Evolução de nicho e evidências ecológicas e foliares em um gênero de bambus pigmeus (Piresia Swallen, Poaceae)

Detalhes bibliográficos
Ano de defesa: 2024
Autor(a) principal: Pinho, Carolina Santos lattes
Orientador(a): Carvalho, Maria Luiza Silveira lattes
Banca de defesa: Vieira, João Paulo Silva, Oliveira, Iasmin Laiane de Castro, de Carvalho, Maria Luiza Silveira
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal da Bahia
Programa de Pós-Graduação: Programa de Pós-Graduação em Biodiversidade e Evolução (antigo Programa de Pós Graduação em Diversidade Animal-PPGDA) 
Departamento: Instituto de Biologia
País: Brasil
Palavras-chave em Português:
Área do conhecimento CNPq:
Link de acesso: https://repositorio.ufba.br/handle/ri/42500
Resumo: Este estudo investiga os nichos ecológicos e os padrões morfométricos foliares das linhagens de Piresia Swallen, gênero de bambus herbáceos neotropicais, que apresenta distribuição geográfica disjunta (Amazônia e a Mata Atlântica do nordeste do Brasil) de suas espécies. Dados georreferenciados foram levantados a partir de vouchers depositados, nas principais coleções nacionais e internacionais, juntamente com variáveis edáficas (Soilgrids) e bioclimáticas (WorldClim). As folhas basais e medianas foram medidas em todos os materiais íntegros, passíveis de identificação, a partir de fotografias disponíveis. As análises incluíram sobreposição de nicho ecológico, morfometria geométrica foliar, além da comparação entre os dados a partir do teste de Mantel. Os resultados indicam que não há correlação direta entre o espaço ambiental e a forma e tamanho das folhas. Os nichos ecológicos diferem entre as linhagens de diferentes biomas, e as diferenças morfométricas, apesar de discretas, também refletem a disjunção geográfica e filogenética entre os clados. Variáveis edáficas foram identificadas como fatores significativos na divergência das linhagens, sugerindo que futuras investigações podem incluir análises mais detalhadas dessas variáveis. Ressaltamos ainda a possibilidade de especiação incipiente para algumas linhagens, aparentemente crípticas.
id UFBA-2_0991c3d76e6e1e6ee8e61b5f7d51ffd8
oai_identifier_str oai:repositorio.ufba.br:ri/42500
network_acronym_str UFBA-2
network_name_str Repositório Institucional da UFBA
repository_id_str
spelling 2025-07-11T21:45:49Z2025-07-042025-07-11T21:45:49Z2024-08-30https://repositorio.ufba.br/handle/ri/42500Este estudo investiga os nichos ecológicos e os padrões morfométricos foliares das linhagens de Piresia Swallen, gênero de bambus herbáceos neotropicais, que apresenta distribuição geográfica disjunta (Amazônia e a Mata Atlântica do nordeste do Brasil) de suas espécies. Dados georreferenciados foram levantados a partir de vouchers depositados, nas principais coleções nacionais e internacionais, juntamente com variáveis edáficas (Soilgrids) e bioclimáticas (WorldClim). As folhas basais e medianas foram medidas em todos os materiais íntegros, passíveis de identificação, a partir de fotografias disponíveis. As análises incluíram sobreposição de nicho ecológico, morfometria geométrica foliar, além da comparação entre os dados a partir do teste de Mantel. Os resultados indicam que não há correlação direta entre o espaço ambiental e a forma e tamanho das folhas. Os nichos ecológicos diferem entre as linhagens de diferentes biomas, e as diferenças morfométricas, apesar de discretas, também refletem a disjunção geográfica e filogenética entre os clados. Variáveis edáficas foram identificadas como fatores significativos na divergência das linhagens, sugerindo que futuras investigações podem incluir análises mais detalhadas dessas variáveis. Ressaltamos ainda a possibilidade de especiação incipiente para algumas linhagens, aparentemente crípticas.This study investigates the ecological niches and leaf morphometric patterns of Piresia Swallen lineages, a genus of Neotropical herbaceous bamboos with a disjunct geographic distribution (Amazon and the Atlantic Forest of northeastern Brazil) of its species. Georeferenced data were collected from vouchers deposited in the main national and international collections, together with soil (Soilgrids) and bioclimatic (WorldClim) variables. Basal and median leaves were measured in all intact materials that could be identified from available photographs. The analyses included ecological niche overlap, geometric leaf morphometry, and comparison between data using the Mantel test. The results indicate that there is no direct correlation between environmental space and leaf shape and size. Ecological niches differ among lineages from different biomes, and the morphometric differences, although discrete, also reflect the geographic and phylogenetic disjunction between clades. Edaphic variables were identified as significant factors in the divergence of the lineages, suggesting that future investigations may include more detailed analyses of these variables. We also highlight the possibility of incipient speciation for some apparently cryptic lineages.porUniversidade Federal da BahiaPrograma de Pós-Graduação em Biodiversidade e Evolução (antigo Programa de Pós Graduação em Diversidade Animal-PPGDA) UFBABrasilInstituto de BiologiaBotanyClassificationStatistical methodsMorphometryEcological nicheGrassTropicsBambooCNPQ::CIENCIAS BIOLOGICAS::BOTANICACNPQ::CIENCIAS BIOLOGICASBotânicaClassificaçãoMétodos estatísticosMorfometriaNicho ecológicoGramíneaTrópicosBambuEvolução de nicho e evidências ecológicas e foliares em um gênero de bambus pigmeus (Piresia Swallen, Poaceae)Onde vivem os bambus pigmeus? Nicho ecológico e morfologia foliar de Piresia Swallen (Poaceae, Bambusoideae)Mestrado Acadêmicoinfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/publishedVersionCarvalho, Maria Luiza Silveirahttps://orcid.org/0000-0002-6887-2062http://lattes.cnpq.br/3424964295652757de Moraes e Silva, Bruno Vilelahttps://orcid.org/0000-0003-4072-0558http://lattes.cnpq.br/5535116365389028Vieira, João Paulo SilvaOliveira, Iasmin Laiane de Castrode Carvalho, Maria Luiza Silveirahttp://lattes.cnpq.br/8098944192554167http://lattes.cnpq.br/8098944192554167Pinho, Carolina SantosAndrew, R.L. & Rieseberg, L. H. Divergence is focused on few genomic regions early in speciation: incipient speciation of sunflower ecotypes. Evolution, v. 67, n. 9, p. 2468- 2482, 2013. Ahmad, Z. et al. Bamboo: Origin, habitat, distributions and global prospective. Biotechnological Advances in Bamboo: The “Green Gold” on the Earth, p. 1-31, 2021. Aiello‐Lammens, M.E. et al. spThin: an R package for spatial thinning of species occurrence records for use in ecological niche models. Ecography, v. 38, n. 5, p. 541-545, 2015. Alves, V.M. et al. Wing shape is influenced by environmental variability in Polietina orbitalis (Stein) (Diptera: Muscidae). Revista Brasileira de Entomologia, v. 60, p. 150- 156, 2016. Anderson, M.J. & Walsh, D.C.I. PERMANOVA, ANOSIM, and the Mantel test in the face of heterogeneous dispersions: what null hypothesis are you testing?. Ecological monographs, v. 83, n. 4, p. 557-574, 2013. Bardua, C. et al. A practical guide to sliding and surface semilandmarks in morphometric analyses. Integrative Organismal Biology, v. 1, n. 1, p. obz016, 2019. Benz, B.W. & Martin, C.E. Foliar trichomes, boundary layers, and gas exchange in 12 species of epiphytic Tillandsia (Bromeliaceae). Journal of Plant Physiology, v. 163, n. 6, p. 648-656, 2006. Blair, M.E. et al. "Ecological divergence and speciation between lemur (Eulemur) sister species in Madagascar." Journal of evolutionary biology v. 26, n. 8, p. 1790-1801, 2013. Bouchenak-Khelladi, Yanis et al. Biogeography of the grasses (Poaceae): a phylogenetic approach to reveal evolutionary history in geographical space and geological time. Botanical Journal of the Linnean Society, v. 162, n. 4, p. 543-557, 2010. Bremond, L. & Favier, C. Neotropical C 3/C 4 grass distributions-present, past and future. Global Change Biology, v. 18, n. 7, p. 2324-2334, 2012. 26 Brewer, C.A. & Smith, W.K. Patterns of leaf surface wetness for montane and subalpine plants. Plant, Cell & Environment, v. 20, n. 1, p. 1-11, 1997. Broennimann, O. et al. Measuring ecological niche overlap from occurrence and spatial environmental data. Global ecology and biogeography, v. 21, n. 4, p. 481-497, 2012. Brown, J.H. et al. The geographic range: size, shape, boundaries, and internal structure. Annual review of ecology and systematics, v. 27, n. 1, p. 597-623, 1996. Calderón, C.E. & Soderstrom, T.R. The genera of Bambusoideae (Poaceae) of the American Continent: Keys. Smithsonian Contributions to Botany, 1980. Carnaval, A.C. & Moritz, C. Historical climate modelling predicts patterns of current biodiversity in the Brazilian Atlantic forest. Journal of Biogeography, v. 35, n. 7, p. 1187-1201, 2008. Carvalho, M.L.S. et al. Piresia palmula: a new species of herbaceous bamboo (Poaceae, Olyreae) endemic to the Atlantic Rainforest, Southern Bahia, Brazil. Systematic Botany, v. 37, n. 1, p. 134-138, 2012. Carvalho, M.L.S. Estudos biossistemáticos em Piresia Swallen (Poaceae: Bambusoideae: Olyreae). Tese (Doutorado em Botânica) - Programa de Pós-graduação em Botânica, Universidade Estadual de Feira de Santana, 2013. Carvalho, M.L.S. et al. Cryptic speciation in the herbaceous bamboo genus Piresia (Poaceae, Olyreae). Botanical Journal of the Linnean Society, v. 192, n. 1, p. 82-96, 2020. Carvalho, M.L.S. et al. Phylogenetics of Piresia (Poaceae: Bambusoideae) reveals unexpected generic relationships within Olyreae with taxonomic and biogeographic implications. Taxon, v. 70, n. 3 p. 492-514, 2021. Colwell, R.K. & Rangel, T.F. Hutchinson's duality: the once and future niche. Proceedings of the National Academy of Sciences, v. 106, n. Supplement 2, p. 1965119658, 2009. Cruz, D.D. et al. Geometric morphometrics and ecological niche modelling for delimitation of Triatoma pallidipennis (Hemiptera: Reduviidae: Triatominae) haplogroups. Current Research in Parasitology & Vector-borne Diseases, v. 3, p. 100119, 2023. Cutter, A.D. & Gray, J.C. Ephemeral ecological speciation and the latitudinal biodiversity gradient. Evolution, v. 70, n. 10, p. 2171-2185, 2016. De Queiroz, K. Species concepts and species delimitation. Systematic biology, v. 56, n. 6, p. 879-886, 2007. Dormann, C.F. et al. Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography, v. 36, n. 1, p. 27-46, 2013. 27 Dormann, C. F. Effects of incorporating spatial autocorrelation into the analysis of species distribution data. Global ecology and biogeography, v. 16, n. 2, p. 129-138, 2007. Feild, T.S. et al. Hydathodal leaf teeth of Chloranthus japonicus (Chloranthaceae) prevent guttation‐induced flooding of the mesophyll. Plant, Cell & Environment, v. 28, n. 9, p. 1179-1190, 2005. Fick, S.E. & Hijmans, R.J. WorldClim 2: new 1‐km spatial resolution climate surfaces for global land areas. International journal of climatology, v. 37, n. 12, p. 4302-4315, 2017. Fornel, R. & Cordeiro-Estrela, P. Morfometria geométrica e a quantificação da forma dos organismos. Temas em Biologia: Edição comemorativa aos 20 anos do Curso de Ciências Biológicas e aos 5 anos do PPG-Ecologia da URI Campus de Erechim. v. 20, p. 101-120, 2012. Gallaher, T.J. et al. Grasses through space and time: An overview of the biogeographical and macroevolutionary history of Poaceae. Journal of Systematics and Evolution, v. 60, n. 3, p. 522-569, 2022. Gallaher, T.J. et al. Leaf shape and size track habitat transitions across forest-grassland boundaries in the grass family (Poaceae). Evolution, v. 73, n. 5, p. 927-946, 2019. Givnish, T.J. Leaf and canopy adaptations in tropical forests. In: Physiological ecology of plants of the wet tropics. Dordrecht, Springer, p. 51-84, 1984. Gould, S.J. Allometry and size in ontogeny and phylogeny. Biological reviews, v. 41, n. 4, p. 587-638, 1966. Gould, S.J. Ontogeny and Phylogeny. Cambridge, The Belknap Press of Harvard University Press, 20 pp., 1977. Guillory, W.X. & Brown, J.L. A new method for integrating ecological niche modeling with phylogenetics to estimate ancestral distributions. Systematic Biology, v. 70, n. 5, p. 1033- 1045, b2021. Guisan, A. et al. Generalized linear and generalized additive models in studies of species distributions: setting the scene. Ecological modelling, v. 157, n. 2-3, p. 89-100, 2002. Guisan, A. et al. Unifying niche shift studies: insights from biological invasions. Trends in ecology & evolution, v. 29, n. 5, p. 260-269, 2014. Guisan, A. et al. suitability and distribution models: with applications in R. Cambridge, Cambridge University Press, 462 pp., 2017. Gunz, P. & Mitteroecker, P. Semilandmarks: a method for quantifying curves and surfaces. Hystrix, the Italian journal of mammalogy, v. 24, n. 1, p. 103-109, 2013. 28 Hall, J.S. et al. Habitat characterizations underestimate the role of edaphic factors controlling the distribution of Entandrophragma. Ecology, v. 85, n. 8, p. 2171-2183, 2004. Hammer, Ø. et al. Paleontological Statistics software package for education and data analysis-PAST. Version 2.17 c. Palaeontologia electronica, n. 4, p. 9, 2001. Hautmann, M. What is macroevolution?. Palaeontology, v. 63, n. 1, p. 1-11, 2020. Hemami, M. et al. Morphological diversity and ecological niche divergence in goitered and sand gazelles. Ecology and evolution, v. 10, n. 20, p. 11535-11548, 2020. Hulshof, C.M.; Spasojevic, M. J. The edaphic control of plant diversity. Global Ecology and Biogeography, v. 29, n. 10, p. 1634-1650, 2020. Jacobs, B.F. Estimation of low-latitude paleoclimates using fossil angiosperm leaves: examples from the Miocene Tugen Hills, Kenya. Paleobiology, v. 28, n. 3, p. 399-421, 2002. Jesus, I.S.D. Estudos filogeográficos em Piresia leptophylla Soderstr. (Poaceae, Bambusoideae). Trabalho de Conclusão de Curso - Graduação em Ciências biológicas, Universidade Federal da Bahia. Salvador, 2017. Jesus, I.S.D. Desvendando relações e inferindo a história biogeográfica de um grupo de bambus herbáceos da Mata Atlântica Nordestina (Piresia: Olyreae: Bambusoideae). Dissertação (Mestrado em Biodiversidade e Evolução) - Programa de Pós-Graduação em Biodiversidade e Evolução, Universidade Federal da Bahia. Salvador, 112 pp., 2021. Judziewicz, E.J. et al. American bamboos. Washington DC, Smithsonian Institution Press, 392 pp., 1999. Kamimura, E.H. et al. Drivers of molecular and morphometric variation in Triatoma brasiliensis (Hemiptera: Triatominae): the resolution of geometric morphometrics for populational structuring on a microgeographical scale. Parasites & vectors, v. 13, n. 1, p. 1-15, 2020. Klingenberg, C.P. MorphoJ: an integrated software package for geometric morphometrics. Molecular ecology resources, v. 11, n. 2, p. 353-357, 2011. Kozak, K.H. & Wiens, J.J. Climatic zonation drives latitudinal variation in speciation mechanisms. Proceedings of the Royal Society B: Biological Sciences, v. 274, n. 1628, p. 2995-3003, 2007. Leandro, T.D. et al. Comparative leaf blade anatomy and micromorphology in the systematics and phylogeny of Bambusoideae (Poaceae: Poales). Botanical Journal of the Linnean Society, v. 192, n. 1, p. 165-183, 2020. 29 Leite, Y.L. et al. Neotropical forest expansion during the last glacial period challenges refuge hypothesis. Proceedings of the National Academy of Sciences, v. 113, n. 4, p. 1008- 1013, 2016. Louca, S. & Pennell, M.W. Extant timetrees are consistent with a myriad of diversification histories. Nature, v. 580, n. 7804, p. 502-505, 2020. Manly, B.F.J. Multivariate statistical methods: a primer. Boca Raton, Chapman and Hall//CRC, 2000. Mantel, N. The detection of disease clustering and a generalized regression approach. Cancer research, v. 27, n. 2_Part_1, p. 209-220, 1967. Marques, D.A. et al. Genomics of rapid incipient speciation in sympatric threespine stickleback. PLoS genetics, v. 12, n. 2, p. e1005887, 2016. Maya-Lastra, C.A. et al. Caught in the Act: Incipient Speciation at the Southern limit of Viburnum in the Central Andes. Systematic Biology, p. syae023, 2024. Mccormack, J. E., Zellmer, Amanda J., Knowles, L. L. Does niche divergence accompany allopatric divergence in Aphelocoma jays as predicted under ecological speciation?: insights from tests with niche models. Evolution, v. 64, n. 5, p. 1231-1244, 2010. Mittelbach, G.G. et al. Evolution and the latitudinal diversity gradient: speciation, extinction and biogeography. Ecology letters, v. 10, n. 4, p. 315-331, 2007. Monteiro, L.R. & Reis, S.F. Princípios de Morfometria Geométrica. Holos, Ribeirão Preto. 1999. Morales, A.E. et al. Speciation with gene flow in North American Myotis bats. Systematic Biology, v. 66, n. 3, p. 440-452, 2017. Morley, R.J. Origin and evolution of tropical rain forests. Chichester, John Wiley & Sons, 384 pp., 2000. Mouludi-Saleh, A. How the morphology of two closely related riverine sympatric species are reflected in ecological niche overlapping? A case study of two Capoeta species. Limnology, p. 1-9, 2024. Oksanen, J. et al. Package ‘vegan’. Community ecology package, version, v. 2, n. 9, p. 1- 295, 2013. Pace, M.C. et al. Illuminating the systematics of the Spiranthes sinensis species complex (Orchidaceae): ecological speciation with little morphological differentiation. Botanical Journal of the Linnean Society, v. 189, n. 1, p. 36-62, 2019. Palmer, A.R. Fluctuating asymmetry analyses: a primer. In: Developmental instability: its origins and evolutionary implications. Dordrecht, Springer, p. 335-364, 1994. 30 Palmer, A.R. & Strobeck, C. Fluctuating asymmetry: measurement, analysis, patterns. Annual review of Ecology and Systematics, p. 391-421, 1986. Peil, A.C. & Aranda, R. Potential niche modeling distribution and wing geometric morphometrics of Apis mellifera in the Brazilian Pantanal. Sociobiology, v. 68, n. 2, p. e5629-e5629, 2021. Peppe, D.J. et al. Sensitivity of leaf size and shape to climate: global patterns and paleoclimatic applications. New phytologist, v. 190, n. 3, p. 724-739, 2011. Perret, M. et al. The geographical pattern of speciation and floral diversification in the Neotropics: the tribe Sinningieae (Gesneriaceae) as a case study. Evolution, v. 61, n. 7, p. 1641-1660, 2007. Peterson, A. Townsend. Ecological niche conservatism: A time‐structured review of evidence. Journal of Biogeography, v. 38, n. 5, p. 817-827, 2011. Peterson, A.T. & Soberón, J. Species distribution modeling and ecological niche modeling: getting the concepts right. Natureza & Conservação, v. 10, n. 2, p. 102-107, 2012. Phillips, S.J. & Dudík, M. Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography, v. 31, n. 2, p. 161-175, 2008. Pinho et al. Especiação ecológica ou incipiente: o que esconde um pequeno gênero de bambus pigmeus (Poaceae, Bambusoideae, Olyreae)? In: Anais do 40º Encontro Regional de Botânicos - Regional MG, BA, ES. Vitória (ES), Universidade Federal do Espírito Santo, 2020. Poggio, L. et al. SoilGrids 2.0: producing soil information for the globe with quantified spatial uncertainty. Soil, v. 7, n. 1, p. 217-240, 2021. R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing. 2019. Disponível em: https://www. R-project.org (acesso em: 01 de abril de 2022). Rennison, D.J. & Schluter, D. Mudanças paralelas na composição e função do microbioma intestinal durante a colonização, adaptação local e especiação ecológica. Proceedings of the Royal Society B , v. 286, n. 1916, p. 20191911, 2019. Rohlf, F.J. Morphometrics. Annual Review of Ecology and systematics, v. 21, n. 1, p. 299- 316, 1990. Rohlf, F.J. & Marcus, L.F. A revolution morphometrics. Trends in ecology & evolution, v. 8, n. 4, p. 129-132, 1993. Rohlf, R.J. tpsDig2, versão 2.31. Nova York, Department of Ecology and Evolution, Stony Brook, University, 2017. 31 Rohlf, F.J. tpsUtil, versão 1.81. Nova York, Anthropology and Ecology & Evolution, Stony Brook, University. 2021a. Rohlf, F.J. tpsRelw Relative warps, versão 1.74. Nova York, Anthropology and Ecology & Evolution, Stony Brook, University. 2021b. Rull, V. & Carnaval, A. C. (Ed.). Neotropical diversification: patterns and processes. Berlin, Springer, 830 pp., 2020. Rull, V. Neotropical biodiversity: timing and potential drivers. Trends in ecology & evolution, v. 26, n. 10, p. 508-513, 2011. Rundle, H. D. & Nosil, P. Ecological speciation. Ecology letters, v. 8, n. 3, p. 336-352, 2005. Saxenhofer, M. et al. Secondary contact between diverged host lineages entails ecological speciation in a European hantavirus. PLoS biology, v. 17, n. 2, p. e3000142, 2019. Schoener, T.W. The Anolis lizards of Bimini: resource partitioning in a complex fauna. Ecology, v. 49, n. 4, p. 704-726, 1968. Schluter, D. Boughman, J. W. & Rundle, H. D. Parallel speciation with allopatry. Trends in Ecology & Evolution, v. 16, n. 6, p. 283-284, 2001. Schluter, D. & Pennell, M.W. Speciation gradients and the distribution of biodiversity. Nature, v. 546, n. 7656, p. 48-55, 2017. Silva, D.M. et al. Morphometric and genetic differentiation among populations of Eupemphix nattereri (Amphibia, Anura, Leiuperidae) from central Brazil. Iheringia. Série Zoologia, v. 98, p.493-500, 2008. Silva, D.P. et al. Using ecological niche models and niche analyses to understand speciation patterns: the case of sister neotropical orchid bees. PLoS One, v. 9, n. 11, p. e113246, 2014. Simpson, M.G. Species and Conservation in Plant Systematics. In: Plant Systematics. New York, Academic press. p. 649–668, 2010. Soderstrom, T.R. & Calderón, C.E. Primitive forest grasses and evolution of the Bambusoideae. Biotropica, p. 141-153, 1974. Soderstrom, T.R. New species of Cryptochloa and Piresia (Poaceae: Bambusoideae). Brittonia, v. 34, n. 2, p. 199-209, 1982. Strubbe, D. et al. Niche conservatism in non‐native birds in E urope: niche unfilling rather than niche expansion. Global Ecology and Biogeography, v. 22, n. 8, p. 962-970, 2013. Swallen, J.R. Two new genera of Olyreae from South America. Phytologia, v. 11, n. 3, p. 152-154, 1964. 32 Taylor, S.A. et al. Climate-mediated movement of an avian hybrid zone. Current Biology, v. 24, n. 6, p. 671-676, 2014. Teske, P.R. et al. Thermal selection as a driver of marine ecological speciation. Proceedings of the Royal Society B, v. 286, n. 1896, p. 20182023, 2019. Thiers. Index Herbariorum. NYBG Streere Herbarium. 2024. Disponível em: http://sweetgum.nybg.org/science/ih/ (acesso em: 01 de abril de 2024). Tingley, M.W. et al. Birds track their Grinnellian niche through a century of climate change. Proceedings of the National Academy of Sciences, v. 106, n. supplement_2, p. 19637- 19643, 2009. Toews, D.P.L. et al. Genomic variation across the Yellow-rumped Warbler species complex. The Auk: Ornithological Advances, v. 133, n. 4, p. 698-717, 2016. Tvedte, E.S. et al. Genome of the parasitoid wasp Diachasma alloeum, an emerging model for ecological speciation and transitions to asexual reproduction. Genome biology and evolution, v. 11, n. 10, p. 2767-2773, 2019. Usinowicz, J. et al. Temporal coexistence mechanisms contribute to the latitudinal gradient in forest diversity. Nature, v. 550, n. 7674, p. 105-108, 2017. Uy, J. A.C. et al. Behavioral isolation and incipient speciation in birds. Annual Review of Ecology, Evolution, and Systematics, v. 49, n. 1, p. 1-24, 2018. Velazco, S.J.E. et al. Using worldwide edaphic data to model plant species niches: An assessment at a continental extent. PLoS One, v. 12, n. 10, p. e0186025, 2017. Vleminckx, J. et al. Niche breadth of Amazonian trees increases with niche optimum across broad edaphic gradients. Ecology, v. 104, n. 7, p. e4053, 2023. Wiens, J.J. & Donoghue, M.J. Historical biogeography, ecology and species richness. Trends in ecology & evolution, v. 19, n. 12, p. 639-644, 2004. Wilf, P. et al. Using fossil leaves as paleoprecipitation indicators: an Eocene example. Geology, v. 26, n. 3, p. 203-206, 1998. Wright, A.N. et al. Color pattern asymmetry as a correlate of habitat disturbance in spotted salamanders (Ambystoma maculatum). Journal of Herpetology, v. 36, n. 1, p. 129-133, 2002. Wright, I.J. et al. Global climatic drivers of leaf size. Science, v. 357, n. 6354, p. 917-921, 2017.info:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFBAinstname:Universidade Federal da Bahia (UFBA)instacron:UFBAORIGINALCarolina Santos Pinho - Dissertacao - mestrado.pdfCarolina Santos Pinho - Dissertacao - mestrado.pdfCarolina Santos Pinho - Dissertacao - mestradoapplication/pdf2567794https://repositorio.ufba.br/bitstream/ri/42500/1/Carolina%20Santos%20Pinho%20-%20Dissertacao%20-%20mestrado.pdfc16ba5b08d54968de5c16a289bea831eMD51open accessLICENSElicense.txtlicense.txttext/plain1720https://repositorio.ufba.br/bitstream/ri/42500/2/license.txtd9b7566281c22d808dbf8f29ff0425c8MD52open accessri/425002025-07-11 18:45:50.391open accessoai:repositorio.ufba.br:ri/42500TElDRU7Dh0EgREUgRElTVFJJQlVJw4fDg08gTsODTy1FWENMVVNJVkEKCkNvbSBhIGFwcmVzZW50YcOnw6NvIGRlc3RhIGxpY2Vuw6dhLCBvIGF1dG9yIG91IHRpdHVsYXIgZG9zIGRpcmVpdG9zIGRlIGF1dG9yIGNvbmNlZGUgYW8gUmVwb3NpdMOzcmlvIEluc3RpdHVjaW9uYWwgbyBkaXJlaXRvIG7Do28tZXhjbHVzaXZvIGRlIHJlcHJvZHV6aXIsIHRyYWR1emlyIChjb25mb3JtZSBkZWZpbmlkbyBhYmFpeG8pIGUvb3UgZGlzdHJpYnVpciBhIHN1YSBwdWJsaWNhw6fDo28gKGluY2x1aW5kbyBvIHJlc3Vtbykgbm8gZm9ybWF0byBpbXByZXNzbyBlL291IGVsZXRyw7RuaWNvIGUgZW0gcXVhbHF1ZXIgbWVpbywgaW5jbHVpbmRvIG9zIGZvcm1hdG9zIMOhdWRpbyBlL291IHbDrWRlby4KCk8gYXV0b3Igb3UgdGl0dWxhciBkb3MgZGlyZWl0b3MgZGUgYXV0b3IgY29uY29yZGEgcXVlIG8gUmVwb3NpdMOzcmlvIHBvZGUsIHNlbSBhbHRlcmFyIG8gY29udGXDumRvLCB0cmFuc3BvciBhIHN1YSBwdWJsaWNhw6fDo28gcGFyYSBxdWFscXVlciBtZWlvIGUvb3UgZm9ybWF0byBwYXJhIGZpbnMgZGUgcHJlc2VydmHDp8OjbywgcG9kZW5kbyBtYW50ZXIgbWFpcyBkZSB1bWEgY8OzcGlhIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrdXAgZSBwcmVzZXJ2YcOnw6NvLiAKCk8gYXV0b3Igb3UgdGl0dWxhciBkb3MgZGlyZWl0b3MgZGUgYXV0b3IgZGVjbGFyYSBxdWUgYSBzdWEgcHVibGljYcOnw6NvIMOpIG9yaWdpbmFsIGUgcXVlIG7Do28sIHF1ZSBzZWphIGRlIHNldSBjb25oZWNpbWVudG8sIGluZnJpbmdlIGRpcmVpdG9zIGF1dG9yYWlzIGRlIG5pbmd1w6ltLgoKQ2FzbyBhIHN1YSBwdWJsaWNhw6fDo28gY29udGVuaGEgbWF0ZXJpYWwgcXVlIG7Do28gcG9zc3VpIGEgdGl0dWxhcmlkYWRlIGRvcyBkaXJlaXRvcyBhdXRvcmFpcywgdm9jw6ogZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIGFvIFJlcG9zaXTDs3JpbyBvcyBkaXJlaXRvcyBhcHJlc2VudGFkb3MgbmVzdGEgbGljZW7Dp2EgZSBxdWUgZXNzZSBtYXRlcmlhbCBkZSBwcm9wcmllZGFkZSBkZSB0ZXJjZWlyb3MgZXN0w6EgY2xhcmFtZW50ZSBpZGVudGlmaWNhZG8gZSByZWNvbmhlY2lkbyBubyB0ZXh0byBvdSBubyBjb250ZcO6ZG8gZGEgcHVibGljYcOnw6NvIG9yYSBkZXBvc2l0YWRhLgoKQ0FTTyBBIFBVQkxJQ0HDh8ODTyBPUkEgREVQT1NJVEFEQSBSRVNVTFRFIERFIFVNIFBBVFJPQ8ONTklPIE9VIEFQT0lPIERFIFVNQSBBR8OKTkNJQSBERSBGT01FTlRPIE9VIE9VVFJPIE9SR0FOSVNNTywgVk9Dw4ogREVDTEFSQSBRVUUgUkVTUEVJVE9VIFRPRE9TIEUgUVVBSVNRVUVSIERJUkVJVE9TIERFIFJFVklTw4NPLCBDT01PIFRBTULDiU0gQVMgREVNQUlTIE9CUklHQcOHw5VFUyBFWElHSURBUyBQT1IgQ09OVFJBVE8gT1UgQUNPUkRPLgoKTyBSZXBvc2l0w7NyaW8gc2UgY29tcHJvbWV0ZSBhIGlkZW50aWZpY2FyLCBjbGFyYW1lbnRlLCBvIChzKSBzZXUocykgbm9tZSAocykgb3UgbyAocykgbm9tZSAocykgZG8gKHMpIGRldGVudG9yIChlcykgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIGRhIHB1YmxpY2HDp8OjbyBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzIGNvbmNlZGlkYXMgcG9yIGVzdGEgbGljZW7Dp2EuCg==Repositório InstitucionalPUBhttps://repositorio.ufba.br/oai/requestrepositorio@ufba.bropendoar:19322025-07-11T21:45:50Repositório Institucional da UFBA - Universidade Federal da Bahia (UFBA)false
dc.title.pt_BR.fl_str_mv Evolução de nicho e evidências ecológicas e foliares em um gênero de bambus pigmeus (Piresia Swallen, Poaceae)
dc.title.alternative.pt_BR.fl_str_mv Onde vivem os bambus pigmeus? Nicho ecológico e morfologia foliar de Piresia Swallen (Poaceae, Bambusoideae)
title Evolução de nicho e evidências ecológicas e foliares em um gênero de bambus pigmeus (Piresia Swallen, Poaceae)
spellingShingle Evolução de nicho e evidências ecológicas e foliares em um gênero de bambus pigmeus (Piresia Swallen, Poaceae)
Pinho, Carolina Santos
CNPQ::CIENCIAS BIOLOGICAS::BOTANICA
CNPQ::CIENCIAS BIOLOGICAS
Botânica
Classificação
Métodos estatísticos
Morfometria
Nicho ecológico
Gramínea
Trópicos
Bambu
Botany
Classification
Statistical methods
Morphometry
Ecological niche
Grass
Tropics
Bamboo
title_short Evolução de nicho e evidências ecológicas e foliares em um gênero de bambus pigmeus (Piresia Swallen, Poaceae)
title_full Evolução de nicho e evidências ecológicas e foliares em um gênero de bambus pigmeus (Piresia Swallen, Poaceae)
title_fullStr Evolução de nicho e evidências ecológicas e foliares em um gênero de bambus pigmeus (Piresia Swallen, Poaceae)
title_full_unstemmed Evolução de nicho e evidências ecológicas e foliares em um gênero de bambus pigmeus (Piresia Swallen, Poaceae)
title_sort Evolução de nicho e evidências ecológicas e foliares em um gênero de bambus pigmeus (Piresia Swallen, Poaceae)
author Pinho, Carolina Santos
author_facet Pinho, Carolina Santos
author_role author
dc.contributor.advisor1.fl_str_mv Carvalho, Maria Luiza Silveira
dc.contributor.advisor1ID.fl_str_mv https://orcid.org/0000-0002-6887-2062
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/3424964295652757
dc.contributor.advisor-co1.fl_str_mv de Moraes e Silva, Bruno Vilela
dc.contributor.advisor-co1ID.fl_str_mv https://orcid.org/0000-0003-4072-0558
dc.contributor.advisor-co1Lattes.fl_str_mv http://lattes.cnpq.br/5535116365389028
dc.contributor.referee1.fl_str_mv Vieira, João Paulo Silva
dc.contributor.referee2.fl_str_mv Oliveira, Iasmin Laiane de Castro
dc.contributor.referee3.fl_str_mv de Carvalho, Maria Luiza Silveira
dc.contributor.authorID.fl_str_mv http://lattes.cnpq.br/8098944192554167
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/8098944192554167
dc.contributor.author.fl_str_mv Pinho, Carolina Santos
contributor_str_mv Carvalho, Maria Luiza Silveira
de Moraes e Silva, Bruno Vilela
Vieira, João Paulo Silva
Oliveira, Iasmin Laiane de Castro
de Carvalho, Maria Luiza Silveira
dc.subject.cnpq.fl_str_mv CNPQ::CIENCIAS BIOLOGICAS::BOTANICA
CNPQ::CIENCIAS BIOLOGICAS
topic CNPQ::CIENCIAS BIOLOGICAS::BOTANICA
CNPQ::CIENCIAS BIOLOGICAS
Botânica
Classificação
Métodos estatísticos
Morfometria
Nicho ecológico
Gramínea
Trópicos
Bambu
Botany
Classification
Statistical methods
Morphometry
Ecological niche
Grass
Tropics
Bamboo
dc.subject.por.fl_str_mv Botânica
Classificação
Métodos estatísticos
Morfometria
Nicho ecológico
Gramínea
Trópicos
Bambu
dc.subject.other.pt_BR.fl_str_mv Botany
Classification
Statistical methods
Morphometry
Ecological niche
Grass
Tropics
Bamboo
description Este estudo investiga os nichos ecológicos e os padrões morfométricos foliares das linhagens de Piresia Swallen, gênero de bambus herbáceos neotropicais, que apresenta distribuição geográfica disjunta (Amazônia e a Mata Atlântica do nordeste do Brasil) de suas espécies. Dados georreferenciados foram levantados a partir de vouchers depositados, nas principais coleções nacionais e internacionais, juntamente com variáveis edáficas (Soilgrids) e bioclimáticas (WorldClim). As folhas basais e medianas foram medidas em todos os materiais íntegros, passíveis de identificação, a partir de fotografias disponíveis. As análises incluíram sobreposição de nicho ecológico, morfometria geométrica foliar, além da comparação entre os dados a partir do teste de Mantel. Os resultados indicam que não há correlação direta entre o espaço ambiental e a forma e tamanho das folhas. Os nichos ecológicos diferem entre as linhagens de diferentes biomas, e as diferenças morfométricas, apesar de discretas, também refletem a disjunção geográfica e filogenética entre os clados. Variáveis edáficas foram identificadas como fatores significativos na divergência das linhagens, sugerindo que futuras investigações podem incluir análises mais detalhadas dessas variáveis. Ressaltamos ainda a possibilidade de especiação incipiente para algumas linhagens, aparentemente crípticas.
publishDate 2024
dc.date.issued.fl_str_mv 2024-08-30
dc.date.accessioned.fl_str_mv 2025-07-11T21:45:49Z
dc.date.available.fl_str_mv 2025-07-04
2025-07-11T21:45:49Z
dc.type.driver.fl_str_mv Mestrado Acadêmico
info:eu-repo/semantics/masterThesis
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://repositorio.ufba.br/handle/ri/42500
url https://repositorio.ufba.br/handle/ri/42500
dc.language.iso.fl_str_mv por
language por
dc.relation.references.pt_BR.fl_str_mv Andrew, R.L. & Rieseberg, L. H. Divergence is focused on few genomic regions early in speciation: incipient speciation of sunflower ecotypes. Evolution, v. 67, n. 9, p. 2468- 2482, 2013. Ahmad, Z. et al. Bamboo: Origin, habitat, distributions and global prospective. Biotechnological Advances in Bamboo: The “Green Gold” on the Earth, p. 1-31, 2021. Aiello‐Lammens, M.E. et al. spThin: an R package for spatial thinning of species occurrence records for use in ecological niche models. Ecography, v. 38, n. 5, p. 541-545, 2015. Alves, V.M. et al. Wing shape is influenced by environmental variability in Polietina orbitalis (Stein) (Diptera: Muscidae). Revista Brasileira de Entomologia, v. 60, p. 150- 156, 2016. Anderson, M.J. & Walsh, D.C.I. PERMANOVA, ANOSIM, and the Mantel test in the face of heterogeneous dispersions: what null hypothesis are you testing?. Ecological monographs, v. 83, n. 4, p. 557-574, 2013. Bardua, C. et al. A practical guide to sliding and surface semilandmarks in morphometric analyses. Integrative Organismal Biology, v. 1, n. 1, p. obz016, 2019. Benz, B.W. & Martin, C.E. Foliar trichomes, boundary layers, and gas exchange in 12 species of epiphytic Tillandsia (Bromeliaceae). Journal of Plant Physiology, v. 163, n. 6, p. 648-656, 2006. Blair, M.E. et al. "Ecological divergence and speciation between lemur (Eulemur) sister species in Madagascar." Journal of evolutionary biology v. 26, n. 8, p. 1790-1801, 2013. Bouchenak-Khelladi, Yanis et al. Biogeography of the grasses (Poaceae): a phylogenetic approach to reveal evolutionary history in geographical space and geological time. Botanical Journal of the Linnean Society, v. 162, n. 4, p. 543-557, 2010. Bremond, L. & Favier, C. Neotropical C 3/C 4 grass distributions-present, past and future. Global Change Biology, v. 18, n. 7, p. 2324-2334, 2012. 26 Brewer, C.A. & Smith, W.K. Patterns of leaf surface wetness for montane and subalpine plants. Plant, Cell & Environment, v. 20, n. 1, p. 1-11, 1997. Broennimann, O. et al. Measuring ecological niche overlap from occurrence and spatial environmental data. Global ecology and biogeography, v. 21, n. 4, p. 481-497, 2012. Brown, J.H. et al. The geographic range: size, shape, boundaries, and internal structure. Annual review of ecology and systematics, v. 27, n. 1, p. 597-623, 1996. Calderón, C.E. & Soderstrom, T.R. The genera of Bambusoideae (Poaceae) of the American Continent: Keys. Smithsonian Contributions to Botany, 1980. Carnaval, A.C. & Moritz, C. Historical climate modelling predicts patterns of current biodiversity in the Brazilian Atlantic forest. Journal of Biogeography, v. 35, n. 7, p. 1187-1201, 2008. Carvalho, M.L.S. et al. Piresia palmula: a new species of herbaceous bamboo (Poaceae, Olyreae) endemic to the Atlantic Rainforest, Southern Bahia, Brazil. Systematic Botany, v. 37, n. 1, p. 134-138, 2012. Carvalho, M.L.S. Estudos biossistemáticos em Piresia Swallen (Poaceae: Bambusoideae: Olyreae). Tese (Doutorado em Botânica) - Programa de Pós-graduação em Botânica, Universidade Estadual de Feira de Santana, 2013. Carvalho, M.L.S. et al. Cryptic speciation in the herbaceous bamboo genus Piresia (Poaceae, Olyreae). Botanical Journal of the Linnean Society, v. 192, n. 1, p. 82-96, 2020. Carvalho, M.L.S. et al. Phylogenetics of Piresia (Poaceae: Bambusoideae) reveals unexpected generic relationships within Olyreae with taxonomic and biogeographic implications. Taxon, v. 70, n. 3 p. 492-514, 2021. Colwell, R.K. & Rangel, T.F. Hutchinson's duality: the once and future niche. Proceedings of the National Academy of Sciences, v. 106, n. Supplement 2, p. 1965119658, 2009. Cruz, D.D. et al. Geometric morphometrics and ecological niche modelling for delimitation of Triatoma pallidipennis (Hemiptera: Reduviidae: Triatominae) haplogroups. Current Research in Parasitology & Vector-borne Diseases, v. 3, p. 100119, 2023. Cutter, A.D. & Gray, J.C. Ephemeral ecological speciation and the latitudinal biodiversity gradient. Evolution, v. 70, n. 10, p. 2171-2185, 2016. De Queiroz, K. Species concepts and species delimitation. Systematic biology, v. 56, n. 6, p. 879-886, 2007. Dormann, C.F. et al. Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography, v. 36, n. 1, p. 27-46, 2013. 27 Dormann, C. F. Effects of incorporating spatial autocorrelation into the analysis of species distribution data. Global ecology and biogeography, v. 16, n. 2, p. 129-138, 2007. Feild, T.S. et al. Hydathodal leaf teeth of Chloranthus japonicus (Chloranthaceae) prevent guttation‐induced flooding of the mesophyll. Plant, Cell & Environment, v. 28, n. 9, p. 1179-1190, 2005. Fick, S.E. & Hijmans, R.J. WorldClim 2: new 1‐km spatial resolution climate surfaces for global land areas. International journal of climatology, v. 37, n. 12, p. 4302-4315, 2017. Fornel, R. & Cordeiro-Estrela, P. Morfometria geométrica e a quantificação da forma dos organismos. Temas em Biologia: Edição comemorativa aos 20 anos do Curso de Ciências Biológicas e aos 5 anos do PPG-Ecologia da URI Campus de Erechim. v. 20, p. 101-120, 2012. Gallaher, T.J. et al. Grasses through space and time: An overview of the biogeographical and macroevolutionary history of Poaceae. Journal of Systematics and Evolution, v. 60, n. 3, p. 522-569, 2022. Gallaher, T.J. et al. Leaf shape and size track habitat transitions across forest-grassland boundaries in the grass family (Poaceae). Evolution, v. 73, n. 5, p. 927-946, 2019. Givnish, T.J. Leaf and canopy adaptations in tropical forests. In: Physiological ecology of plants of the wet tropics. Dordrecht, Springer, p. 51-84, 1984. Gould, S.J. Allometry and size in ontogeny and phylogeny. Biological reviews, v. 41, n. 4, p. 587-638, 1966. Gould, S.J. Ontogeny and Phylogeny. Cambridge, The Belknap Press of Harvard University Press, 20 pp., 1977. Guillory, W.X. & Brown, J.L. A new method for integrating ecological niche modeling with phylogenetics to estimate ancestral distributions. Systematic Biology, v. 70, n. 5, p. 1033- 1045, b2021. Guisan, A. et al. Generalized linear and generalized additive models in studies of species distributions: setting the scene. Ecological modelling, v. 157, n. 2-3, p. 89-100, 2002. Guisan, A. et al. Unifying niche shift studies: insights from biological invasions. Trends in ecology & evolution, v. 29, n. 5, p. 260-269, 2014. Guisan, A. et al. suitability and distribution models: with applications in R. Cambridge, Cambridge University Press, 462 pp., 2017. Gunz, P. & Mitteroecker, P. Semilandmarks: a method for quantifying curves and surfaces. Hystrix, the Italian journal of mammalogy, v. 24, n. 1, p. 103-109, 2013. 28 Hall, J.S. et al. Habitat characterizations underestimate the role of edaphic factors controlling the distribution of Entandrophragma. Ecology, v. 85, n. 8, p. 2171-2183, 2004. Hammer, Ø. et al. Paleontological Statistics software package for education and data analysis-PAST. Version 2.17 c. Palaeontologia electronica, n. 4, p. 9, 2001. Hautmann, M. What is macroevolution?. Palaeontology, v. 63, n. 1, p. 1-11, 2020. Hemami, M. et al. Morphological diversity and ecological niche divergence in goitered and sand gazelles. Ecology and evolution, v. 10, n. 20, p. 11535-11548, 2020. Hulshof, C.M.; Spasojevic, M. J. The edaphic control of plant diversity. Global Ecology and Biogeography, v. 29, n. 10, p. 1634-1650, 2020. Jacobs, B.F. Estimation of low-latitude paleoclimates using fossil angiosperm leaves: examples from the Miocene Tugen Hills, Kenya. Paleobiology, v. 28, n. 3, p. 399-421, 2002. Jesus, I.S.D. Estudos filogeográficos em Piresia leptophylla Soderstr. (Poaceae, Bambusoideae). Trabalho de Conclusão de Curso - Graduação em Ciências biológicas, Universidade Federal da Bahia. Salvador, 2017. Jesus, I.S.D. Desvendando relações e inferindo a história biogeográfica de um grupo de bambus herbáceos da Mata Atlântica Nordestina (Piresia: Olyreae: Bambusoideae). Dissertação (Mestrado em Biodiversidade e Evolução) - Programa de Pós-Graduação em Biodiversidade e Evolução, Universidade Federal da Bahia. Salvador, 112 pp., 2021. Judziewicz, E.J. et al. American bamboos. Washington DC, Smithsonian Institution Press, 392 pp., 1999. Kamimura, E.H. et al. Drivers of molecular and morphometric variation in Triatoma brasiliensis (Hemiptera: Triatominae): the resolution of geometric morphometrics for populational structuring on a microgeographical scale. Parasites & vectors, v. 13, n. 1, p. 1-15, 2020. Klingenberg, C.P. MorphoJ: an integrated software package for geometric morphometrics. Molecular ecology resources, v. 11, n. 2, p. 353-357, 2011. Kozak, K.H. & Wiens, J.J. Climatic zonation drives latitudinal variation in speciation mechanisms. Proceedings of the Royal Society B: Biological Sciences, v. 274, n. 1628, p. 2995-3003, 2007. Leandro, T.D. et al. Comparative leaf blade anatomy and micromorphology in the systematics and phylogeny of Bambusoideae (Poaceae: Poales). Botanical Journal of the Linnean Society, v. 192, n. 1, p. 165-183, 2020. 29 Leite, Y.L. et al. Neotropical forest expansion during the last glacial period challenges refuge hypothesis. Proceedings of the National Academy of Sciences, v. 113, n. 4, p. 1008- 1013, 2016. Louca, S. & Pennell, M.W. Extant timetrees are consistent with a myriad of diversification histories. Nature, v. 580, n. 7804, p. 502-505, 2020. Manly, B.F.J. Multivariate statistical methods: a primer. Boca Raton, Chapman and Hall//CRC, 2000. Mantel, N. The detection of disease clustering and a generalized regression approach. Cancer research, v. 27, n. 2_Part_1, p. 209-220, 1967. Marques, D.A. et al. Genomics of rapid incipient speciation in sympatric threespine stickleback. PLoS genetics, v. 12, n. 2, p. e1005887, 2016. Maya-Lastra, C.A. et al. Caught in the Act: Incipient Speciation at the Southern limit of Viburnum in the Central Andes. Systematic Biology, p. syae023, 2024. Mccormack, J. E., Zellmer, Amanda J., Knowles, L. L. Does niche divergence accompany allopatric divergence in Aphelocoma jays as predicted under ecological speciation?: insights from tests with niche models. Evolution, v. 64, n. 5, p. 1231-1244, 2010. Mittelbach, G.G. et al. Evolution and the latitudinal diversity gradient: speciation, extinction and biogeography. Ecology letters, v. 10, n. 4, p. 315-331, 2007. Monteiro, L.R. & Reis, S.F. Princípios de Morfometria Geométrica. Holos, Ribeirão Preto. 1999. Morales, A.E. et al. Speciation with gene flow in North American Myotis bats. Systematic Biology, v. 66, n. 3, p. 440-452, 2017. Morley, R.J. Origin and evolution of tropical rain forests. Chichester, John Wiley & Sons, 384 pp., 2000. Mouludi-Saleh, A. How the morphology of two closely related riverine sympatric species are reflected in ecological niche overlapping? A case study of two Capoeta species. Limnology, p. 1-9, 2024. Oksanen, J. et al. Package ‘vegan’. Community ecology package, version, v. 2, n. 9, p. 1- 295, 2013. Pace, M.C. et al. Illuminating the systematics of the Spiranthes sinensis species complex (Orchidaceae): ecological speciation with little morphological differentiation. Botanical Journal of the Linnean Society, v. 189, n. 1, p. 36-62, 2019. Palmer, A.R. Fluctuating asymmetry analyses: a primer. In: Developmental instability: its origins and evolutionary implications. Dordrecht, Springer, p. 335-364, 1994. 30 Palmer, A.R. & Strobeck, C. Fluctuating asymmetry: measurement, analysis, patterns. Annual review of Ecology and Systematics, p. 391-421, 1986. Peil, A.C. & Aranda, R. Potential niche modeling distribution and wing geometric morphometrics of Apis mellifera in the Brazilian Pantanal. Sociobiology, v. 68, n. 2, p. e5629-e5629, 2021. Peppe, D.J. et al. Sensitivity of leaf size and shape to climate: global patterns and paleoclimatic applications. New phytologist, v. 190, n. 3, p. 724-739, 2011. Perret, M. et al. The geographical pattern of speciation and floral diversification in the Neotropics: the tribe Sinningieae (Gesneriaceae) as a case study. Evolution, v. 61, n. 7, p. 1641-1660, 2007. Peterson, A. Townsend. Ecological niche conservatism: A time‐structured review of evidence. Journal of Biogeography, v. 38, n. 5, p. 817-827, 2011. Peterson, A.T. & Soberón, J. Species distribution modeling and ecological niche modeling: getting the concepts right. Natureza & Conservação, v. 10, n. 2, p. 102-107, 2012. Phillips, S.J. & Dudík, M. Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography, v. 31, n. 2, p. 161-175, 2008. Pinho et al. Especiação ecológica ou incipiente: o que esconde um pequeno gênero de bambus pigmeus (Poaceae, Bambusoideae, Olyreae)? In: Anais do 40º Encontro Regional de Botânicos - Regional MG, BA, ES. Vitória (ES), Universidade Federal do Espírito Santo, 2020. Poggio, L. et al. SoilGrids 2.0: producing soil information for the globe with quantified spatial uncertainty. Soil, v. 7, n. 1, p. 217-240, 2021. R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing. 2019. Disponível em: https://www. R-project.org (acesso em: 01 de abril de 2022). Rennison, D.J. & Schluter, D. Mudanças paralelas na composição e função do microbioma intestinal durante a colonização, adaptação local e especiação ecológica. Proceedings of the Royal Society B , v. 286, n. 1916, p. 20191911, 2019. Rohlf, F.J. Morphometrics. Annual Review of Ecology and systematics, v. 21, n. 1, p. 299- 316, 1990. Rohlf, F.J. & Marcus, L.F. A revolution morphometrics. Trends in ecology & evolution, v. 8, n. 4, p. 129-132, 1993. Rohlf, R.J. tpsDig2, versão 2.31. Nova York, Department of Ecology and Evolution, Stony Brook, University, 2017. 31 Rohlf, F.J. tpsUtil, versão 1.81. Nova York, Anthropology and Ecology & Evolution, Stony Brook, University. 2021a. Rohlf, F.J. tpsRelw Relative warps, versão 1.74. Nova York, Anthropology and Ecology & Evolution, Stony Brook, University. 2021b. Rull, V. & Carnaval, A. C. (Ed.). Neotropical diversification: patterns and processes. Berlin, Springer, 830 pp., 2020. Rull, V. Neotropical biodiversity: timing and potential drivers. Trends in ecology & evolution, v. 26, n. 10, p. 508-513, 2011. Rundle, H. D. & Nosil, P. Ecological speciation. Ecology letters, v. 8, n. 3, p. 336-352, 2005. Saxenhofer, M. et al. Secondary contact between diverged host lineages entails ecological speciation in a European hantavirus. PLoS biology, v. 17, n. 2, p. e3000142, 2019. Schoener, T.W. The Anolis lizards of Bimini: resource partitioning in a complex fauna. Ecology, v. 49, n. 4, p. 704-726, 1968. Schluter, D. Boughman, J. W. & Rundle, H. D. Parallel speciation with allopatry. Trends in Ecology & Evolution, v. 16, n. 6, p. 283-284, 2001. Schluter, D. & Pennell, M.W. Speciation gradients and the distribution of biodiversity. Nature, v. 546, n. 7656, p. 48-55, 2017. Silva, D.M. et al. Morphometric and genetic differentiation among populations of Eupemphix nattereri (Amphibia, Anura, Leiuperidae) from central Brazil. Iheringia. Série Zoologia, v. 98, p.493-500, 2008. Silva, D.P. et al. Using ecological niche models and niche analyses to understand speciation patterns: the case of sister neotropical orchid bees. PLoS One, v. 9, n. 11, p. e113246, 2014. Simpson, M.G. Species and Conservation in Plant Systematics. In: Plant Systematics. New York, Academic press. p. 649–668, 2010. Soderstrom, T.R. & Calderón, C.E. Primitive forest grasses and evolution of the Bambusoideae. Biotropica, p. 141-153, 1974. Soderstrom, T.R. New species of Cryptochloa and Piresia (Poaceae: Bambusoideae). Brittonia, v. 34, n. 2, p. 199-209, 1982. Strubbe, D. et al. Niche conservatism in non‐native birds in E urope: niche unfilling rather than niche expansion. Global Ecology and Biogeography, v. 22, n. 8, p. 962-970, 2013. Swallen, J.R. Two new genera of Olyreae from South America. Phytologia, v. 11, n. 3, p. 152-154, 1964. 32 Taylor, S.A. et al. Climate-mediated movement of an avian hybrid zone. Current Biology, v. 24, n. 6, p. 671-676, 2014. Teske, P.R. et al. Thermal selection as a driver of marine ecological speciation. Proceedings of the Royal Society B, v. 286, n. 1896, p. 20182023, 2019. Thiers. Index Herbariorum. NYBG Streere Herbarium. 2024. Disponível em: http://sweetgum.nybg.org/science/ih/ (acesso em: 01 de abril de 2024). Tingley, M.W. et al. Birds track their Grinnellian niche through a century of climate change. Proceedings of the National Academy of Sciences, v. 106, n. supplement_2, p. 19637- 19643, 2009. Toews, D.P.L. et al. Genomic variation across the Yellow-rumped Warbler species complex. The Auk: Ornithological Advances, v. 133, n. 4, p. 698-717, 2016. Tvedte, E.S. et al. Genome of the parasitoid wasp Diachasma alloeum, an emerging model for ecological speciation and transitions to asexual reproduction. Genome biology and evolution, v. 11, n. 10, p. 2767-2773, 2019. Usinowicz, J. et al. Temporal coexistence mechanisms contribute to the latitudinal gradient in forest diversity. Nature, v. 550, n. 7674, p. 105-108, 2017. Uy, J. A.C. et al. Behavioral isolation and incipient speciation in birds. Annual Review of Ecology, Evolution, and Systematics, v. 49, n. 1, p. 1-24, 2018. Velazco, S.J.E. et al. Using worldwide edaphic data to model plant species niches: An assessment at a continental extent. PLoS One, v. 12, n. 10, p. e0186025, 2017. Vleminckx, J. et al. Niche breadth of Amazonian trees increases with niche optimum across broad edaphic gradients. Ecology, v. 104, n. 7, p. e4053, 2023. Wiens, J.J. & Donoghue, M.J. Historical biogeography, ecology and species richness. Trends in ecology & evolution, v. 19, n. 12, p. 639-644, 2004. Wilf, P. et al. Using fossil leaves as paleoprecipitation indicators: an Eocene example. Geology, v. 26, n. 3, p. 203-206, 1998. Wright, A.N. et al. Color pattern asymmetry as a correlate of habitat disturbance in spotted salamanders (Ambystoma maculatum). Journal of Herpetology, v. 36, n. 1, p. 129-133, 2002. Wright, I.J. et al. Global climatic drivers of leaf size. Science, v. 357, n. 6354, p. 917-921, 2017.
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal da Bahia
dc.publisher.program.fl_str_mv Programa de Pós-Graduação em Biodiversidade e Evolução (antigo Programa de Pós Graduação em Diversidade Animal-PPGDA) 
dc.publisher.initials.fl_str_mv UFBA
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv Instituto de Biologia
publisher.none.fl_str_mv Universidade Federal da Bahia
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFBA
instname:Universidade Federal da Bahia (UFBA)
instacron:UFBA
instname_str Universidade Federal da Bahia (UFBA)
instacron_str UFBA
institution UFBA
reponame_str Repositório Institucional da UFBA
collection Repositório Institucional da UFBA
bitstream.url.fl_str_mv https://repositorio.ufba.br/bitstream/ri/42500/1/Carolina%20Santos%20Pinho%20-%20Dissertacao%20-%20mestrado.pdf
https://repositorio.ufba.br/bitstream/ri/42500/2/license.txt
bitstream.checksum.fl_str_mv c16ba5b08d54968de5c16a289bea831e
d9b7566281c22d808dbf8f29ff0425c8
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFBA - Universidade Federal da Bahia (UFBA)
repository.mail.fl_str_mv repositorio@ufba.br
_version_ 1847342291291734016