada. Nos últimos cinco anos, pesquisas relacionadas ao reconhecimento de bacilos da tuberculose, utilizando imagens obtidas por microscopia de campo claro, tem sido realizadas com vistas a automatização desse método diagnóstico, em face do fato de que o número elevado de exames de baciloscopia realizado pelos profissionais induzirem a fadiga visual e em consequência a erros diagnósticos. Esse trabalho apresenta um novo método de reconhecimento e segmentação de bacilos da tuberculose em imagens de campos de lâminas, contendo secreção pulmonar do paciente, coradas pelo método de Kinyoun. A partir dessas imagens foram extraídas amostras de pixels de bacilos e de fundo para treinamento do classificador. As imagens foram automaticamente discriminadas em dois grupos, de acordo com o conteúdo de fundo. O método desenvolvido seleciona um conjunto ótimo de características de cor do bacilo e do fundo da imagem, empregando o método de seleção escalar de características. Essas características foram utilizadas em um classificador de pixels, um perceptron multicamada, treinado pelo algoritmo backpropagation. O conjunto ótimo de características selecionadas, {G-I, Y-Cr, L-a, R-G, a}, proveniente dos espaços de cores RGB, HSI, YCbCr e Lab, combinado com a rede perceptron com 18 (dezoito) neurônios na primeira camada, 3 (três) na segunda e 1 (um) na terceira (18-3-1), resultou em uma acurácia de 92,47% na segmentação dos bacilos. O método de discriminação de imagens em relação ao conteúdo de fundo automatizado contribuiu para afirmar que o método descrito neste trabalho é mais adequado para segmentar bacilos em imagens com baixa densidade de conteúdo de fundo (fundo mais uniforme). Para os trabalhos futuros, novas técnicas para remover os ruídos presentes em imagens com alta densidade de conteúdo de fundo (fundo contendo muitos artefatos) devem ser desenvolvidas.
id UFAM_a6d81caa52efd19ebc9fa14424dbef6d
oai_identifier_str oai:https://tede.ufam.edu.br/handle/:tede/3292
network_acronym_str UFAM
network_name_str Biblioteca Digital de Teses e Dissertações da UFAM
repository_id_str
spelling Reconhecimento e segmentação do mycobacterium tuberculosis em imagens de microscopia de campo claro utilizando as características de cor e o algoritmo backpropagationSegmentação de bacilos da tuberculoseReconhecimento de bacilos da tuberculoseMycobacterium tuberculosisAlgoritmo backpropagationTuberculosis bacillus segmentationTuberculosis bacillus recognitionMycobacterium tuberculosisBack propagation algorithmENGENHARIAS: ENGENHARIA ELÉTRICAA tuberculose (TB) é uma doença infectocontagiosa, transmitida pelo bacilo de Koch, ou Mycobacterium tuberculosis. Estima-se que 1,4 milhões de pessoas morreram de tuberculose em 2010. Cerca de 95% dessas mortes ocorreram em países subdesenvolvidos ou em desenvolvimento. No Brasil, a cada ano são registrados mais de 68 mil novos casos. Atualmente, o Amazonas é o estado brasileiro com a maior taxa de incidência da doença. Um dos métodos de diagnóstico da TB, adotado pelo Ministério da Saúde, é o exame de baciloscopia de campo claro. A baciloscopia consiste na contagem dos bacilos em lâminas contendo amostras de escarro do paciente, preparadas e coradas de acordo com metodologia padronizada. Nos últimos cinco anos, pesquisas relacionadas ao reconhecimento de bacilos da tuberculose, utilizando imagens obtidas por microscopia de campo claro, tem sido realizadas com vistas a automatização desse método diagnóstico, em face do fato de que o número elevado de exames de baciloscopia realizado pelos profissionais induzirem a fadiga visual e em consequência a erros diagnósticos. Esse trabalho apresenta um novo método de reconhecimento e segmentação de bacilos da tuberculose em imagens de campos de lâminas, contendo secreção pulmonar do paciente, coradas pelo método de Kinyoun. A partir dessas imagens foram extraídas amostras de pixels de bacilos e de fundo para treinamento do classificador. As imagens foram automaticamente discriminadas em dois grupos, de acordo com o conteúdo de fundo. O método desenvolvido seleciona um conjunto ótimo de características de cor do bacilo e do fundo da imagem, empregando o método de seleção escalar de características. Essas características foram utilizadas em um classificador de pixels, um perceptron multicamada, treinado pelo algoritmo backpropagation. O conjunto ótimo de características selecionadas, {G-I, Y-Cr, L-a, R-G, a}, proveniente dos espaços de cores RGB, HSI, YCbCr e Lab, combinado com a rede perceptron com 18 (dezoito) neurônios na primeira camada, 3 (três) na segunda e 1 (um) na terceira (18-3-1), resultou em uma acurácia de 92,47% na segmentação dos bacilos. O método de discriminação de imagens em relação ao conteúdo de fundo automatizado contribuiu para afirmar que o método descrito neste trabalho é mais adequado para segmentar bacilos em imagens com baixa densidade de conteúdo de fundo (fundo mais uniforme). Para os trabalhos futuros, novas técnicas para remover os ruídos presentes em imagens com alta densidade de conteúdo de fundo (fundo contendo muitos artefatos) devem ser desenvolvidas.Tuberculosis (TB) is an infectious disease transmitted by Koch's bacillus, or Mycobacterium tuberculosis. An estimated 1.4 million people died of tuberculosis in 2010. About 95% of these deaths occurred in developing countries, or development. In Brazil, each year are registered more than 68,000 new cases. Currently, Amazon is the Brazilian state with the highest incidence rate of the disease. a of TB diagnostic methods, adopted by the Ministry of Health is examining smear of bright field. The smear is the count of bacilli in slides containing sputum samples of the patient, prepared and stained according to the methodology standard. Over the past five years, research related to the recognition of bacilli tuberculosis, using images obtained by microscopy bright field, has been carried out with a view to automating this diagnostic method, given the fact that the number high smear tests performed by professional induce eyestrain and due to diagnostic errors. This paper presents a new method of recognition and targeting of tubercle bacilli in slides fields of images, containing pulmonary secretions of the patient, stained by Kinyoun method. From these bacilli images of pixels and background samples were extracted for training classifier. Images were automatically broken down into two groups, according with substantial content. The developed method selects an optimal set of color characteristics of the bacillus and of the background, using the method of selection climbing characteristics. These features were used in a pixel classifier, a multilayer perceptron, trained by backpropagation algorithm. The optimal set of features selected, {GI, Y-Cr, La, RG, a}, from the RGB color spaces, HSI, YCbCr and Lab, combined with the network perceptron with eighteen (18) neurons in first layer three (3) and the second one (1) in the third (18-3-1), resulted in an accuracy of 92.47% in the segmentation of bacilli. The image discrimination method in relation to automated background content contributed to affirm that the method described in this paper it is more appropriate to target bacilli images with low content density background (more uniform background). For future work, new techniques to remove noise present in images with high density of background content (containing background many artifacts) should be developed.FAPEAM - Fundação de Amparo à Pesquisa do Estado do AmazonasUniversidade Federal do AmazonasFaculdade de TecnologiaBRUFAMPrograma de Pós-graduação em Engenharia ElétricaCosta, Marly Guimarães Fernandeshttp://lattes.cnpq.br/7169358412541736Levy, Pamela Camposhttp://lattes.cnpq.br/75593252791937042015-04-22T22:00:46Z2015-04-082012-08-24info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfLEVY, Pamela Campos. Reconhecimento e segmentação do mycobacterium tuberculosis em imagens de microscopia de campo claro utilizando as características de cor e o algoritmo backpropagation. 2012. 132 f. Dissertação (Mestrado em Engenharia Elétrica) - Universidade Federal do Amazonas, Manaus, 2012.http://tede.ufam.edu.br/handle/tede/3292porinfo:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UFAMinstname:Universidade Federal do Amazonas (UFAM)instacron:UFAM2016-06-28T05:02:09Zoai:https://tede.ufam.edu.br/handle/:tede/3292Biblioteca Digital de Teses e Dissertaçõeshttp://200.129.163.131:8080/PUBhttp://200.129.163.131:8080/oai/requestddbc@ufam.edu.br||ddbc@ufam.edu.bropendoar:65922016-06-28T05:02:09Biblioteca Digital de Teses e Dissertações da UFAM - Universidade Federal do Amazonas (UFAM)false
dc.title.none.fl_str_mv Reconhecimento e segmentação do mycobacterium tuberculosis em imagens de microscopia de campo claro utilizando as características de cor e o algoritmo backpropagation
title Reconhecimento e segmentação do mycobacterium tuberculosis em imagens de microscopia de campo claro utilizando as características de cor e o algoritmo backpropagation
spellingShingle Reconhecimento e segmentação do mycobacterium tuberculosis em imagens de microscopia de campo claro utilizando as características de cor e o algoritmo backpropagation
Levy, Pamela Campos
Segmentação de bacilos da tuberculose
Reconhecimento de bacilos da tuberculose
Mycobacterium tuberculosis
Algoritmo backpropagation
Tuberculosis bacillus segmentation
Tuberculosis bacillus recognition
Mycobacterium tuberculosis
Back propagation algorithm
ENGENHARIAS: ENGENHARIA ELÉTRICA
title_short Reconhecimento e segmentação do mycobacterium tuberculosis em imagens de microscopia de campo claro utilizando as características de cor e o algoritmo backpropagation
title_full Reconhecimento e segmentação do mycobacterium tuberculosis em imagens de microscopia de campo claro utilizando as características de cor e o algoritmo backpropagation
title_fullStr Reconhecimento e segmentação do mycobacterium tuberculosis em imagens de microscopia de campo claro utilizando as características de cor e o algoritmo backpropagation
title_full_unstemmed Reconhecimento e segmentação do mycobacterium tuberculosis em imagens de microscopia de campo claro utilizando as características de cor e o algoritmo backpropagation
title_sort Reconhecimento e segmentação do mycobacterium tuberculosis em imagens de microscopia de campo claro utilizando as características de cor e o algoritmo backpropagation
author Levy, Pamela Campos
author_facet Levy, Pamela Campos
http://lattes.cnpq.br/7559325279193704
author_role author
author2 http://lattes.cnpq.br/7559325279193704
author2_role author
dc.contributor.none.fl_str_mv Costa, Marly Guimarães Fernandes
http://lattes.cnpq.br/7169358412541736
dc.contributor.author.fl_str_mv Levy, Pamela Campos
http://lattes.cnpq.br/7559325279193704
dc.subject.por.fl_str_mv Segmentação de bacilos da tuberculose
Reconhecimento de bacilos da tuberculose
Mycobacterium tuberculosis
Algoritmo backpropagation
Tuberculosis bacillus segmentation
Tuberculosis bacillus recognition
Mycobacterium tuberculosis
Back propagation algorithm
ENGENHARIAS: ENGENHARIA ELÉTRICA
topic Segmentação de bacilos da tuberculose
Reconhecimento de bacilos da tuberculose
Mycobacterium tuberculosis
Algoritmo backpropagation
Tuberculosis bacillus segmentation
Tuberculosis bacillus recognition
Mycobacterium tuberculosis
Back propagation algorithm
ENGENHARIAS: ENGENHARIA ELÉTRICA
description A tuberculose (TB) é uma doença infectocontagiosa, transmitida pelo bacilo de Koch, ou Mycobacterium tuberculosis. Estima-se que 1,4 milhões de pessoas morreram de tuberculose em 2010. Cerca de 95% dessas mortes ocorreram em países subdesenvolvidos ou em desenvolvimento. No Brasil, a cada ano são registrados mais de 68 mil novos casos. Atualmente, o Amazonas é o estado brasileiro com a maior taxa de incidência da doença. Um dos métodos de diagnóstico da TB, adotado pelo Ministério da Saúde, é o exame de baciloscopia de campo claro. A baciloscopia consiste na contagem dos bacilos em lâminas contendo amostras de escarro do paciente, preparadas e coradas de acordo com metodologia padronizada. Nos últimos cinco anos, pesquisas relacionadas ao reconhecimento de bacilos da tuberculose, utilizando imagens obtidas por microscopia de campo claro, tem sido realizadas com vistas a automatização desse método diagnóstico, em face do fato de que o número elevado de exames de baciloscopia realizado pelos profissionais induzirem a fadiga visual e em consequência a erros diagnósticos. Esse trabalho apresenta um novo método de reconhecimento e segmentação de bacilos da tuberculose em imagens de campos de lâminas, contendo secreção pulmonar do paciente, coradas pelo método de Kinyoun. A partir dessas imagens foram extraídas amostras de pixels de bacilos e de fundo para treinamento do classificador. As imagens foram automaticamente discriminadas em dois grupos, de acordo com o conteúdo de fundo. O método desenvolvido seleciona um conjunto ótimo de características de cor do bacilo e do fundo da imagem, empregando o método de seleção escalar de características. Essas características foram utilizadas em um classificador de pixels, um perceptron multicamada, treinado pelo algoritmo backpropagation. O conjunto ótimo de características selecionadas, {G-I, Y-Cr, L-a, R-G, a}, proveniente dos espaços de cores RGB, HSI, YCbCr e Lab, combinado com a rede perceptron com 18 (dezoito) neurônios na primeira camada, 3 (três) na segunda e 1 (um) na terceira (18-3-1), resultou em uma acurácia de 92,47% na segmentação dos bacilos. O método de discriminação de imagens em relação ao conteúdo de fundo automatizado contribuiu para afirmar que o método descrito neste trabalho é mais adequado para segmentar bacilos em imagens com baixa densidade de conteúdo de fundo (fundo mais uniforme). Para os trabalhos futuros, novas técnicas para remover os ruídos presentes em imagens com alta densidade de conteúdo de fundo (fundo contendo muitos artefatos) devem ser desenvolvidas.
publishDate 2012
dc.date.none.fl_str_mv 2012-08-24
2015-04-22T22:00:46Z
2015-04-08
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv LEVY, Pamela Campos. Reconhecimento e segmentação do mycobacterium tuberculosis em imagens de microscopia de campo claro utilizando as características de cor e o algoritmo backpropagation. 2012. 132 f. Dissertação (Mestrado em Engenharia Elétrica) - Universidade Federal do Amazonas, Manaus, 2012.
http://tede.ufam.edu.br/handle/tede/3292
identifier_str_mv LEVY, Pamela Campos. Reconhecimento e segmentação do mycobacterium tuberculosis em imagens de microscopia de campo claro utilizando as características de cor e o algoritmo backpropagation. 2012. 132 f. Dissertação (Mestrado em Engenharia Elétrica) - Universidade Federal do Amazonas, Manaus, 2012.
url http://tede.ufam.edu.br/handle/tede/3292
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal do Amazonas
Faculdade de Tecnologia
BR
UFAM
Programa de Pós-graduação em Engenharia Elétrica
publisher.none.fl_str_mv Universidade Federal do Amazonas
Faculdade de Tecnologia
BR
UFAM
Programa de Pós-graduação em Engenharia Elétrica
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações da UFAM
instname:Universidade Federal do Amazonas (UFAM)
instacron:UFAM
instname_str Universidade Federal do Amazonas (UFAM)
instacron_str UFAM
institution UFAM
reponame_str Biblioteca Digital de Teses e Dissertações da UFAM
collection Biblioteca Digital de Teses e Dissertações da UFAM
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da UFAM - Universidade Federal do Amazonas (UFAM)
repository.mail.fl_str_mv ddbc@ufam.edu.br||ddbc@ufam.edu.br
_version_ 1851781267615383552