Novas estratégias de controle preditivo com desacoplamento

Detalhes bibliográficos
Ano de defesa: 2024
Autor(a) principal: Câmara, Rodrigo Galvão de Souza lattes
Orientador(a): Santos, Tito Luís Maia lattes
Banca de defesa: Santos, Tito Luís Maia lattes, Conceição, André Gustavo Scolari lattes, Nogueira, Fabrício Gonzalez lattes
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal da Bahia
Programa de Pós-Graduação: Programa de Pós-Graduação em Engenharia Elétrica (PPGEE) 
Departamento: Escola Politécnica
País: Brasil
Palavras-chave em Português:
Área do conhecimento CNPq:
Link de acesso: https://repositorio.ufba.br/handle/ri/41236
Resumo: Neste trabalho será proposto um conjunto de estratégias considerando uma representação aumentada em espaço de estados na implementação de controladores preditivos baseados em modelo para permitir o uso de desacopladores com a garantia de estabilidade e robustez em sistemas lineares multivariáveis com restrições. A nova formulação é genérica podendo ser utilizada com diversos desacopladores aplicáveis ao processo e variadas estratégias de controladores preditivos. Será apresentado um levantamento inicial da literatura na área de pesquisa com o objetivo de dar embasamento para a formalização da prova de estabilidade e robustez para o controlador preditivo utilizando a representação proposta e os resultados serão apresentados através de estudos de caso de simulação. A principal contribuição decorre da obtenção de respostas desacopladas com garantias de estabilidade e robustez.
id UFBA-2_339b5b9e53218f9c69b71d97d36e2def
oai_identifier_str oai:repositorio.ufba.br:ri/41236
network_acronym_str UFBA-2
network_name_str Repositório Institucional da UFBA
repository_id_str
spelling 2025-02-14T16:43:33Z2025-02-14T16:43:33Z2024-12-12https://repositorio.ufba.br/handle/ri/41236Neste trabalho será proposto um conjunto de estratégias considerando uma representação aumentada em espaço de estados na implementação de controladores preditivos baseados em modelo para permitir o uso de desacopladores com a garantia de estabilidade e robustez em sistemas lineares multivariáveis com restrições. A nova formulação é genérica podendo ser utilizada com diversos desacopladores aplicáveis ao processo e variadas estratégias de controladores preditivos. Será apresentado um levantamento inicial da literatura na área de pesquisa com o objetivo de dar embasamento para a formalização da prova de estabilidade e robustez para o controlador preditivo utilizando a representação proposta e os resultados serão apresentados através de estudos de caso de simulação. A principal contribuição decorre da obtenção de respostas desacopladas com garantias de estabilidade e robustez.This work will propose a set of strategies based on augmented representation in state space during the implementing model-based predictive controller to enable the use of decoupler with the guarantee of stability and robustness in constrained multivariable linear systems. The new formulation is general and can be used with many decouplers that applicable to the process and many predictive controller strategies. A initial literature review will be carried out with the objective of providing a basis for formalization of the proof of stability and robustness for the predictive controller using the proposed representation and the results will be presented through simulation study cases. The main contribution comes from obtaining decoupled responses with guarantees of stability and robustness.porUniversidade Federal da BahiaPrograma de Pós-Graduação em Engenharia Elétrica (PPGEE) UFBABrasilEscola PolitécnicaPredictive controlMultivariable systemsDecouplerCNPQ::ENGENHARIAS::ENGENHARIA ELETRICA::ELETRONICA INDUSTRIAL, SISTEMAS E CONTROLES ELETRONICOS::CONTROLE DE PROCESSOS ELETRONICOS, RETROALIMENTACAOControle preditivoSistemas multivariáveisDesacopladorNovas estratégias de controle preditivo com desacoplamentoNew predictive control strategies with decouplingMestrado Acadêmicoinfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/publishedVersionSantos, Tito Luís Maiahttp://lattes.cnpq.br/2732736365881287Santos, Tito Luís Maiahttp://lattes.cnpq.br/2732736365881287Conceição, André Gustavo Scolarihttp://lattes.cnpq.br/6840685961007897Nogueira, Fabrício Gonzalezhttp://lattes.cnpq.br/5826590609995005http://lattes.cnpq.br/2441531813391834Câmara, Rodrigo Galvão de SouzaBORELLI F., B. A.; MORARI, M. Predictive control for linear and hybrid systems. 1st. ed. New York: Cambridge University Press, 2017. CAMACHO, E.; BORDONS, C. Model Predictive Control. 1st. ed. Great Britain: Springer, 1999. CHEN, C. T. Linear system theory and design. 3rd. ed. New York: Oxford University Press, 1999. CHISCI, L.; ROSSITER, J.; ZAPPA, G. Systems with persistent disturbances: predictive control with restricted constraints. Automatica, v. 37, n. 7, p. 1019–1028, 2001. ISSN 0005-1098. Disponível em: <https://www.sciencedirect.com/science/article/pii/S0005109801000516>. CLARKE, D.; MOHTADI, C.; TUFFS, P. Generalized predictive control—part i. the basic algorithm. Automatica, v. 23, n. 2, p. 137–148, 1987. ISSN 0005-1098. CUNHA, V. M.; SANTOS, T. L. M. Robust nonlinear model predictive control based on nominal predictions with piecewise constant references and bounded disturbances. International Journal of Robust and Nonlinear Control, v. 32, n. 6, p. 3944–3968, 2022. CUTLER, C. R.; RAMAKER, B. L. Dynamic matrix control??a computer control algorithm. Joint Automatic Control Conference, v. 17, p. 72, 1980. DWORAK P., G. J. A. S.; GHOSH, S. Effective use of MPC for dynamic decoupling of MIMO systems. Elektronika ir Elektrotechnika, v. 25, n. 2, p. 3–8, 2019. FALB, P.; WOLOVICH, W. A. Decoupling in the design and synthesis of multivariable control systems. [S.l.], 1967. FERRAMOSCA, A. et al. Mpc for tracking with optimal closed-loop performance. Automatica, v. 45, n. 8, p. 1975–1978, 2009. ISSN 0005-1098. Disponível em:<https://www.sciencedirect.com/science/article/pii/S000510980900212X>. FERRAMOSCA, A. et al. Mpc for tracking zone regions. Journal of Process Control - J PROCESS CONTROL, v. 20, p. 506–516, 04 2010. FERRAMOSCA, A. et al. Robust mpc for tracking zone regions based on nominal predictions. Journal of Process Control, v. 22, n. 10, p. 1966–1974, 2012. ISSN 0959-1524. Disponível em: <https://www.sciencedirect.com/science/article/pii/S0959152412002077>. GAGNON, E.; POMERLEAU, A.; DESBIENS, A. Simplified, ideal or inverted decoupling? ISA Transactions, v. 37, p. 265–276, 1998. GAGNON E., P. A.; DESBIENS, A. Simplified, ideal ou inverted decoupling? ISA Transactions, v. 37, 1998. GARCIA-GABIN, W.; CAMACHO, E. Application of multivariable GPC to a four tank process with unstable transmission zeros. In: Proceedings of the 2002 International Conference on Applications. [S.l.: s.n.], 2002. GARCIA-GABIN, W.; CAMACHO, E. F. Application of multivariable gpc to a four tank process with unstable transmission zeros. In: IEEE. Proceedings of the International Conference on Control Applications. [S.l.], 2002. v. 2, p. 645–650. GILBERT, E.; TAN, K. Linear systems with state and control constraints: the theory and application of maximal output admissible sets. IEEE Transactions on Automatic Control, v. 36, n. 9, p. 1008–1020, 1991. GUPTA, Y. Control of integrating processes using dynamic matrix control. Chemical Engineering Research and Design, v. 76, n. 4, p. 465–470, 1998. ISSN 0263-8762. Process Operations and Control. HERCEG, M. et al. Multi-Parametric Toolbox 3.0. In: Proc. of the European Control Conference. Zürich, Switzerland: [s.n.], 2013. p. 502–510. <http://control.ee.ethz.ch/~mpt>. JOHANSSON, K. The quadruple-tank process: a multivariable laboratory process with an adjustable zero. IEEE Transaction on Control System Technology, v. 8, n. 3, p. 456–465, 2000. JOHANSSON, K. The quadruple-tank process: a multivariable laboratory process with an adjustable zero. IEEE Transaction on Control System Technology, v. 8, n. 3, p. 456–465, 2000. KOLMANOVSKY, I.; GILBERT, E. G. Theory and computation of disturbance invariant sets for discrete-time linear systems. Mathematical problems in engineering, Hindawi, v. 4, n. 4, p. 317–367, 1998. KOUVARITAKIS, B.; CANNON, M. Model predictive control: Classical, robust and stochastic. [S.l.]: Springer, 2015. LIMA, C.; SANTOS, T. Estudo sobre a redução do acoplamento em estratégias de controle preditivo baseado em modelo. In: XI Simpósio Brasileiro de Automação Inteligente. [S.l.: s.n.], 2013. p. Artigo 7701. LIMON, D. et al. Mpc for tracking of piece-wise constant references for constrained linear systems. IFAC Proceedings Volumes, v. 38, n. 1, p. 135–140, 2005. ISSN 1474-6670. 16th IFAC World Congress. Disponível em: <https://www.sciencedirect.com/science/article/pii/S1474667016368951>. LIMON, D. et al. Mpc for tracking piecewise constant references for constrained linear systems. Automatica, v. 44, n. 9, p. 2382–2387, 2008. ISSN 0005-1098. Disponível em: <https://www.sciencedirect.com/science/article/pii/S0005109808001106>. LIMON, D. et al. On the design of robust tube-based MPC for tracking. IFAC Proceedings Volumes, v. 41, n. 2, p. 15333–15338, 2008. ISSN 1474-6670. 17th IFAC World Congress. LIMÓN, D. et al. Robust tube-based MPC for tracking of constrained linear systems with additive disturbances. Journal of Process Control, Elsevier, v. 20, n. 3, p. 248–260, 2010. LIU L., T. S. X. D. Z. T. C. Y.; ZHANG, S. A review of industrial MIMO decoupling control. International Journal of Control, Automation and Systems, v. 17, 2019. MACIEJOWSKI, J. Predictive Control with Constraints. 1st. ed. .: Prentice Hall, 2001. MAYNE, D. Robust and stochastic mpc: Are we going in the right direction? IFAC-PapersOnLine, v. 48, n. 23, p. 1–8, 2015. ISSN 2405-8963. 5th IFAC Conference on Nonlinear Model Predictive Control NMPC 2015. Disponível em: <https://www.sciencedirect.com/science/article/pii/S2405896315025392>. MAYNE, D. et al. Robust output feedback model predictive control of constrained linear systems. Automatica, v. 42, n. 7, p. 1217–1222, 2006. ISSN 0005-1098. Disponível em: <https://www.sciencedirect.com/science/article/pii/S0005109806001221>. MAYNE, D.; SERON, M.; RAKOVIć, S. Robust model predictive control of constrained linear systems with bounded disturbances. Automatica, v. 41, n. 2, p. 219–224, 2005. ISSN 0005-1098. Disponível em: <https://www.sciencedirect.com/science/article/pii/S0005109804002870>. MAYNE D.Q., R. J. R. C.; SCOKAERT, P. Constrained model predictive control: Stability and optimality. Automatica, v. 36, n. 6, p. 789–814, 2000. MIDDLETON, R.; ADAMS, G. Modification of model predictive control to reduce cross-coupling. In: 17th World Congress The International Federation of Automatic Control. [S.l.]: IFAC, 2008. p. 9940–9945. ORDYS, A. W.; CLARKE, D. W. A state-space description for gpc controllers. International Journal of Systems Science, v. 24, p. 1727–1744, 1993. Disponível em: <https://api.semanticscholar.org/CorpusID:121709281>. PAULSON, J. A.; SANTOS, T. L.; MESBAH, A. Mixed stochastic-deterministic tube MPC for offset-free tracking in the presence of plant-model mismatch. Journal of process control, Elsevier, v. 83, p. 102–120, 2019. PEREIRA, G. da F.; FLESCH, R. C. C. Desacoplamento de sistemas multivariáveis não lineares com mpc usando função custo dinâmica. In: Congresso Brasileiro de Automática-CBA. [S.l.: s.n.], 2020. v. 2, n. 1. PEREIRA, G. F.; FLESCH, R. Desacoplamento de sistemas multivariáveis não lineares com MPC usando função custo dinâmica. In: Anais do Congresso Brasileiro de Automática. [S.l.]: SBA, 2020. QIN, J.; BADGWELL, T. An overview of industrial model predictive control technology. AIChE Symposium Series, v. 93, 01 1997. QIN, X.; ZHU, K.; CHAI, T. Robust adaptive decoupling design for generalized predictive control with neural network. In: Proceedings of 35th IEEE Conference on Decision and Control. [S.l.: s.n.], 1996. v. 3, p. 2426–2431. RAKOVIć, S. V. et al. Homothetic tube model predictive control. Automatica, v. 48, n. 8, p. 1631–1638, 2012. ISSN 0005-1098. Disponível em: <https: //www.sciencedirect.com/science/article/pii/S0005109812001768>. RICHALET, J. et al. Algorithmic control of industrial processes. p. 1119–1167, 1976. SANIYE, A.; SULEYMAN, K. Decoupling constrained model predictive control of multi-component packed distillation column. World Applied Sciences Journal, v. 13, n. 3, p. 517–530, 2011. SANTOS, T. Contribuições para o Controle Preditivo com Compensação de Atraso Robusta. Tese (Doutorado) — Universidade Federal de Santa Catarina, 2011. SANTOS, T.; CUNHA, V. Robust mpc for linear systems with bounded disturbances based on admissible equilibria sets. International Journal of Robust and Nonlinear Control, v. 31, n. 7, p. 2690–2711, 2021. SANTOS, T. L.; CUNHA, V. M. Tractable robust mpc for tracking piecewise constant references based on nominal predictions. Journal of Process Control, v. 129, p. 103030, 2023. ISSN 0959-1524. Disponível em: <https://www.sciencedirect.com/science/article/pii/S0959152423001178>. SANTOS, T. L. M. Modified reference tracking mpc for constrained linear systems. International Journal of Systems Science, Taylor & Francis, v. 49, n. 8, p. 1674–1684, 2018. Disponível em: <https://doi.org/10.1080/00207721.2018.1478014>. SCHMITZ U., H. R. A. F.; BARS, R. Decoupling predictive control by error dependent tuning of the weighting factors. ATP Journal PLUS, 2007. SHINSKEY, F. Process Control System: application, design and tuning. 4. ed. New York: McGraw-Hill, 1996. SKOGESTAD, S.; POSTLETHWAITE, I. Multivariable Feedback Control: Analysis and Design. 2. ed. [S.l.]: Wiley, 2005. STRASSBERGER D., M. P.; SERGIYENKO, O. A decoupled MPC for motion control in robotino using a geometric approach. Journal of Physics: Conference Series, v. 659, 2015. TôRRES, L. A. B. Teoria de Estabilidade de Lyapunov. 2019. Março, 2019. Disponível em: <http://www.cpdee.ufmg.br/~torres/wp-content/uploads/2018/02/Estabilidade_Lyapunov.pdf>. Acesso em 5 de Maio de 2024. WANG, Q.-G. Decoupling Control. 1st. ed. German: Springer, 2003. WANG, Q.-G.; HUANG, B.; GUO, X. Auto-tuning of tito decoupling controllers from step tests. ISA Transactions, v. 39, n. 4, p. 407–418, 2000. ISSN 0019-0578. Disponível em: <https://www.sciencedirect.com/science/article/pii/S0019057800000288>. ZABET, K.; HABER, R. Improvement of the decoupling effect of the predictive controllers GPC and PFC by parameter adaptation. In: 18th International Conference on Process Control. [S.l.]: Slovak University of Technology in Bratislava, 2011. p. 419–426. ZERMANI M.A., F. E.; MAMI, A. Decoupling multivariable GPC with reference observation and feedforward compensation method. case study: Neonate incubator. International Journal of Computer Science, v. 9, n. 3, p. 508–515, 2012. ZERMANI M.A., F. E.; MAMI, A. Self-tuning weighting factor to decoupling control for incubator system. International Journal of Information Technology, Control and Automation, v. 2, n. 3, p. 67–83, 2012. ZHANG, J. Improved nonminimal state space model predictive control for multivariable processes using a non-zero-pole decoupling formulation. Industrial Engineering & Chemistry Research, v. 52, n. 3, p. 4874?4880, 2013. ZHANG, R.; GAO, F. An improved decoupling structure based state space MPC design with improved performance. Systems & Control Letters, v. 75, p. 77–83, 2015. ISSN 0167-6911. ZHU, K.; QIN, X.; CHAI, T. A new decoupling design of self-tuning multivariable generalized predictive control. International Journal of Adaptive Control and Signal Processing, v. 13, n. 3, p. 183–196, 1999.info:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFBAinstname:Universidade Federal da Bahia (UFBA)instacron:UFBAORIGINALDissertacao - Rodrigo Galvão.pdfDissertacao - Rodrigo Galvão.pdfapplication/pdf2466456https://repositorio.ufba.br/bitstream/ri/41236/1/Dissertacao%20-%20Rodrigo%20Galv%c3%a3o.pdfb979d831887c72a129f4100a13c630f2MD51open accessLICENSElicense.txtlicense.txttext/plain1720https://repositorio.ufba.br/bitstream/ri/41236/2/license.txtd9b7566281c22d808dbf8f29ff0425c8MD52open accessri/412362025-02-14 13:43:33.445open accessoai:repositorio.ufba.br:ri/41236TElDRU7Dh0EgREUgRElTVFJJQlVJw4fDg08gTsODTy1FWENMVVNJVkEKCkNvbSBhIGFwcmVzZW50YcOnw6NvIGRlc3RhIGxpY2Vuw6dhLCBvIGF1dG9yIG91IHRpdHVsYXIgZG9zIGRpcmVpdG9zIGRlIGF1dG9yIGNvbmNlZGUgYW8gUmVwb3NpdMOzcmlvIEluc3RpdHVjaW9uYWwgbyBkaXJlaXRvIG7Do28tZXhjbHVzaXZvIGRlIHJlcHJvZHV6aXIsIHRyYWR1emlyIChjb25mb3JtZSBkZWZpbmlkbyBhYmFpeG8pIGUvb3UgZGlzdHJpYnVpciBhIHN1YSBwdWJsaWNhw6fDo28gKGluY2x1aW5kbyBvIHJlc3Vtbykgbm8gZm9ybWF0byBpbXByZXNzbyBlL291IGVsZXRyw7RuaWNvIGUgZW0gcXVhbHF1ZXIgbWVpbywgaW5jbHVpbmRvIG9zIGZvcm1hdG9zIMOhdWRpbyBlL291IHbDrWRlby4KCk8gYXV0b3Igb3UgdGl0dWxhciBkb3MgZGlyZWl0b3MgZGUgYXV0b3IgY29uY29yZGEgcXVlIG8gUmVwb3NpdMOzcmlvIHBvZGUsIHNlbSBhbHRlcmFyIG8gY29udGXDumRvLCB0cmFuc3BvciBhIHN1YSBwdWJsaWNhw6fDo28gcGFyYSBxdWFscXVlciBtZWlvIGUvb3UgZm9ybWF0byBwYXJhIGZpbnMgZGUgcHJlc2VydmHDp8OjbywgcG9kZW5kbyBtYW50ZXIgbWFpcyBkZSB1bWEgY8OzcGlhIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrdXAgZSBwcmVzZXJ2YcOnw6NvLiAKCk8gYXV0b3Igb3UgdGl0dWxhciBkb3MgZGlyZWl0b3MgZGUgYXV0b3IgZGVjbGFyYSBxdWUgYSBzdWEgcHVibGljYcOnw6NvIMOpIG9yaWdpbmFsIGUgcXVlIG7Do28sIHF1ZSBzZWphIGRlIHNldSBjb25oZWNpbWVudG8sIGluZnJpbmdlIGRpcmVpdG9zIGF1dG9yYWlzIGRlIG5pbmd1w6ltLgoKQ2FzbyBhIHN1YSBwdWJsaWNhw6fDo28gY29udGVuaGEgbWF0ZXJpYWwgcXVlIG7Do28gcG9zc3VpIGEgdGl0dWxhcmlkYWRlIGRvcyBkaXJlaXRvcyBhdXRvcmFpcywgdm9jw6ogZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIGFvIFJlcG9zaXTDs3JpbyBvcyBkaXJlaXRvcyBhcHJlc2VudGFkb3MgbmVzdGEgbGljZW7Dp2EgZSBxdWUgZXNzZSBtYXRlcmlhbCBkZSBwcm9wcmllZGFkZSBkZSB0ZXJjZWlyb3MgZXN0w6EgY2xhcmFtZW50ZSBpZGVudGlmaWNhZG8gZSByZWNvbmhlY2lkbyBubyB0ZXh0byBvdSBubyBjb250ZcO6ZG8gZGEgcHVibGljYcOnw6NvIG9yYSBkZXBvc2l0YWRhLgoKQ0FTTyBBIFBVQkxJQ0HDh8ODTyBPUkEgREVQT1NJVEFEQSBSRVNVTFRFIERFIFVNIFBBVFJPQ8ONTklPIE9VIEFQT0lPIERFIFVNQSBBR8OKTkNJQSBERSBGT01FTlRPIE9VIE9VVFJPIE9SR0FOSVNNTywgVk9Dw4ogREVDTEFSQSBRVUUgUkVTUEVJVE9VIFRPRE9TIEUgUVVBSVNRVUVSIERJUkVJVE9TIERFIFJFVklTw4NPLCBDT01PIFRBTULDiU0gQVMgREVNQUlTIE9CUklHQcOHw5VFUyBFWElHSURBUyBQT1IgQ09OVFJBVE8gT1UgQUNPUkRPLgoKTyBSZXBvc2l0w7NyaW8gc2UgY29tcHJvbWV0ZSBhIGlkZW50aWZpY2FyLCBjbGFyYW1lbnRlLCBvIChzKSBzZXUocykgbm9tZSAocykgb3UgbyAocykgbm9tZSAocykgZG8gKHMpIGRldGVudG9yIChlcykgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIGRhIHB1YmxpY2HDp8OjbyBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzIGNvbmNlZGlkYXMgcG9yIGVzdGEgbGljZW7Dp2EuCg==Repositório InstitucionalPUBhttps://repositorio.ufba.br/oai/requestrepositorio@ufba.bropendoar:19322025-02-14T16:43:33Repositório Institucional da UFBA - Universidade Federal da Bahia (UFBA)false
dc.title.pt_BR.fl_str_mv Novas estratégias de controle preditivo com desacoplamento
dc.title.alternative.pt_BR.fl_str_mv New predictive control strategies with decoupling
title Novas estratégias de controle preditivo com desacoplamento
spellingShingle Novas estratégias de controle preditivo com desacoplamento
Câmara, Rodrigo Galvão de Souza
CNPQ::ENGENHARIAS::ENGENHARIA ELETRICA::ELETRONICA INDUSTRIAL, SISTEMAS E CONTROLES ELETRONICOS::CONTROLE DE PROCESSOS ELETRONICOS, RETROALIMENTACAO
Controle preditivo
Sistemas multivariáveis
Desacoplador
Predictive control
Multivariable systems
Decoupler
title_short Novas estratégias de controle preditivo com desacoplamento
title_full Novas estratégias de controle preditivo com desacoplamento
title_fullStr Novas estratégias de controle preditivo com desacoplamento
title_full_unstemmed Novas estratégias de controle preditivo com desacoplamento
title_sort Novas estratégias de controle preditivo com desacoplamento
author Câmara, Rodrigo Galvão de Souza
author_facet Câmara, Rodrigo Galvão de Souza
author_role author
dc.contributor.advisor1.fl_str_mv Santos, Tito Luís Maia
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/2732736365881287
dc.contributor.referee1.fl_str_mv Santos, Tito Luís Maia
dc.contributor.referee1Lattes.fl_str_mv http://lattes.cnpq.br/2732736365881287
dc.contributor.referee2.fl_str_mv Conceição, André Gustavo Scolari
dc.contributor.referee2Lattes.fl_str_mv http://lattes.cnpq.br/6840685961007897
dc.contributor.referee3.fl_str_mv Nogueira, Fabrício Gonzalez
dc.contributor.referee3Lattes.fl_str_mv http://lattes.cnpq.br/5826590609995005
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/2441531813391834
dc.contributor.author.fl_str_mv Câmara, Rodrigo Galvão de Souza
contributor_str_mv Santos, Tito Luís Maia
Santos, Tito Luís Maia
Conceição, André Gustavo Scolari
Nogueira, Fabrício Gonzalez
dc.subject.cnpq.fl_str_mv CNPQ::ENGENHARIAS::ENGENHARIA ELETRICA::ELETRONICA INDUSTRIAL, SISTEMAS E CONTROLES ELETRONICOS::CONTROLE DE PROCESSOS ELETRONICOS, RETROALIMENTACAO
topic CNPQ::ENGENHARIAS::ENGENHARIA ELETRICA::ELETRONICA INDUSTRIAL, SISTEMAS E CONTROLES ELETRONICOS::CONTROLE DE PROCESSOS ELETRONICOS, RETROALIMENTACAO
Controle preditivo
Sistemas multivariáveis
Desacoplador
Predictive control
Multivariable systems
Decoupler
dc.subject.por.fl_str_mv Controle preditivo
Sistemas multivariáveis
Desacoplador
dc.subject.other.pt_BR.fl_str_mv Predictive control
Multivariable systems
Decoupler
description Neste trabalho será proposto um conjunto de estratégias considerando uma representação aumentada em espaço de estados na implementação de controladores preditivos baseados em modelo para permitir o uso de desacopladores com a garantia de estabilidade e robustez em sistemas lineares multivariáveis com restrições. A nova formulação é genérica podendo ser utilizada com diversos desacopladores aplicáveis ao processo e variadas estratégias de controladores preditivos. Será apresentado um levantamento inicial da literatura na área de pesquisa com o objetivo de dar embasamento para a formalização da prova de estabilidade e robustez para o controlador preditivo utilizando a representação proposta e os resultados serão apresentados através de estudos de caso de simulação. A principal contribuição decorre da obtenção de respostas desacopladas com garantias de estabilidade e robustez.
publishDate 2024
dc.date.issued.fl_str_mv 2024-12-12
dc.date.accessioned.fl_str_mv 2025-02-14T16:43:33Z
dc.date.available.fl_str_mv 2025-02-14T16:43:33Z
dc.type.driver.fl_str_mv Mestrado Acadêmico
info:eu-repo/semantics/masterThesis
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://repositorio.ufba.br/handle/ri/41236
url https://repositorio.ufba.br/handle/ri/41236
dc.language.iso.fl_str_mv por
language por
dc.relation.references.pt_BR.fl_str_mv BORELLI F., B. A.; MORARI, M. Predictive control for linear and hybrid systems. 1st. ed. New York: Cambridge University Press, 2017. CAMACHO, E.; BORDONS, C. Model Predictive Control. 1st. ed. Great Britain: Springer, 1999. CHEN, C. T. Linear system theory and design. 3rd. ed. New York: Oxford University Press, 1999. CHISCI, L.; ROSSITER, J.; ZAPPA, G. Systems with persistent disturbances: predictive control with restricted constraints. Automatica, v. 37, n. 7, p. 1019–1028, 2001. ISSN 0005-1098. Disponível em: <https://www.sciencedirect.com/science/article/pii/S0005109801000516>. CLARKE, D.; MOHTADI, C.; TUFFS, P. Generalized predictive control—part i. the basic algorithm. Automatica, v. 23, n. 2, p. 137–148, 1987. ISSN 0005-1098. CUNHA, V. M.; SANTOS, T. L. M. Robust nonlinear model predictive control based on nominal predictions with piecewise constant references and bounded disturbances. International Journal of Robust and Nonlinear Control, v. 32, n. 6, p. 3944–3968, 2022. CUTLER, C. R.; RAMAKER, B. L. Dynamic matrix control??a computer control algorithm. Joint Automatic Control Conference, v. 17, p. 72, 1980. DWORAK P., G. J. A. S.; GHOSH, S. Effective use of MPC for dynamic decoupling of MIMO systems. Elektronika ir Elektrotechnika, v. 25, n. 2, p. 3–8, 2019. FALB, P.; WOLOVICH, W. A. Decoupling in the design and synthesis of multivariable control systems. [S.l.], 1967. FERRAMOSCA, A. et al. Mpc for tracking with optimal closed-loop performance. Automatica, v. 45, n. 8, p. 1975–1978, 2009. ISSN 0005-1098. Disponível em:<https://www.sciencedirect.com/science/article/pii/S000510980900212X>. FERRAMOSCA, A. et al. Mpc for tracking zone regions. Journal of Process Control - J PROCESS CONTROL, v. 20, p. 506–516, 04 2010. FERRAMOSCA, A. et al. Robust mpc for tracking zone regions based on nominal predictions. Journal of Process Control, v. 22, n. 10, p. 1966–1974, 2012. ISSN 0959-1524. Disponível em: <https://www.sciencedirect.com/science/article/pii/S0959152412002077>. GAGNON, E.; POMERLEAU, A.; DESBIENS, A. Simplified, ideal or inverted decoupling? ISA Transactions, v. 37, p. 265–276, 1998. GAGNON E., P. A.; DESBIENS, A. Simplified, ideal ou inverted decoupling? ISA Transactions, v. 37, 1998. GARCIA-GABIN, W.; CAMACHO, E. Application of multivariable GPC to a four tank process with unstable transmission zeros. In: Proceedings of the 2002 International Conference on Applications. [S.l.: s.n.], 2002. GARCIA-GABIN, W.; CAMACHO, E. F. Application of multivariable gpc to a four tank process with unstable transmission zeros. In: IEEE. Proceedings of the International Conference on Control Applications. [S.l.], 2002. v. 2, p. 645–650. GILBERT, E.; TAN, K. Linear systems with state and control constraints: the theory and application of maximal output admissible sets. IEEE Transactions on Automatic Control, v. 36, n. 9, p. 1008–1020, 1991. GUPTA, Y. Control of integrating processes using dynamic matrix control. Chemical Engineering Research and Design, v. 76, n. 4, p. 465–470, 1998. ISSN 0263-8762. Process Operations and Control. HERCEG, M. et al. Multi-Parametric Toolbox 3.0. In: Proc. of the European Control Conference. Zürich, Switzerland: [s.n.], 2013. p. 502–510. <http://control.ee.ethz.ch/~mpt>. JOHANSSON, K. The quadruple-tank process: a multivariable laboratory process with an adjustable zero. IEEE Transaction on Control System Technology, v. 8, n. 3, p. 456–465, 2000. JOHANSSON, K. The quadruple-tank process: a multivariable laboratory process with an adjustable zero. IEEE Transaction on Control System Technology, v. 8, n. 3, p. 456–465, 2000. KOLMANOVSKY, I.; GILBERT, E. G. Theory and computation of disturbance invariant sets for discrete-time linear systems. Mathematical problems in engineering, Hindawi, v. 4, n. 4, p. 317–367, 1998. KOUVARITAKIS, B.; CANNON, M. Model predictive control: Classical, robust and stochastic. [S.l.]: Springer, 2015. LIMA, C.; SANTOS, T. Estudo sobre a redução do acoplamento em estratégias de controle preditivo baseado em modelo. In: XI Simpósio Brasileiro de Automação Inteligente. [S.l.: s.n.], 2013. p. Artigo 7701. LIMON, D. et al. Mpc for tracking of piece-wise constant references for constrained linear systems. IFAC Proceedings Volumes, v. 38, n. 1, p. 135–140, 2005. ISSN 1474-6670. 16th IFAC World Congress. Disponível em: <https://www.sciencedirect.com/science/article/pii/S1474667016368951>. LIMON, D. et al. Mpc for tracking piecewise constant references for constrained linear systems. Automatica, v. 44, n. 9, p. 2382–2387, 2008. ISSN 0005-1098. Disponível em: <https://www.sciencedirect.com/science/article/pii/S0005109808001106>. LIMON, D. et al. On the design of robust tube-based MPC for tracking. IFAC Proceedings Volumes, v. 41, n. 2, p. 15333–15338, 2008. ISSN 1474-6670. 17th IFAC World Congress. LIMÓN, D. et al. Robust tube-based MPC for tracking of constrained linear systems with additive disturbances. Journal of Process Control, Elsevier, v. 20, n. 3, p. 248–260, 2010. LIU L., T. S. X. D. Z. T. C. Y.; ZHANG, S. A review of industrial MIMO decoupling control. International Journal of Control, Automation and Systems, v. 17, 2019. MACIEJOWSKI, J. Predictive Control with Constraints. 1st. ed. .: Prentice Hall, 2001. MAYNE, D. Robust and stochastic mpc: Are we going in the right direction? IFAC-PapersOnLine, v. 48, n. 23, p. 1–8, 2015. ISSN 2405-8963. 5th IFAC Conference on Nonlinear Model Predictive Control NMPC 2015. Disponível em: <https://www.sciencedirect.com/science/article/pii/S2405896315025392>. MAYNE, D. et al. Robust output feedback model predictive control of constrained linear systems. Automatica, v. 42, n. 7, p. 1217–1222, 2006. ISSN 0005-1098. Disponível em: <https://www.sciencedirect.com/science/article/pii/S0005109806001221>. MAYNE, D.; SERON, M.; RAKOVIć, S. Robust model predictive control of constrained linear systems with bounded disturbances. Automatica, v. 41, n. 2, p. 219–224, 2005. ISSN 0005-1098. Disponível em: <https://www.sciencedirect.com/science/article/pii/S0005109804002870>. MAYNE D.Q., R. J. R. C.; SCOKAERT, P. Constrained model predictive control: Stability and optimality. Automatica, v. 36, n. 6, p. 789–814, 2000. MIDDLETON, R.; ADAMS, G. Modification of model predictive control to reduce cross-coupling. In: 17th World Congress The International Federation of Automatic Control. [S.l.]: IFAC, 2008. p. 9940–9945. ORDYS, A. W.; CLARKE, D. W. A state-space description for gpc controllers. International Journal of Systems Science, v. 24, p. 1727–1744, 1993. Disponível em: <https://api.semanticscholar.org/CorpusID:121709281>. PAULSON, J. A.; SANTOS, T. L.; MESBAH, A. Mixed stochastic-deterministic tube MPC for offset-free tracking in the presence of plant-model mismatch. Journal of process control, Elsevier, v. 83, p. 102–120, 2019. PEREIRA, G. da F.; FLESCH, R. C. C. Desacoplamento de sistemas multivariáveis não lineares com mpc usando função custo dinâmica. In: Congresso Brasileiro de Automática-CBA. [S.l.: s.n.], 2020. v. 2, n. 1. PEREIRA, G. F.; FLESCH, R. Desacoplamento de sistemas multivariáveis não lineares com MPC usando função custo dinâmica. In: Anais do Congresso Brasileiro de Automática. [S.l.]: SBA, 2020. QIN, J.; BADGWELL, T. An overview of industrial model predictive control technology. AIChE Symposium Series, v. 93, 01 1997. QIN, X.; ZHU, K.; CHAI, T. Robust adaptive decoupling design for generalized predictive control with neural network. In: Proceedings of 35th IEEE Conference on Decision and Control. [S.l.: s.n.], 1996. v. 3, p. 2426–2431. RAKOVIć, S. V. et al. Homothetic tube model predictive control. Automatica, v. 48, n. 8, p. 1631–1638, 2012. ISSN 0005-1098. Disponível em: <https: //www.sciencedirect.com/science/article/pii/S0005109812001768>. RICHALET, J. et al. Algorithmic control of industrial processes. p. 1119–1167, 1976. SANIYE, A.; SULEYMAN, K. Decoupling constrained model predictive control of multi-component packed distillation column. World Applied Sciences Journal, v. 13, n. 3, p. 517–530, 2011. SANTOS, T. Contribuições para o Controle Preditivo com Compensação de Atraso Robusta. Tese (Doutorado) — Universidade Federal de Santa Catarina, 2011. SANTOS, T.; CUNHA, V. Robust mpc for linear systems with bounded disturbances based on admissible equilibria sets. International Journal of Robust and Nonlinear Control, v. 31, n. 7, p. 2690–2711, 2021. SANTOS, T. L.; CUNHA, V. M. Tractable robust mpc for tracking piecewise constant references based on nominal predictions. Journal of Process Control, v. 129, p. 103030, 2023. ISSN 0959-1524. Disponível em: <https://www.sciencedirect.com/science/article/pii/S0959152423001178>. SANTOS, T. L. M. Modified reference tracking mpc for constrained linear systems. International Journal of Systems Science, Taylor & Francis, v. 49, n. 8, p. 1674–1684, 2018. Disponível em: <https://doi.org/10.1080/00207721.2018.1478014>. SCHMITZ U., H. R. A. F.; BARS, R. Decoupling predictive control by error dependent tuning of the weighting factors. ATP Journal PLUS, 2007. SHINSKEY, F. Process Control System: application, design and tuning. 4. ed. New York: McGraw-Hill, 1996. SKOGESTAD, S.; POSTLETHWAITE, I. Multivariable Feedback Control: Analysis and Design. 2. ed. [S.l.]: Wiley, 2005. STRASSBERGER D., M. P.; SERGIYENKO, O. A decoupled MPC for motion control in robotino using a geometric approach. Journal of Physics: Conference Series, v. 659, 2015. TôRRES, L. A. B. Teoria de Estabilidade de Lyapunov. 2019. Março, 2019. Disponível em: <http://www.cpdee.ufmg.br/~torres/wp-content/uploads/2018/02/Estabilidade_Lyapunov.pdf>. Acesso em 5 de Maio de 2024. WANG, Q.-G. Decoupling Control. 1st. ed. German: Springer, 2003. WANG, Q.-G.; HUANG, B.; GUO, X. Auto-tuning of tito decoupling controllers from step tests. ISA Transactions, v. 39, n. 4, p. 407–418, 2000. ISSN 0019-0578. Disponível em: <https://www.sciencedirect.com/science/article/pii/S0019057800000288>. ZABET, K.; HABER, R. Improvement of the decoupling effect of the predictive controllers GPC and PFC by parameter adaptation. In: 18th International Conference on Process Control. [S.l.]: Slovak University of Technology in Bratislava, 2011. p. 419–426. ZERMANI M.A., F. E.; MAMI, A. Decoupling multivariable GPC with reference observation and feedforward compensation method. case study: Neonate incubator. International Journal of Computer Science, v. 9, n. 3, p. 508–515, 2012. ZERMANI M.A., F. E.; MAMI, A. Self-tuning weighting factor to decoupling control for incubator system. International Journal of Information Technology, Control and Automation, v. 2, n. 3, p. 67–83, 2012. ZHANG, J. Improved nonminimal state space model predictive control for multivariable processes using a non-zero-pole decoupling formulation. Industrial Engineering & Chemistry Research, v. 52, n. 3, p. 4874?4880, 2013. ZHANG, R.; GAO, F. An improved decoupling structure based state space MPC design with improved performance. Systems & Control Letters, v. 75, p. 77–83, 2015. ISSN 0167-6911. ZHU, K.; QIN, X.; CHAI, T. A new decoupling design of self-tuning multivariable generalized predictive control. International Journal of Adaptive Control and Signal Processing, v. 13, n. 3, p. 183–196, 1999.
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal da Bahia
dc.publisher.program.fl_str_mv Programa de Pós-Graduação em Engenharia Elétrica (PPGEE) 
dc.publisher.initials.fl_str_mv UFBA
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv Escola Politécnica
publisher.none.fl_str_mv Universidade Federal da Bahia
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFBA
instname:Universidade Federal da Bahia (UFBA)
instacron:UFBA
instname_str Universidade Federal da Bahia (UFBA)
instacron_str UFBA
institution UFBA
reponame_str Repositório Institucional da UFBA
collection Repositório Institucional da UFBA
bitstream.url.fl_str_mv https://repositorio.ufba.br/bitstream/ri/41236/1/Dissertacao%20-%20Rodrigo%20Galv%c3%a3o.pdf
https://repositorio.ufba.br/bitstream/ri/41236/2/license.txt
bitstream.checksum.fl_str_mv b979d831887c72a129f4100a13c630f2
d9b7566281c22d808dbf8f29ff0425c8
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFBA - Universidade Federal da Bahia (UFBA)
repository.mail.fl_str_mv repositorio@ufba.br
_version_ 1847342064569679872