Evaluating accessibility in native Android interfaces generated by Large Language Models
| Ano de defesa: | 2025 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | |
| Tipo de documento: | Dissertação |
| Tipo de acesso: | Acesso aberto |
| Idioma: | eng |
| Instituição de defesa: |
Não Informado pela instituição
|
| Programa de Pós-Graduação: |
Não Informado pela instituição
|
| Departamento: |
Não Informado pela instituição
|
| País: |
Não Informado pela instituição
|
| Área do conhecimento CNPq: | |
| Link de acesso: | http://repositorio.ufc.br/handle/riufc/81252 |
Resumo: | Recent advances in artificial intelligence, particularly in large language models (LLMs), have opened up new possibilities for automating software development tasks, including code generation for mobile applications. This study explores the capabilities of LLMs, such as ChatGPT, in improving the accessibility of native Android applications. It examines whether LLM-generated code conforms to established accessibility standards, taking into account different screen layouts, prompt formulations, and interface generation strategies. Four studies were conducted to evaluate the accessibility of seven types of mobile interfaces. The first study analyzed the accessibility of mobile application screens created using a variety of layout strategies. In contrast, the second study focused specifically on Jetpack Compose and compared the output of several LLMs. The third study examined whether creating screens with English prompts affected accessibility. Finally, the fourth study used an LLM code assistant. A total of 702 accessibility issues were identified in all studies. Jetpack Compose consistently outperformed other layout approaches, and English prompts resulted in fewer issues. Interestingly, prompts that explicitly requested accessibility often resulted in more errors, suggesting that LLMs face challenges in correctly interpreting and implementing accessibility requirements. These findings highlight the importance of refining prompt strategies and LLM outputs to reduce the risk of accessibility errors in AI-generated mobile app code. |
| id |
UFC-7_0d214a79355a7157ca68b3f830b2096c |
|---|---|
| oai_identifier_str |
oai:repositorio.ufc.br:riufc/81252 |
| network_acronym_str |
UFC-7 |
| network_name_str |
Repositório Institucional da Universidade Federal do Ceará (UFC) |
| repository_id_str |
|
| spelling |
Rabelo, Daniel Mesquita FeijóCarvalho, Windson Viana de2025-06-11T13:46:06Z2025-06-11T13:46:06Z2025RABELO, Daniel Mesquita Feijó. Evaluating accessibility in native Android interfaces generated by Large Language Models. 2025. 82 f. Dissertação (Mestrado em Ciência da Computação) - Universidade Federal do Ceará, Fortaleza, 2025.http://repositorio.ufc.br/handle/riufc/81252Recent advances in artificial intelligence, particularly in large language models (LLMs), have opened up new possibilities for automating software development tasks, including code generation for mobile applications. This study explores the capabilities of LLMs, such as ChatGPT, in improving the accessibility of native Android applications. It examines whether LLM-generated code conforms to established accessibility standards, taking into account different screen layouts, prompt formulations, and interface generation strategies. Four studies were conducted to evaluate the accessibility of seven types of mobile interfaces. The first study analyzed the accessibility of mobile application screens created using a variety of layout strategies. In contrast, the second study focused specifically on Jetpack Compose and compared the output of several LLMs. The third study examined whether creating screens with English prompts affected accessibility. Finally, the fourth study used an LLM code assistant. A total of 702 accessibility issues were identified in all studies. Jetpack Compose consistently outperformed other layout approaches, and English prompts resulted in fewer issues. Interestingly, prompts that explicitly requested accessibility often resulted in more errors, suggesting that LLMs face challenges in correctly interpreting and implementing accessibility requirements. These findings highlight the importance of refining prompt strategies and LLM outputs to reduce the risk of accessibility errors in AI-generated mobile app code.Os avanços recentes na inteligência artificial, particularmente em modelos de linguagem de grande escala (LLMs), abriram novas possibilidades para automatizar tarefas de desenvolvimento de software, incluindo a geração de código para aplicativos móveis. Este estudo explora as capacidades dos LLMs, como o ChatGPT, em melhorar a acessibilidade de aplicativos Android nativos. É examinado se o código gerado por LLMs está em conformidade com os padrões estabelecidos de acessibilidade, levando em consideração diferentes layouts de tela, formulações de prompts e estratégias de geração de interfaces. Quatro estudos foram realizados para avaliar a acessibilidade de sete tipos de interfaces móveis. O primeiro estudo analisou a acessibilidade das telas de aplicativos móveis criadas usando uma variedade de estratégias de layout. Em contraste, o segundo estudo focou especificamente no Jetpack Compose e comparou os resultados gerados por vários LLMs. O terceiro estudo examinou se a criação de telas com prompts em inglês afetava a acessibilidade. Por fim, o quarto estudo utilizou um LLM assistente de código. Um total de 702 problemas de acessibilidade foram identificados ao longo de todos os estudos. O Jetpack Compose superou consistentemente outras abordagens de layout, e os prompts em inglês resultaram em menos problemas. Curiosamente, prompts que solicitavam explicitamente a acessibilidade frequentemente resultaram em mais erros, sugerindo que os LLMs enfrentam desafios ao interpretar e implementar corretamente os requisitos de acessibilidade. Esses achados destacam a importância de refinar as estratégias de prompt e os resultados gerados pelos LLMs para reduzir o risco de erros de acessibilidade no código de aplicativos móveis gerado por IA.Evaluating accessibility in native Android interfaces generated by Large Language ModelsEvaluating accessibility in native Android interfaces generated by Large Language Modelsinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisModelos de linguagem de grande escalaAplicações móveisAcessibilidadeAcessibilidade móvelLarge language modelsMobile appsAccessibilityMobile accessibilityCNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAOinfo:eu-repo/semantics/openAccessengreponame:Repositório Institucional da Universidade Federal do Ceará (UFC)instname:Universidade Federal do Ceará (UFC)instacron:UFChttps://orcid.org/0000-0002-3363-5411http://lattes.cnpq.br/0515865295289113https://orcid.org/0000-0002-8627-0823http://lattes.cnpq.br/17447329993363752025-06-11ORIGINAL2025_dis_dmfrabelo.pdf2025_dis_dmfrabelo.pdfapplication/pdf2313336http://repositorio.ufc.br/bitstream/riufc/81252/3/2025_dis_dmfrabelo.pdf3da791fb354dc31cf08f0268c00c55e3MD53LICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://repositorio.ufc.br/bitstream/riufc/81252/4/license.txt8a4605be74aa9ea9d79846c1fba20a33MD54riufc/812522025-06-11 10:46:07.302oai:repositorio.ufc.br:riufc/81252Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório InstitucionalPUBhttp://www.repositorio.ufc.br/ri-oai/requestbu@ufc.br || repositorio@ufc.bropendoar:2025-06-11T13:46:07Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)false |
| dc.title.pt_BR.fl_str_mv |
Evaluating accessibility in native Android interfaces generated by Large Language Models |
| dc.title.en.pt_BR.fl_str_mv |
Evaluating accessibility in native Android interfaces generated by Large Language Models |
| title |
Evaluating accessibility in native Android interfaces generated by Large Language Models |
| spellingShingle |
Evaluating accessibility in native Android interfaces generated by Large Language Models Rabelo, Daniel Mesquita Feijó CNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO Modelos de linguagem de grande escala Aplicações móveis Acessibilidade Acessibilidade móvel Large language models Mobile apps Accessibility Mobile accessibility |
| title_short |
Evaluating accessibility in native Android interfaces generated by Large Language Models |
| title_full |
Evaluating accessibility in native Android interfaces generated by Large Language Models |
| title_fullStr |
Evaluating accessibility in native Android interfaces generated by Large Language Models |
| title_full_unstemmed |
Evaluating accessibility in native Android interfaces generated by Large Language Models |
| title_sort |
Evaluating accessibility in native Android interfaces generated by Large Language Models |
| author |
Rabelo, Daniel Mesquita Feijó |
| author_facet |
Rabelo, Daniel Mesquita Feijó |
| author_role |
author |
| dc.contributor.author.fl_str_mv |
Rabelo, Daniel Mesquita Feijó |
| dc.contributor.advisor1.fl_str_mv |
Carvalho, Windson Viana de |
| contributor_str_mv |
Carvalho, Windson Viana de |
| dc.subject.cnpq.fl_str_mv |
CNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO |
| topic |
CNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO Modelos de linguagem de grande escala Aplicações móveis Acessibilidade Acessibilidade móvel Large language models Mobile apps Accessibility Mobile accessibility |
| dc.subject.ptbr.pt_BR.fl_str_mv |
Modelos de linguagem de grande escala Aplicações móveis Acessibilidade Acessibilidade móvel |
| dc.subject.en.pt_BR.fl_str_mv |
Large language models Mobile apps Accessibility Mobile accessibility |
| description |
Recent advances in artificial intelligence, particularly in large language models (LLMs), have opened up new possibilities for automating software development tasks, including code generation for mobile applications. This study explores the capabilities of LLMs, such as ChatGPT, in improving the accessibility of native Android applications. It examines whether LLM-generated code conforms to established accessibility standards, taking into account different screen layouts, prompt formulations, and interface generation strategies. Four studies were conducted to evaluate the accessibility of seven types of mobile interfaces. The first study analyzed the accessibility of mobile application screens created using a variety of layout strategies. In contrast, the second study focused specifically on Jetpack Compose and compared the output of several LLMs. The third study examined whether creating screens with English prompts affected accessibility. Finally, the fourth study used an LLM code assistant. A total of 702 accessibility issues were identified in all studies. Jetpack Compose consistently outperformed other layout approaches, and English prompts resulted in fewer issues. Interestingly, prompts that explicitly requested accessibility often resulted in more errors, suggesting that LLMs face challenges in correctly interpreting and implementing accessibility requirements. These findings highlight the importance of refining prompt strategies and LLM outputs to reduce the risk of accessibility errors in AI-generated mobile app code. |
| publishDate |
2025 |
| dc.date.accessioned.fl_str_mv |
2025-06-11T13:46:06Z |
| dc.date.available.fl_str_mv |
2025-06-11T13:46:06Z |
| dc.date.issued.fl_str_mv |
2025 |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
| format |
masterThesis |
| status_str |
publishedVersion |
| dc.identifier.citation.fl_str_mv |
RABELO, Daniel Mesquita Feijó. Evaluating accessibility in native Android interfaces generated by Large Language Models. 2025. 82 f. Dissertação (Mestrado em Ciência da Computação) - Universidade Federal do Ceará, Fortaleza, 2025. |
| dc.identifier.uri.fl_str_mv |
http://repositorio.ufc.br/handle/riufc/81252 |
| identifier_str_mv |
RABELO, Daniel Mesquita Feijó. Evaluating accessibility in native Android interfaces generated by Large Language Models. 2025. 82 f. Dissertação (Mestrado em Ciência da Computação) - Universidade Federal do Ceará, Fortaleza, 2025. |
| url |
http://repositorio.ufc.br/handle/riufc/81252 |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.source.none.fl_str_mv |
reponame:Repositório Institucional da Universidade Federal do Ceará (UFC) instname:Universidade Federal do Ceará (UFC) instacron:UFC |
| instname_str |
Universidade Federal do Ceará (UFC) |
| instacron_str |
UFC |
| institution |
UFC |
| reponame_str |
Repositório Institucional da Universidade Federal do Ceará (UFC) |
| collection |
Repositório Institucional da Universidade Federal do Ceará (UFC) |
| bitstream.url.fl_str_mv |
http://repositorio.ufc.br/bitstream/riufc/81252/3/2025_dis_dmfrabelo.pdf http://repositorio.ufc.br/bitstream/riufc/81252/4/license.txt |
| bitstream.checksum.fl_str_mv |
3da791fb354dc31cf08f0268c00c55e3 8a4605be74aa9ea9d79846c1fba20a33 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
| repository.name.fl_str_mv |
Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC) |
| repository.mail.fl_str_mv |
bu@ufc.br || repositorio@ufc.br |
| _version_ |
1847793367850680320 |