Detecção vsual de caminhos através de aprendizado profundo para a navegação de robôs móveis
| Ano de defesa: | 2025 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | , , , , |
| Tipo de documento: | Dissertação |
| Tipo de acesso: | Acesso aberto |
| Idioma: | por |
| Instituição de defesa: |
Universidade Federal da Bahia
|
| Programa de Pós-Graduação: |
Programa de Pós-Graduação em Engenharia Elétrica (PPGEE)
|
| Departamento: |
Escola Politécnica
|
| País: |
Brasil
|
| Palavras-chave em Português: | |
| Área do conhecimento CNPq: | |
| Link de acesso: | https://repositorio.ufba.br/handle/ri/42173 |
Resumo: | Detectar um caminho a ser seguido por um veículo é uma das tarefas mais importantes na navegação de robôs autônomos. Nos últimos anos, técnicas baseadas em aprendizado profundo têm se destacado em relação aos métodos tradicionais de visão computacional na detecção de caminhos, devido à capacidade das redes neurais de extrair características diretamente dos dados, tornando a detecção mais robusta e precisa em diferentes cenários. Esta dissertação propõe uma abordagem baseada em transferência de aprendizado para resolver o desafio da detecção visual de caminhos na navegação de robôs móveis, utilizando uma rede neural convolucional residual fatorizada. O trabalho traz uma comparação entre o modelo proposto e outras arquiteturas de redes neurais convolucionais, além de um estudo de caso comparativo com um sistema baseado em visão computacional determinística. Os resultados experimentais indicam o potencial do modelo, que se mostra capaz de detectar caminhos com precisão, mesmo na presença de descontinuidades e variações de luminosidade, alcançando um F1 score de 0,9166 e tempo de inferência médio de 6,15 ms. A arquitetura proposta também encontra um bom equilíbrio entre acurácia e eficiência, o que torna o sistema adequado para aplicações de robótica móvel. |
| id |
UFBA-2_f547e527fdce57c254b7fdbfc9ba2b59 |
|---|---|
| oai_identifier_str |
oai:repositorio.ufba.br:ri/42173 |
| network_acronym_str |
UFBA-2 |
| network_name_str |
Repositório Institucional da UFBA |
| repository_id_str |
|
| spelling |
2025-05-29T11:07:51Z2025-05-29T11:07:51Z2025-04-16https://repositorio.ufba.br/handle/ri/42173Detectar um caminho a ser seguido por um veículo é uma das tarefas mais importantes na navegação de robôs autônomos. Nos últimos anos, técnicas baseadas em aprendizado profundo têm se destacado em relação aos métodos tradicionais de visão computacional na detecção de caminhos, devido à capacidade das redes neurais de extrair características diretamente dos dados, tornando a detecção mais robusta e precisa em diferentes cenários. Esta dissertação propõe uma abordagem baseada em transferência de aprendizado para resolver o desafio da detecção visual de caminhos na navegação de robôs móveis, utilizando uma rede neural convolucional residual fatorizada. O trabalho traz uma comparação entre o modelo proposto e outras arquiteturas de redes neurais convolucionais, além de um estudo de caso comparativo com um sistema baseado em visão computacional determinística. Os resultados experimentais indicam o potencial do modelo, que se mostra capaz de detectar caminhos com precisão, mesmo na presença de descontinuidades e variações de luminosidade, alcançando um F1 score de 0,9166 e tempo de inferência médio de 6,15 ms. A arquitetura proposta também encontra um bom equilíbrio entre acurácia e eficiência, o que torna o sistema adequado para aplicações de robótica móvel.Detecting the path that a vehicle should follow is an essential task in autonomous robot navigation. In recent years, deep learning-based approaches have outperformed traditional computer vision techniques in path detection, due to the ability of neural networks to extract features directly from data, making detection more robust and accurate across different scenarios. This work presents a transfer learning-based approach to tackle the problem of visual path detection for mobile robot navigation, using a factorized residual convolutional neural network. The work presents a comparison between the proposed model and other convolutional neural network architectures, as well as a comparative case study with a system based on deterministic computer vision. Experimental results indicate the promise of the proposed model, which is capable of detecting paths even in the presence of discontinuities and variations in lighting, achieving an F1 score of 0.9166 and an average inference time of 6.15 ms. The proposed architecture also achieves a good balance between accuracy and efficiency, making the system suitable for mobile robotics applications.porUniversidade Federal da BahiaPrograma de Pós-Graduação em Engenharia Elétrica (PPGEE) UFBABrasilEscola PolitécnicaMobile roboticsrobotic visiondeep learningconvolutional neural networkstransfer learningCNPQ::ENGENHARIAS::ENGENHARIA ELETRICA::ELETRONICA INDUSTRIAL, SISTEMAS E CONTROLES ELETRONICOS::AUTOMACAO ELETRONICA DE PROCESSOS ELETRICOS E INDUSTRIAISRobótica móvelvisão robóticaaprendizado profundoredes neurais convolucionaistransferência de aprendizadoDetecção vsual de caminhos através de aprendizado profundo para a navegação de robôs móveisDeep learning-based visual path detection for mobile robot navigationMestrado Acadêmicoinfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/publishedVersionConceição, André Gustavo ScolariRibeiro, Tiago TrindadeConceição, André Gustavo ScolariRibeiro, Tiago TrindadeSimas, EduardoSouza, Edmar Egídio Purcino deFreitas, Gustavo Medeiros0009-0006-2253-4195http://lattes.cnpq.br/3804216489119747Almeida, Allan Souzainfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFBAinstname:Universidade Federal da Bahia (UFBA)instacron:UFBAORIGINALAllan Souza Almeida - Dissertação de Mestrado.pdfAllan Souza Almeida - Dissertação de Mestrado.pdfDissertação de Mestradoapplication/pdf12214746https://repositorio.ufba.br/bitstream/ri/42173/1/Allan%20Souza%20Almeida%20-%20Dissertac%cc%a7a%cc%83o%20de%20Mestrado.pdf5d1187dd35e45e297dab73f07a9b5d44MD51open accessLICENSElicense.txtlicense.txttext/plain1720https://repositorio.ufba.br/bitstream/ri/42173/2/license.txtd9b7566281c22d808dbf8f29ff0425c8MD52open accessri/421732025-05-29 08:07:52.259open accessoai:repositorio.ufba.br:ri/42173TElDRU7Dh0EgREUgRElTVFJJQlVJw4fDg08gTsODTy1FWENMVVNJVkEKCkNvbSBhIGFwcmVzZW50YcOnw6NvIGRlc3RhIGxpY2Vuw6dhLCBvIGF1dG9yIG91IHRpdHVsYXIgZG9zIGRpcmVpdG9zIGRlIGF1dG9yIGNvbmNlZGUgYW8gUmVwb3NpdMOzcmlvIEluc3RpdHVjaW9uYWwgbyBkaXJlaXRvIG7Do28tZXhjbHVzaXZvIGRlIHJlcHJvZHV6aXIsIHRyYWR1emlyIChjb25mb3JtZSBkZWZpbmlkbyBhYmFpeG8pIGUvb3UgZGlzdHJpYnVpciBhIHN1YSBwdWJsaWNhw6fDo28gKGluY2x1aW5kbyBvIHJlc3Vtbykgbm8gZm9ybWF0byBpbXByZXNzbyBlL291IGVsZXRyw7RuaWNvIGUgZW0gcXVhbHF1ZXIgbWVpbywgaW5jbHVpbmRvIG9zIGZvcm1hdG9zIMOhdWRpbyBlL291IHbDrWRlby4KCk8gYXV0b3Igb3UgdGl0dWxhciBkb3MgZGlyZWl0b3MgZGUgYXV0b3IgY29uY29yZGEgcXVlIG8gUmVwb3NpdMOzcmlvIHBvZGUsIHNlbSBhbHRlcmFyIG8gY29udGXDumRvLCB0cmFuc3BvciBhIHN1YSBwdWJsaWNhw6fDo28gcGFyYSBxdWFscXVlciBtZWlvIGUvb3UgZm9ybWF0byBwYXJhIGZpbnMgZGUgcHJlc2VydmHDp8OjbywgcG9kZW5kbyBtYW50ZXIgbWFpcyBkZSB1bWEgY8OzcGlhIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrdXAgZSBwcmVzZXJ2YcOnw6NvLiAKCk8gYXV0b3Igb3UgdGl0dWxhciBkb3MgZGlyZWl0b3MgZGUgYXV0b3IgZGVjbGFyYSBxdWUgYSBzdWEgcHVibGljYcOnw6NvIMOpIG9yaWdpbmFsIGUgcXVlIG7Do28sIHF1ZSBzZWphIGRlIHNldSBjb25oZWNpbWVudG8sIGluZnJpbmdlIGRpcmVpdG9zIGF1dG9yYWlzIGRlIG5pbmd1w6ltLgoKQ2FzbyBhIHN1YSBwdWJsaWNhw6fDo28gY29udGVuaGEgbWF0ZXJpYWwgcXVlIG7Do28gcG9zc3VpIGEgdGl0dWxhcmlkYWRlIGRvcyBkaXJlaXRvcyBhdXRvcmFpcywgdm9jw6ogZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIGFvIFJlcG9zaXTDs3JpbyBvcyBkaXJlaXRvcyBhcHJlc2VudGFkb3MgbmVzdGEgbGljZW7Dp2EgZSBxdWUgZXNzZSBtYXRlcmlhbCBkZSBwcm9wcmllZGFkZSBkZSB0ZXJjZWlyb3MgZXN0w6EgY2xhcmFtZW50ZSBpZGVudGlmaWNhZG8gZSByZWNvbmhlY2lkbyBubyB0ZXh0byBvdSBubyBjb250ZcO6ZG8gZGEgcHVibGljYcOnw6NvIG9yYSBkZXBvc2l0YWRhLgoKQ0FTTyBBIFBVQkxJQ0HDh8ODTyBPUkEgREVQT1NJVEFEQSBSRVNVTFRFIERFIFVNIFBBVFJPQ8ONTklPIE9VIEFQT0lPIERFIFVNQSBBR8OKTkNJQSBERSBGT01FTlRPIE9VIE9VVFJPIE9SR0FOSVNNTywgVk9Dw4ogREVDTEFSQSBRVUUgUkVTUEVJVE9VIFRPRE9TIEUgUVVBSVNRVUVSIERJUkVJVE9TIERFIFJFVklTw4NPLCBDT01PIFRBTULDiU0gQVMgREVNQUlTIE9CUklHQcOHw5VFUyBFWElHSURBUyBQT1IgQ09OVFJBVE8gT1UgQUNPUkRPLgoKTyBSZXBvc2l0w7NyaW8gc2UgY29tcHJvbWV0ZSBhIGlkZW50aWZpY2FyLCBjbGFyYW1lbnRlLCBvIChzKSBzZXUocykgbm9tZSAocykgb3UgbyAocykgbm9tZSAocykgZG8gKHMpIGRldGVudG9yIChlcykgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIGRhIHB1YmxpY2HDp8OjbyBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzIGNvbmNlZGlkYXMgcG9yIGVzdGEgbGljZW7Dp2EuCg==Repositório InstitucionalPUBhttps://repositorio.ufba.br/oai/requestrepositorio@ufba.bropendoar:19322025-05-29T11:07:52Repositório Institucional da UFBA - Universidade Federal da Bahia (UFBA)false |
| dc.title.pt_BR.fl_str_mv |
Detecção vsual de caminhos através de aprendizado profundo para a navegação de robôs móveis |
| dc.title.alternative.pt_BR.fl_str_mv |
Deep learning-based visual path detection for mobile robot navigation |
| title |
Detecção vsual de caminhos através de aprendizado profundo para a navegação de robôs móveis |
| spellingShingle |
Detecção vsual de caminhos através de aprendizado profundo para a navegação de robôs móveis Almeida, Allan Souza CNPQ::ENGENHARIAS::ENGENHARIA ELETRICA::ELETRONICA INDUSTRIAL, SISTEMAS E CONTROLES ELETRONICOS::AUTOMACAO ELETRONICA DE PROCESSOS ELETRICOS E INDUSTRIAIS Robótica móvel visão robótica aprendizado profundo redes neurais convolucionais transferência de aprendizado Mobile robotics robotic vision deep learning convolutional neural networks transfer learning |
| title_short |
Detecção vsual de caminhos através de aprendizado profundo para a navegação de robôs móveis |
| title_full |
Detecção vsual de caminhos através de aprendizado profundo para a navegação de robôs móveis |
| title_fullStr |
Detecção vsual de caminhos através de aprendizado profundo para a navegação de robôs móveis |
| title_full_unstemmed |
Detecção vsual de caminhos através de aprendizado profundo para a navegação de robôs móveis |
| title_sort |
Detecção vsual de caminhos através de aprendizado profundo para a navegação de robôs móveis |
| author |
Almeida, Allan Souza |
| author_facet |
Almeida, Allan Souza |
| author_role |
author |
| dc.contributor.advisor1.fl_str_mv |
Conceição, André Gustavo Scolari |
| dc.contributor.advisor-co1.fl_str_mv |
Ribeiro, Tiago Trindade |
| dc.contributor.referee1.fl_str_mv |
Conceição, André Gustavo Scolari |
| dc.contributor.referee2.fl_str_mv |
Ribeiro, Tiago Trindade |
| dc.contributor.referee3.fl_str_mv |
Simas, Eduardo |
| dc.contributor.referee4.fl_str_mv |
Souza, Edmar Egídio Purcino de |
| dc.contributor.referee5.fl_str_mv |
Freitas, Gustavo Medeiros |
| dc.contributor.authorID.fl_str_mv |
0009-0006-2253-4195 |
| dc.contributor.authorLattes.fl_str_mv |
http://lattes.cnpq.br/3804216489119747 |
| dc.contributor.author.fl_str_mv |
Almeida, Allan Souza |
| contributor_str_mv |
Conceição, André Gustavo Scolari Ribeiro, Tiago Trindade Conceição, André Gustavo Scolari Ribeiro, Tiago Trindade Simas, Eduardo Souza, Edmar Egídio Purcino de Freitas, Gustavo Medeiros |
| dc.subject.cnpq.fl_str_mv |
CNPQ::ENGENHARIAS::ENGENHARIA ELETRICA::ELETRONICA INDUSTRIAL, SISTEMAS E CONTROLES ELETRONICOS::AUTOMACAO ELETRONICA DE PROCESSOS ELETRICOS E INDUSTRIAIS |
| topic |
CNPQ::ENGENHARIAS::ENGENHARIA ELETRICA::ELETRONICA INDUSTRIAL, SISTEMAS E CONTROLES ELETRONICOS::AUTOMACAO ELETRONICA DE PROCESSOS ELETRICOS E INDUSTRIAIS Robótica móvel visão robótica aprendizado profundo redes neurais convolucionais transferência de aprendizado Mobile robotics robotic vision deep learning convolutional neural networks transfer learning |
| dc.subject.por.fl_str_mv |
Robótica móvel visão robótica aprendizado profundo redes neurais convolucionais transferência de aprendizado |
| dc.subject.other.pt_BR.fl_str_mv |
Mobile robotics robotic vision deep learning convolutional neural networks transfer learning |
| description |
Detectar um caminho a ser seguido por um veículo é uma das tarefas mais importantes na navegação de robôs autônomos. Nos últimos anos, técnicas baseadas em aprendizado profundo têm se destacado em relação aos métodos tradicionais de visão computacional na detecção de caminhos, devido à capacidade das redes neurais de extrair características diretamente dos dados, tornando a detecção mais robusta e precisa em diferentes cenários. Esta dissertação propõe uma abordagem baseada em transferência de aprendizado para resolver o desafio da detecção visual de caminhos na navegação de robôs móveis, utilizando uma rede neural convolucional residual fatorizada. O trabalho traz uma comparação entre o modelo proposto e outras arquiteturas de redes neurais convolucionais, além de um estudo de caso comparativo com um sistema baseado em visão computacional determinística. Os resultados experimentais indicam o potencial do modelo, que se mostra capaz de detectar caminhos com precisão, mesmo na presença de descontinuidades e variações de luminosidade, alcançando um F1 score de 0,9166 e tempo de inferência médio de 6,15 ms. A arquitetura proposta também encontra um bom equilíbrio entre acurácia e eficiência, o que torna o sistema adequado para aplicações de robótica móvel. |
| publishDate |
2025 |
| dc.date.accessioned.fl_str_mv |
2025-05-29T11:07:51Z |
| dc.date.available.fl_str_mv |
2025-05-29T11:07:51Z |
| dc.date.issued.fl_str_mv |
2025-04-16 |
| dc.type.driver.fl_str_mv |
Mestrado Acadêmico info:eu-repo/semantics/masterThesis |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| format |
masterThesis |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
https://repositorio.ufba.br/handle/ri/42173 |
| url |
https://repositorio.ufba.br/handle/ri/42173 |
| dc.language.iso.fl_str_mv |
por |
| language |
por |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.publisher.none.fl_str_mv |
Universidade Federal da Bahia |
| dc.publisher.program.fl_str_mv |
Programa de Pós-Graduação em Engenharia Elétrica (PPGEE) |
| dc.publisher.initials.fl_str_mv |
UFBA |
| dc.publisher.country.fl_str_mv |
Brasil |
| dc.publisher.department.fl_str_mv |
Escola Politécnica |
| publisher.none.fl_str_mv |
Universidade Federal da Bahia |
| dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFBA instname:Universidade Federal da Bahia (UFBA) instacron:UFBA |
| instname_str |
Universidade Federal da Bahia (UFBA) |
| instacron_str |
UFBA |
| institution |
UFBA |
| reponame_str |
Repositório Institucional da UFBA |
| collection |
Repositório Institucional da UFBA |
| bitstream.url.fl_str_mv |
https://repositorio.ufba.br/bitstream/ri/42173/1/Allan%20Souza%20Almeida%20-%20Dissertac%cc%a7a%cc%83o%20de%20Mestrado.pdf https://repositorio.ufba.br/bitstream/ri/42173/2/license.txt |
| bitstream.checksum.fl_str_mv |
5d1187dd35e45e297dab73f07a9b5d44 d9b7566281c22d808dbf8f29ff0425c8 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
| repository.name.fl_str_mv |
Repositório Institucional da UFBA - Universidade Federal da Bahia (UFBA) |
| repository.mail.fl_str_mv |
repositorio@ufba.br |
| _version_ |
1847342050519810048 |