PIPE: Um preditor de tempos de viagem usando fluxo contínuo de trajetórias

Detalhes bibliográficos
Ano de defesa: 2018
Autor(a) principal: Nascimento, Samara Martins
Orientador(a): Macêdo, José Antônio Fernandes de
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.repositorio.ufc.br/handle/riufc/38808
Resumo: Traffic patterns or traffic anomalies can be understood from analyzes related to moving objects. These analyzes can be performed both in historical context, as in real time, allowing you to see about traffic, capturing or detecting its changes, dynamically, events or incidents as they happen. Within this context, trajectory data are of fundamental importance in the characterization of the behavior of moving objects. However, computing models that can predict the travel time of objects, almost in real time, is considered a large challenge. The main impediment is related to the need to present traffic-related changes when new continuous flows of trajectories are received. In addition, despite its great applicability, the use of trajectory data is not excluded from problems, which justifies its extensive exploration in the current literature, presenting studies on the processing of large volumes of data, handling of errors and inaccuracies and the construction of predictive models that can, for example, estimate the total time to reach a destination from a given origin. This work tries to face the challenge of constructing a new model of prediction, which is able to compute results about the travel time of moving objects, when they are reported continuous flows of trajectories. Within this context, this research proposes the prediction model called PIPE: A Predictor of Travel Times using Continuous Trajectory Flow, which can be used to estimate the travel time of a moving object to travel through a specific street segment given one hour of the day. Thus, this thesis seeks to answer, in general, two most important research questions: (i) Is it possible to create a prediction model, to estimate the travel time of the objects, considering a set of trajectories?; and also, (ii) How to construct a model that performs incremental maintenance, given the receipt of continuous flows of trajectories, and generate, as a result, prediction functions in real time?. The PIPE model is responsible for generating a prediction function and updating it, given the dynamic reception of the data. The experimental evaluation of this work is conducted for two sets of data real. The experimental results, which validated the proposed solution, show analyzes related to the processing time to construct and update the derivable function, and also discuss the results related to the accuracy of the solution.
id UFC-7_0cbe5db3dd3ca2b26dbd3204ef43b0c5
oai_identifier_str oai:repositorio.ufc.br:riufc/38808
network_acronym_str UFC-7
network_name_str Repositório Institucional da Universidade Federal do Ceará (UFC)
repository_id_str
spelling Nascimento, Samara MartinsMachado, Javam de CastroMacêdo, José Antônio Fernandes de2019-01-16T18:58:59Z2019-01-16T18:58:59Z2018NASCIMENTO, Samara Martins. PIPE: Um preditor de tempos de viagem usando fluxo contínuo de trajetórias. 2018. 107 f. Tese (Doutorado em Ciência da Computação) - Universidade Federal do Ceará, Fortaleza, 2018.http://www.repositorio.ufc.br/handle/riufc/38808Traffic patterns or traffic anomalies can be understood from analyzes related to moving objects. These analyzes can be performed both in historical context, as in real time, allowing you to see about traffic, capturing or detecting its changes, dynamically, events or incidents as they happen. Within this context, trajectory data are of fundamental importance in the characterization of the behavior of moving objects. However, computing models that can predict the travel time of objects, almost in real time, is considered a large challenge. The main impediment is related to the need to present traffic-related changes when new continuous flows of trajectories are received. In addition, despite its great applicability, the use of trajectory data is not excluded from problems, which justifies its extensive exploration in the current literature, presenting studies on the processing of large volumes of data, handling of errors and inaccuracies and the construction of predictive models that can, for example, estimate the total time to reach a destination from a given origin. This work tries to face the challenge of constructing a new model of prediction, which is able to compute results about the travel time of moving objects, when they are reported continuous flows of trajectories. Within this context, this research proposes the prediction model called PIPE: A Predictor of Travel Times using Continuous Trajectory Flow, which can be used to estimate the travel time of a moving object to travel through a specific street segment given one hour of the day. Thus, this thesis seeks to answer, in general, two most important research questions: (i) Is it possible to create a prediction model, to estimate the travel time of the objects, considering a set of trajectories?; and also, (ii) How to construct a model that performs incremental maintenance, given the receipt of continuous flows of trajectories, and generate, as a result, prediction functions in real time?. The PIPE model is responsible for generating a prediction function and updating it, given the dynamic reception of the data. The experimental evaluation of this work is conducted for two sets of data real. The experimental results, which validated the proposed solution, show analyzes related to the processing time to construct and update the derivable function, and also discuss the results related to the accuracy of the solution.Os padrões de movimento ou anomalias no tráfego podem ser compreendidos a partir de análises relacionadas aos objetos móveis. Essas análises podem ser realizadas tanto no contexto histórico, quanto em tempo real, permitindo fazer observações acerca do tráfego, capturando suas mudanças ou detectando, de forma dinâmica, eventos ou incidentes à medida que acontecem. Dentro desse contexto, os dados de trajetória são de importância fundamental na caracterização do comportamento de objetos móveis. No entanto, computar modelos que consigam predizer o tempo de viagem dos objetos, quase em tempo real, é considerado um grande desafio. O principal impedimento está relacionado com a necessidade de apresentar as mudanças relacionadas ao tráfego, quando são recebidos novos fluxos contínuos de trajetórias. Além disso, apesar de sua enorme aplicabilidade, a utilização dos dados de trajetória não se exclui de problemas, o que justifica sua exploração extensiva pela literatura atual, apresentando estudos a respeito do processamento de grandes volumes de dados, tratamento de erros e imprecisões e a construção de modelos preditivos, que consigam, por exemplo, estimar o tempo total para alcançar um destino a partir de uma determinada origem. Este trabalho busca enfrentar o desafio de construir um novo modelo de predição, que consiga computar resultados acerca do tempo de viagem dos objetos móveis, quando reportados fluxos contínuos de trajetórias. Dentro desse contexto, este trabalho de pesquisa propõe o modelo de predição chamado PIPE: Um Preditor de Tempos de Viagem usando Fluxo Contínuo de Trajetórias, que pode ser utilizado para estimar o tempo de viagem de um objeto móvel para percorrer um segmento de rua específico, dada uma hora do dia. Assim, esta tese busca responder, de forma geral, duas grandes questões de pesquisa: (i) É possível criar um modelo de predição, para estimar o tempo de viagem dos objetos, considerando um conjunto de trajetórias?; e, ainda, (ii) Como construir um modelo que realize manutenções incrementais, dado o recebimento de fluxos contínuos de trajetórias, e gere, como resultado, funções de predição em tempo real?. O modelo PIPE é responsável por gerar uma função de predição e atualizá-la, dado o recebimento dinâmico dos dados. A avaliação experimental deste trabalho é conduzida para dois conjuntos de dados reais. Os resultados experimentais, que validaram o modelo proposto, mostram análises relacionadas ao tempo de processamento para construir e atualizar a função diferenciável e, também, discorrem acerca dos resultados relacionados à acurácia da solução.PreditorTrajetóriasFluxos contínuos de trajetóriasPIPE: Um preditor de tempos de viagem usando fluxo contínuo de trajetóriasPIPE: A predictor of travel times using continuous trajectory flowinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisporreponame:Repositório Institucional da Universidade Federal do Ceará (UFC)instname:Universidade Federal do Ceará (UFC)instacron:UFCinfo:eu-repo/semantics/openAccessORIGINAL2018_tese_smnascimento.pdf2018_tese_smnascimento.pdfapplication/pdf1999211http://repositorio.ufc.br/bitstream/riufc/38808/3/2018_tese_smnascimento.pdf9d20a1fe3028ea1cabac82e3d8872887MD53LICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://repositorio.ufc.br/bitstream/riufc/38808/4/license.txt8a4605be74aa9ea9d79846c1fba20a33MD54riufc/388082019-12-17 13:34:01.923oai:repositorio.ufc.br:riufc/38808Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório InstitucionalPUBhttp://www.repositorio.ufc.br/ri-oai/requestbu@ufc.br || repositorio@ufc.bropendoar:2019-12-17T16:34:01Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)false
dc.title.pt_BR.fl_str_mv PIPE: Um preditor de tempos de viagem usando fluxo contínuo de trajetórias
dc.title.en.pt_BR.fl_str_mv PIPE: A predictor of travel times using continuous trajectory flow
title PIPE: Um preditor de tempos de viagem usando fluxo contínuo de trajetórias
spellingShingle PIPE: Um preditor de tempos de viagem usando fluxo contínuo de trajetórias
Nascimento, Samara Martins
Preditor
Trajetórias
Fluxos contínuos de trajetórias
title_short PIPE: Um preditor de tempos de viagem usando fluxo contínuo de trajetórias
title_full PIPE: Um preditor de tempos de viagem usando fluxo contínuo de trajetórias
title_fullStr PIPE: Um preditor de tempos de viagem usando fluxo contínuo de trajetórias
title_full_unstemmed PIPE: Um preditor de tempos de viagem usando fluxo contínuo de trajetórias
title_sort PIPE: Um preditor de tempos de viagem usando fluxo contínuo de trajetórias
author Nascimento, Samara Martins
author_facet Nascimento, Samara Martins
author_role author
dc.contributor.co-advisor.none.fl_str_mv Machado, Javam de Castro
dc.contributor.author.fl_str_mv Nascimento, Samara Martins
dc.contributor.advisor1.fl_str_mv Macêdo, José Antônio Fernandes de
contributor_str_mv Macêdo, José Antônio Fernandes de
dc.subject.por.fl_str_mv Preditor
Trajetórias
Fluxos contínuos de trajetórias
topic Preditor
Trajetórias
Fluxos contínuos de trajetórias
description Traffic patterns or traffic anomalies can be understood from analyzes related to moving objects. These analyzes can be performed both in historical context, as in real time, allowing you to see about traffic, capturing or detecting its changes, dynamically, events or incidents as they happen. Within this context, trajectory data are of fundamental importance in the characterization of the behavior of moving objects. However, computing models that can predict the travel time of objects, almost in real time, is considered a large challenge. The main impediment is related to the need to present traffic-related changes when new continuous flows of trajectories are received. In addition, despite its great applicability, the use of trajectory data is not excluded from problems, which justifies its extensive exploration in the current literature, presenting studies on the processing of large volumes of data, handling of errors and inaccuracies and the construction of predictive models that can, for example, estimate the total time to reach a destination from a given origin. This work tries to face the challenge of constructing a new model of prediction, which is able to compute results about the travel time of moving objects, when they are reported continuous flows of trajectories. Within this context, this research proposes the prediction model called PIPE: A Predictor of Travel Times using Continuous Trajectory Flow, which can be used to estimate the travel time of a moving object to travel through a specific street segment given one hour of the day. Thus, this thesis seeks to answer, in general, two most important research questions: (i) Is it possible to create a prediction model, to estimate the travel time of the objects, considering a set of trajectories?; and also, (ii) How to construct a model that performs incremental maintenance, given the receipt of continuous flows of trajectories, and generate, as a result, prediction functions in real time?. The PIPE model is responsible for generating a prediction function and updating it, given the dynamic reception of the data. The experimental evaluation of this work is conducted for two sets of data real. The experimental results, which validated the proposed solution, show analyzes related to the processing time to construct and update the derivable function, and also discuss the results related to the accuracy of the solution.
publishDate 2018
dc.date.issued.fl_str_mv 2018
dc.date.accessioned.fl_str_mv 2019-01-16T18:58:59Z
dc.date.available.fl_str_mv 2019-01-16T18:58:59Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv NASCIMENTO, Samara Martins. PIPE: Um preditor de tempos de viagem usando fluxo contínuo de trajetórias. 2018. 107 f. Tese (Doutorado em Ciência da Computação) - Universidade Federal do Ceará, Fortaleza, 2018.
dc.identifier.uri.fl_str_mv http://www.repositorio.ufc.br/handle/riufc/38808
identifier_str_mv NASCIMENTO, Samara Martins. PIPE: Um preditor de tempos de viagem usando fluxo contínuo de trajetórias. 2018. 107 f. Tese (Doutorado em Ciência da Computação) - Universidade Federal do Ceará, Fortaleza, 2018.
url http://www.repositorio.ufc.br/handle/riufc/38808
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv reponame:Repositório Institucional da Universidade Federal do Ceará (UFC)
instname:Universidade Federal do Ceará (UFC)
instacron:UFC
instname_str Universidade Federal do Ceará (UFC)
instacron_str UFC
institution UFC
reponame_str Repositório Institucional da Universidade Federal do Ceará (UFC)
collection Repositório Institucional da Universidade Federal do Ceará (UFC)
bitstream.url.fl_str_mv http://repositorio.ufc.br/bitstream/riufc/38808/3/2018_tese_smnascimento.pdf
http://repositorio.ufc.br/bitstream/riufc/38808/4/license.txt
bitstream.checksum.fl_str_mv 9d20a1fe3028ea1cabac82e3d8872887
8a4605be74aa9ea9d79846c1fba20a33
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)
repository.mail.fl_str_mv bu@ufc.br || repositorio@ufc.br
_version_ 1847793236237615104