A irredutibilidade de polinômios e o teorema de Dumas
| Ano de defesa: | 2021 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | |
| Tipo de documento: | Dissertação |
| Tipo de acesso: | Acesso aberto |
| Idioma: | por |
| Instituição de defesa: |
Não Informado pela instituição
|
| Programa de Pós-Graduação: |
Não Informado pela instituição
|
| Departamento: |
Não Informado pela instituição
|
| País: |
Não Informado pela instituição
|
| Palavras-chave em Português: | |
| Link de acesso: | http://www.repositorio.ufc.br/handle/riufc/64637 |
Resumo: | This study begins with an overview of numbers, covering from the classification of rational and irrational, to more special categories such as algebraic and transcendent numbers (only conceptual). Our study is aimed at obtaining – in a practical, comprehensive and efficient way – mechanisms that save us time when it is necessary to classify a certain number in the set of reals. It is in this context that we focus our study, associating a given real number to the root of a polynomial – from which we have the idea of irreducibility linked to the irrationality of a number – and then we can decompose it as a product of polynomials. Thus, we present the methods – Rational Roots Theorem, Eisenstein Criterion and Dumas Criterion – commonly used to assess whether a given polynomial has rational roots or not. |
| id |
UFC-7_090ed1835687f108ea90c7cd88a8a112 |
|---|---|
| oai_identifier_str |
oai:repositorio.ufc.br:riufc/64637 |
| network_acronym_str |
UFC-7 |
| network_name_str |
Repositório Institucional da Universidade Federal do Ceará (UFC) |
| repository_id_str |
|
| spelling |
Barreto, Francisco Danilo AlbuquerqueMaia, José Alberto Duarte2022-03-28T19:11:37Z2022-03-28T19:11:37Z2021BARRETO, Francisco Danilo Albuquerque. A irredutibilidade de polinômios e o teorema de Dumas. 2021. 91 f. Dissertação (Mestrado Profissional em Matemática em Rede Nacional) - Centro de Ciências, Departamento de Matemática, Universidade Federal do Ceará, Fortaleza, 2021.http://www.repositorio.ufc.br/handle/riufc/64637This study begins with an overview of numbers, covering from the classification of rational and irrational, to more special categories such as algebraic and transcendent numbers (only conceptual). Our study is aimed at obtaining – in a practical, comprehensive and efficient way – mechanisms that save us time when it is necessary to classify a certain number in the set of reals. It is in this context that we focus our study, associating a given real number to the root of a polynomial – from which we have the idea of irreducibility linked to the irrationality of a number – and then we can decompose it as a product of polynomials. Thus, we present the methods – Rational Roots Theorem, Eisenstein Criterion and Dumas Criterion – commonly used to assess whether a given polynomial has rational roots or not.Este estudo se inicia com a visão geral de números, abordando desde a classificação de racionais e irracionais, a categorias mais especiais como os números algébricos e os transcendentes (apenas conceitual). Temos como direcionamento de nosso estudo a obtenção – de modo prático, abrangente e eficiente – de mecanismos que nos poupem tempo quando for necessário classificarmos certo número no conjunto dos reais. É nesse âmbito que focamos nosso estudo, associando determinado número real à raiz de um polinômio – de onde temos a ideia de irredutibilidade vinculada a irracionalidade de um número – e daí podemos decompô-lo como produto de polinômios. Assim, apresentamos os métodos – Teorema das Raízes Racionais, Critério de Eisenstein e Critério de Dumas – comumente utilizados para a avaliação se dado polinômio possui ou não raízes racionais.Raiz racionalPolinômiosNúmeros irracionaisIrredutibilidade (matemática)Rational rootPolynomialsIrrational numbersIrreducibility (mathematics)A irredutibilidade de polinômios e o teorema de DumasThe irreducibility of polynomials and Dumas' theoreminfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisporreponame:Repositório Institucional da Universidade Federal do Ceará (UFC)instname:Universidade Federal do Ceará (UFC)instacron:UFCinfo:eu-repo/semantics/openAccessLICENSElicense.txtlicense.txttext/plain; charset=utf-82158http://repositorio.ufc.br/bitstream/riufc/64637/6/license.txte63c6ed4faa81e8b90d2fac75971a7d6MD56ORIGINAL2021_dis_fdabarreto.pdf2021_dis_fdabarreto.pdfapplication/pdf1777949http://repositorio.ufc.br/bitstream/riufc/64637/5/2021_dis_fdabarreto.pdf442166b58d31f618b49a7f6c77cdcd70MD55riufc/646372022-10-24 11:59:27.838oai:repositorio.ufc.br:riufc/64637TElDRU7Dh0EgREUgQVJNQVpFTkFNRU5UTyBFIERJU1RSSUJVScOHw4NPIE7Dg08tRVhDTFVTSVZBIA0KDQpBbyBjb25jb3JkYXIgY29tIGVzdGEgbGljZW7Dp2EsIHZvY8OqKHMpIGF1dG9yKGVzKSBvdSB0aXR1bGFyKGVzKSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGEgb2JyYSBhcXVpIGRlc2NyaXRhIGNvbmNlZGUobSkgw6AgVW5pdmVyc2lkYWRlIEZlZGVyYWwgZG8gQ2VhcsOhLCBnZXN0b3JhIGRvIFJlcG9zaXTDs3JpbyBJbnN0aXR1Y2lvbmFsIGRhIFVGQyAtIFJJL1VGQywgbyBkaXJlaXRvIG7Do28tZXhjbHVzaXZvIGRlIHJlcHJvZHV6aXIsIGNvbnZlcnRlciAoY29tbyBkZWZpbmlkbyBhYmFpeG8pIGUvb3UgZGlzdHJpYnVpciBvIGRvY3VtZW50byBkZXBvc2l0YWRvIGVtIGZvcm1hdG8gaW1wcmVzc28sIGVsZXRyw7RuaWNvIG91IGVtIHF1YWxxdWVyIG91dHJvIG1laW8uIFZvY8OqIGNvbmNvcmRhKG0pIHF1ZSBhIFVuaXZlcnNpZGFkZSBGZWRlcmFsIGRvIENlYXLDoSwgZ2VzdG9yYSBkbyBSZXBvc2l0w7NyaW8gSW5zdGl0dWNpb25hbCBkYSBVRkMgLSBSSS9VRkMsIHBvZGUsIHNlbSBhbHRlcmFyIG8gY29udGXDumRvLCBjb252ZXJ0ZXIgbyBhcnF1aXZvIGRlcG9zaXRhZG8gYSBxdWFscXVlciBtZWlvIG91IGZvcm1hdG8gY29tIGZpbnMgZGUgcHJlc2VydmHDp8Ojby4gVm9jw6oocykgdGFtYsOpbSBjb25jb3JkYShtKSBxdWUgYSBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkbyBDZWFyw6EsIGdlc3RvcmEgZG8gUmVwb3NpdMOzcmlvIEluc3RpdHVjaW9uYWwgZGEgVUZDIC0gUkkvVUZDLCBwb2RlIG1hbnRlciBtYWlzIGRlIHVtYSBjw7NwaWEgZGVzdGUgZGVww7NzaXRvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUvb3UgcHJlc2VydmHDp8Ojby4gVm9jw6ogZGVjbGFyYSBxdWUgYSBhcHJlc2VudGHDp8OjbyBkbyBzZXUgdHJhYmFsaG8gw6kgb3JpZ2luYWwgZSBxdWUgdm9jw6oocykgcG9kZShtKSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcyBuZXN0YSBsaWNlbsOnYS4gVm9jw6ogdGFtYsOpbSBkZWNsYXJhKG0pIHF1ZSBvIGVudmlvIMOpIGRlIHNldSBjb25oZWNpbWVudG8gZSBuw6NvIGluZnJpbmdlIG9zIGRpcmVpdG9zIGF1dG9yYWlzIGRlIG91dHJhIHBlc3NvYSBvdSBpbnN0aXR1acOnw6NvLiBDYXNvIG8gZG9jdW1lbnRvIGEgc2VyIGRlcG9zaXRhZG8gY29udGVuaGEgbWF0ZXJpYWwgcGFyYSBvIHF1YWwgdm9jw6oocykgbsOjbyBkZXTDqW0gYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGRlIGF1dG9yYWlzLCB2b2PDqihzKSBkZWNsYXJhKG0pIHF1ZSBvYnRldmUgYSBwZXJtaXNzw6NvIGlycmVzdHJpdGEgZG8gdGl0dWxhciBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGUgY29uY2VkZXIgw6AgVW5pdmVyc2lkYWRlIEZlZGVyYWwgZG8gQ2VhcsOhLCBnZXN0b3JhIGRvIFJlcG9zaXTDs3JpbyBJbnN0aXR1Y2lvbmFsIGRhIFVGQyAtIFJJL1VGQywgb3MgZGlyZWl0b3MgcmVxdWVyaWRvcyBwb3IgZXN0YSBsaWNlbsOnYSBlIHF1ZSBvcyBtYXRlcmlhaXMgZGUgcHJvcHJpZWRhZGUgZGUgdGVyY2Vpcm9zLCBlc3TDo28gZGV2aWRhbWVudGUgaWRlbnRpZmljYWRvcyBlIHJlY29uaGVjaWRvcyBubyB0ZXh0byBvdSBjb250ZcO6ZG8gZGEgYXByZXNlbnRhw6fDo28uDQogQ0FTTyBPIFRSQUJBTEhPIERFUE9TSVRBRE8gVEVOSEEgU0lETyBGSU5BTkNJQURPIE9VIEFQT0lBRE8gUE9SIFVNIMOTUkfDg08sIFFVRSBOw4NPIEEgSU5TVElUVUnDh8ODTyBERVNURSBSRVBPU0lUw5NSSU86IFZPQ8OKIERFQ0xBUkEgVEVSIENVTVBSSURPIFRPRE9TIE9TIERJUkVJVE9TIERFIFJFVklTw4NPIEUgUVVBSVNRVUVSIE9VVFJBUyBPQlJJR0HDh8OVRVMgUkVRVUVSSURBUyBQRUxPIENPTlRSQVRPIE9VIEFDT1JETy4gDQpPIHJlcG9zaXTDs3JpbyBpZGVudGlmaWNhcsOhIGNsYXJhbWVudGUgbyBzZXUocykgbm9tZShzKSBjb21vIGF1dG9yKGVzKSBvdSB0aXR1bGFyKGVzKSBkbyBkaXJlaXRvIGRlIGF1dG9yKGVzKSBkbyBkb2N1bWVudG8gc3VibWV0aWRvIGUgZGVjbGFyYSBxdWUgbsOjbyBmYXLDoSBxdWFscXVlciBhbHRlcmHDp8OjbyBhbMOpbSBkYXMgcGVybWl0aWRhcyBwb3IgZXN0YSBsaWNlbsOnYS4NClJlcG9zaXTDs3JpbyBJbnN0aXR1Y2lvbmFsIGRhIFVGQy4NCg==Repositório InstitucionalPUBhttp://www.repositorio.ufc.br/ri-oai/requestbu@ufc.br || repositorio@ufc.bropendoar:2022-10-24T14:59:27Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)false |
| dc.title.pt_BR.fl_str_mv |
A irredutibilidade de polinômios e o teorema de Dumas |
| dc.title.en.pt_BR.fl_str_mv |
The irreducibility of polynomials and Dumas' theorem |
| title |
A irredutibilidade de polinômios e o teorema de Dumas |
| spellingShingle |
A irredutibilidade de polinômios e o teorema de Dumas Barreto, Francisco Danilo Albuquerque Raiz racional Polinômios Números irracionais Irredutibilidade (matemática) Rational root Polynomials Irrational numbers Irreducibility (mathematics) |
| title_short |
A irredutibilidade de polinômios e o teorema de Dumas |
| title_full |
A irredutibilidade de polinômios e o teorema de Dumas |
| title_fullStr |
A irredutibilidade de polinômios e o teorema de Dumas |
| title_full_unstemmed |
A irredutibilidade de polinômios e o teorema de Dumas |
| title_sort |
A irredutibilidade de polinômios e o teorema de Dumas |
| author |
Barreto, Francisco Danilo Albuquerque |
| author_facet |
Barreto, Francisco Danilo Albuquerque |
| author_role |
author |
| dc.contributor.author.fl_str_mv |
Barreto, Francisco Danilo Albuquerque |
| dc.contributor.advisor1.fl_str_mv |
Maia, José Alberto Duarte |
| contributor_str_mv |
Maia, José Alberto Duarte |
| dc.subject.por.fl_str_mv |
Raiz racional Polinômios Números irracionais Irredutibilidade (matemática) Rational root Polynomials Irrational numbers Irreducibility (mathematics) |
| topic |
Raiz racional Polinômios Números irracionais Irredutibilidade (matemática) Rational root Polynomials Irrational numbers Irreducibility (mathematics) |
| description |
This study begins with an overview of numbers, covering from the classification of rational and irrational, to more special categories such as algebraic and transcendent numbers (only conceptual). Our study is aimed at obtaining – in a practical, comprehensive and efficient way – mechanisms that save us time when it is necessary to classify a certain number in the set of reals. It is in this context that we focus our study, associating a given real number to the root of a polynomial – from which we have the idea of irreducibility linked to the irrationality of a number – and then we can decompose it as a product of polynomials. Thus, we present the methods – Rational Roots Theorem, Eisenstein Criterion and Dumas Criterion – commonly used to assess whether a given polynomial has rational roots or not. |
| publishDate |
2021 |
| dc.date.issued.fl_str_mv |
2021 |
| dc.date.accessioned.fl_str_mv |
2022-03-28T19:11:37Z |
| dc.date.available.fl_str_mv |
2022-03-28T19:11:37Z |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
| format |
masterThesis |
| status_str |
publishedVersion |
| dc.identifier.citation.fl_str_mv |
BARRETO, Francisco Danilo Albuquerque. A irredutibilidade de polinômios e o teorema de Dumas. 2021. 91 f. Dissertação (Mestrado Profissional em Matemática em Rede Nacional) - Centro de Ciências, Departamento de Matemática, Universidade Federal do Ceará, Fortaleza, 2021. |
| dc.identifier.uri.fl_str_mv |
http://www.repositorio.ufc.br/handle/riufc/64637 |
| identifier_str_mv |
BARRETO, Francisco Danilo Albuquerque. A irredutibilidade de polinômios e o teorema de Dumas. 2021. 91 f. Dissertação (Mestrado Profissional em Matemática em Rede Nacional) - Centro de Ciências, Departamento de Matemática, Universidade Federal do Ceará, Fortaleza, 2021. |
| url |
http://www.repositorio.ufc.br/handle/riufc/64637 |
| dc.language.iso.fl_str_mv |
por |
| language |
por |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.source.none.fl_str_mv |
reponame:Repositório Institucional da Universidade Federal do Ceará (UFC) instname:Universidade Federal do Ceará (UFC) instacron:UFC |
| instname_str |
Universidade Federal do Ceará (UFC) |
| instacron_str |
UFC |
| institution |
UFC |
| reponame_str |
Repositório Institucional da Universidade Federal do Ceará (UFC) |
| collection |
Repositório Institucional da Universidade Federal do Ceará (UFC) |
| bitstream.url.fl_str_mv |
http://repositorio.ufc.br/bitstream/riufc/64637/6/license.txt http://repositorio.ufc.br/bitstream/riufc/64637/5/2021_dis_fdabarreto.pdf |
| bitstream.checksum.fl_str_mv |
e63c6ed4faa81e8b90d2fac75971a7d6 442166b58d31f618b49a7f6c77cdcd70 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
| repository.name.fl_str_mv |
Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC) |
| repository.mail.fl_str_mv |
bu@ufc.br || repositorio@ufc.br |
| _version_ |
1847793245126393856 |