Linha divisórias de águas e fraturas de caminhos ótimos em meios desordenados

Detalhes bibliográficos
Ano de defesa: 2012
Autor(a) principal: Oliveira, Erneson Alves de
Orientador(a): Andrade Júnior, José Soares de
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.repositorio.ufc.br/handle/riufc/9656
Resumo: In the nature all material breaks down depending on the value of stress applied. Depending of kind, shape and other characteristics of the material or even the stress point, we can produce distinct {it fractures}, like a tear on stressed sheet of paper, a congestion in the network traffic of a city or cracked soils by arid climates. Such fractures are economically related with the extraction of oil from the underground reservoirs, with the extraction of heat and steam from geothermal reservoirs and even the preservation of the groundwater. Phenomenologically, we can imagine that fracture processes are the ones that divides the system in two or more parts, destroying its global connectivity. In this context, we built two computer models to study, characterize and elucidate the behavior of natural phenomena similar to fracture processes. In the first model, we explored concepts of invasion percolation applied to description of the irregular geometry of the ridge of mountains that divides hydrographic basins. We shown robustly the self-similar nature of the watershed lines, with fractal exponent $D=1.21pm0.001$ for artificial uncorrelated landscapes and, $D=1.10pm0.01$ and $D=1.11pm0.01$, for real correlated landscapes of the Swiss Alps and the Himalaya Mountains, respectively. In the second model, we used optimal paths that are cracked sequentialy providing the collapse of the system, producing a percolating fracture. In the two-dimensional case, we considered artificial uncorrelated landscapes in the weak and strong disorder. In both regimes, we obtained the same fractal exponent for the backbone fracture, $D=1.22pm0.01$. For artificial correlated landscapes, we found that the fractal dimension of the backbone decreases with increasing of the {it Hurst} exponent. In the three-dimensional case, we considered only artificial uncorrelated landscapes with strong disorder. In this case, we obtained a percolating surface with fractal dimension $D=2.47pm0.05$ that cracks the system in two parts.
id UFC-7_0da9a766c9055868a57b7dd605a2eef2
oai_identifier_str oai:repositorio.ufc.br:riufc/9656
network_acronym_str UFC-7
network_name_str Repositório Institucional da Universidade Federal do Ceará (UFC)
repository_id_str
spelling Oliveira, Erneson Alves deAndrade Júnior, José Soares de2014-11-03T20:11:42Z2014-11-03T20:11:42Z2012OLIVEIRA, E. A. Linha divisórias de águas e fraturas de caminhos ótimos em meios desordenados. 2012. 123 f. Tese (Doutorado em Física) - Centro de Ciências, Universidade Federal do Ceará, Fortaleza, 2012.http://www.repositorio.ufc.br/handle/riufc/9656In the nature all material breaks down depending on the value of stress applied. Depending of kind, shape and other characteristics of the material or even the stress point, we can produce distinct {it fractures}, like a tear on stressed sheet of paper, a congestion in the network traffic of a city or cracked soils by arid climates. Such fractures are economically related with the extraction of oil from the underground reservoirs, with the extraction of heat and steam from geothermal reservoirs and even the preservation of the groundwater. Phenomenologically, we can imagine that fracture processes are the ones that divides the system in two or more parts, destroying its global connectivity. In this context, we built two computer models to study, characterize and elucidate the behavior of natural phenomena similar to fracture processes. In the first model, we explored concepts of invasion percolation applied to description of the irregular geometry of the ridge of mountains that divides hydrographic basins. We shown robustly the self-similar nature of the watershed lines, with fractal exponent $D=1.21pm0.001$ for artificial uncorrelated landscapes and, $D=1.10pm0.01$ and $D=1.11pm0.01$, for real correlated landscapes of the Swiss Alps and the Himalaya Mountains, respectively. In the second model, we used optimal paths that are cracked sequentialy providing the collapse of the system, producing a percolating fracture. In the two-dimensional case, we considered artificial uncorrelated landscapes in the weak and strong disorder. In both regimes, we obtained the same fractal exponent for the backbone fracture, $D=1.22pm0.01$. For artificial correlated landscapes, we found that the fractal dimension of the backbone decreases with increasing of the {it Hurst} exponent. In the three-dimensional case, we considered only artificial uncorrelated landscapes with strong disorder. In this case, we obtained a percolating surface with fractal dimension $D=2.47pm0.05$ that cracks the system in two parts.Na natureza todo material se quebra dependendo do valor de tensão aplicada. Dependendo do tipo, forma e outras características do material ou até mesmo do ponto de tensão, podemos produzir {it fraturas} distintas, como um rasgo em uma folha de papel tensionada, um congestionamento na rede de trânsito de uma cidade ou solos rachados por climas áridos. Tais fraturas se relacionam economicamente com a extração de petróleo de reservatórios subterrâneos, com a extração de calor e vapor de reservatórios geotérmicos e até mesmo com a preservação dos lençóis freáticos. Fenomenologicamente, podemos imaginar que processos de fraturas são aqueles que dividem o sistema em duas ou mais partes, destruindo sua conectividade global. Nesse contexto, construímos dois modelos computacionais para estudar, caracterizar e elucidar o comportamento de fenômenos naturais semelhantes aos processos de fraturas. No primeiro modelo, exploramos conceitos de percolação invasiva aplicados à descrição da geometria irregular das cumeeiras de montanhas que dividem bacias hidrográficas. Mostramos de forma robusta o carácter auto-similar das linhas de divisores de águas, com expoente fractal $D=1.21pm0.001$ para paisagens artificiais não-correlacionadas e, $D=1.10pm0.01$ e $D=1.11pm0.01$ para paisagens correlacionadas reais dos Alpes Suíços e das Montanhas do Himalaia, respectivamente. No segundo modelo, utilizamos caminhos ótimos que são sequencialmente interrompidos, levando ao colapso do sistema, produzindo uma fratura percolante. No caso bidimensional, consideramos paisagens artificiais não-correlacionadas com desordem fraca e forte. Em ambos os regimes obtivemos o mesmo expoente fractal para o esqueleto da fratura, $D=1.22pm0.01$. Para paisagens artificiais correlacionadas, encontramos que a dimensão fractal do esqueleto da fratura decresce com o aumento do expoente de {it Hurst}. No caso tridimensional, consideramos apenas paisagens não-correlacionadas artificiais com desordem forte. Nesse caso, obtivemos uma superfície percolante com dimensão fractal $D=2.47pm0.05$ que fratura o sistema em duas partes.Física estatísticaFractaisPercolaçãoStatistical PhysicsFractalsPercolationLinha divisórias de águas e fraturas de caminhos ótimos em meios desordenadosinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisporreponame:Repositório Institucional da Universidade Federal do Ceará (UFC)instname:Universidade Federal do Ceará (UFC)instacron:UFCinfo:eu-repo/semantics/openAccessORIGINAL2012_tese_eaoliveira.pdf2012_tese_eaoliveira.pdfapplication/pdf18712063http://repositorio.ufc.br/bitstream/riufc/9656/1/2012_tese_eaoliveira.pdf4955bd8140f2c8bca266f8de55700a24MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81786http://repositorio.ufc.br/bitstream/riufc/9656/2/license.txt8c4401d3d14722a7ca2d07c782a1aab3MD52riufc/96562019-07-31 08:44:06.781oai:repositorio.ufc.br:riufc/9656w4kgbmVjZXNzw6FyaW8gY29uY29yZGFyIGNvbSBhIGxpY2Vuw6dhIGRlIGRpc3RyaWJ1acOnw6NvIG7Do28tZXhjbHVzaXZhLAphbnRlcyBxdWUgbyBkb2N1bWVudG8gcG9zc2EgYXBhcmVjZXIgbm8gUmVwb3NpdMOzcmlvLiBQb3IgZmF2b3IsIGxlaWEgYQpsaWNlbsOnYSBhdGVudGFtZW50ZS4gQ2FzbyBuZWNlc3NpdGUgZGUgYWxndW0gZXNjbGFyZWNpbWVudG8gZW50cmUgZW0KY29udGF0byBhdHJhdsOpcyBkZTogcmVwb3NpdG9yaW9AdWZjLmJyIG91ICg4NSkzMzY2LTk1MDguCgpMSUNFTsOHQSBERSBESVNUUklCVUnDh8ODTyBOw4NPLUVYQ0xVU0lWQQoKQW8gYXNzaW5hciBlIGVudHJlZ2FyIGVzdGEgbGljZW7Dp2EsIG8vYSBTci4vU3JhLiAoYXV0b3Igb3UgZGV0ZW50b3IgZG9zIGRpcmVpdG9zIGRlIGF1dG9yKToKCmEpIENvbmNlZGUgw6AgVW5pdmVyc2lkYWRlIEZlZGVyYWwgZG8gQ2VhcsOhIG8gZGlyZWl0byBuw6NvLWV4Y2x1c2l2byBkZQpyZXByb2R1emlyLCBjb252ZXJ0ZXIgKGNvbW8gZGVmaW5pZG8gYWJhaXhvKSwgY29tdW5pY2FyIGUvb3UKZGlzdHJpYnVpciBvIGRvY3VtZW50byBlbnRyZWd1ZSAoaW5jbHVpbmRvIG8gcmVzdW1vL2Fic3RyYWN0KSBlbQpmb3JtYXRvIGRpZ2l0YWwgb3UgaW1wcmVzc28gZSBlbSBxdWFscXVlciBtZWlvLgoKYikgRGVjbGFyYSBxdWUgbyBkb2N1bWVudG8gZW50cmVndWUgw6kgc2V1IHRyYWJhbGhvIG9yaWdpbmFsLCBlIHF1ZQpkZXTDqW0gbyBkaXJlaXRvIGRlIGNvbmNlZGVyIG9zIGRpcmVpdG9zIGNvbnRpZG9zIG5lc3RhIGxpY2Vuw6dhLiBEZWNsYXJhIHRhbWLDqW0gcXVlIGEgZW50cmVnYSBkbyBkb2N1bWVudG8gbsOjbyBpbmZyaW5nZSwgdGFudG8gcXVhbnRvIGxoZSDDqSBwb3Nzw612ZWwgc2FiZXIsIG9zIGRpcmVpdG9zIGRlIHF1YWxxdWVyIG91dHJhIHBlc3NvYSBvdSBlbnRpZGFkZS4KCmMpIFNlIG8gZG9jdW1lbnRvIGVudHJlZ3VlIGNvbnTDqW0gbWF0ZXJpYWwgZG8gcXVhbCBuw6NvIGRldMOpbSBvcwpkaXJlaXRvcyBkZSBhdXRvciwgZGVjbGFyYSBxdWUgb2J0ZXZlIGF1dG9yaXphw6fDo28gZG8gZGV0ZW50b3IgZG9zCmRpcmVpdG9zIGRlIGF1dG9yIHBhcmEgY29uY2VkZXIgw6AgVW5pdmVyc2lkYWRlIEZlZGVyYWwgZG8gQ2VhcsOhIG9zIGRpcmVpdG9zIHJlcXVlcmlkb3MgcG9yIGVzdGEgbGljZW7Dp2EsIGUgcXVlIGVzc2UgbWF0ZXJpYWwgY3Vqb3MgZGlyZWl0b3Mgc8OjbyBkZSB0ZXJjZWlyb3MgZXN0w6EgY2xhcmFtZW50ZSBpZGVudGlmaWNhZG8gZSByZWNvbmhlY2lkbyBubyB0ZXh0byBvdSBjb250ZcO6ZG8gZG8gZG9jdW1lbnRvIGVudHJlZ3VlLgoKU2UgbyBkb2N1bWVudG8gZW50cmVndWUgw6kgYmFzZWFkbyBlbSB0cmFiYWxobyBmaW5hbmNpYWRvIG91IGFwb2lhZG8KcG9yIG91dHJhIGluc3RpdHVpw6fDo28gcXVlIG7Do28gYSBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkbyBDZWFyw6EsIGRlY2xhcmEgcXVlIGN1bXByaXUgcXVhaXNxdWVyIG9icmlnYcOnw7VlcyBleGlnaWRhcyBwZWxvIHJlc3BlY3Rpdm8gY29udHJhdG8gb3UKYWNvcmRvLgoKQSBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkbyBDZWFyw6EgaWRlbnRpZmljYXLDoSBjbGFyYW1lbnRlIG8ocykgc2V1IChzKSBub21lIChzKSBjb21vIG8gKHMpIGF1dG9yIChlcykgb3UgZGV0ZW50b3IgKGVzKSBkb3MgZGlyZWl0b3MgZG8gZG9jdW1lbnRvIGVudHJlZ3VlLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIHBhcmEgYWzDqW0gZGFzIHBlcm1pdGlkYXMgcG9yIGVzdGEgbGljZW7Dp2EuCg==Repositório InstitucionalPUBhttp://www.repositorio.ufc.br/ri-oai/requestbu@ufc.br || repositorio@ufc.bropendoar:2019-07-31T11:44:06Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)false
dc.title.pt_BR.fl_str_mv Linha divisórias de águas e fraturas de caminhos ótimos em meios desordenados
title Linha divisórias de águas e fraturas de caminhos ótimos em meios desordenados
spellingShingle Linha divisórias de águas e fraturas de caminhos ótimos em meios desordenados
Oliveira, Erneson Alves de
Física estatística
Fractais
Percolação
Statistical Physics
Fractals
Percolation
title_short Linha divisórias de águas e fraturas de caminhos ótimos em meios desordenados
title_full Linha divisórias de águas e fraturas de caminhos ótimos em meios desordenados
title_fullStr Linha divisórias de águas e fraturas de caminhos ótimos em meios desordenados
title_full_unstemmed Linha divisórias de águas e fraturas de caminhos ótimos em meios desordenados
title_sort Linha divisórias de águas e fraturas de caminhos ótimos em meios desordenados
author Oliveira, Erneson Alves de
author_facet Oliveira, Erneson Alves de
author_role author
dc.contributor.author.fl_str_mv Oliveira, Erneson Alves de
dc.contributor.advisor1.fl_str_mv Andrade Júnior, José Soares de
contributor_str_mv Andrade Júnior, José Soares de
dc.subject.por.fl_str_mv Física estatística
Fractais
Percolação
Statistical Physics
Fractals
Percolation
topic Física estatística
Fractais
Percolação
Statistical Physics
Fractals
Percolation
description In the nature all material breaks down depending on the value of stress applied. Depending of kind, shape and other characteristics of the material or even the stress point, we can produce distinct {it fractures}, like a tear on stressed sheet of paper, a congestion in the network traffic of a city or cracked soils by arid climates. Such fractures are economically related with the extraction of oil from the underground reservoirs, with the extraction of heat and steam from geothermal reservoirs and even the preservation of the groundwater. Phenomenologically, we can imagine that fracture processes are the ones that divides the system in two or more parts, destroying its global connectivity. In this context, we built two computer models to study, characterize and elucidate the behavior of natural phenomena similar to fracture processes. In the first model, we explored concepts of invasion percolation applied to description of the irregular geometry of the ridge of mountains that divides hydrographic basins. We shown robustly the self-similar nature of the watershed lines, with fractal exponent $D=1.21pm0.001$ for artificial uncorrelated landscapes and, $D=1.10pm0.01$ and $D=1.11pm0.01$, for real correlated landscapes of the Swiss Alps and the Himalaya Mountains, respectively. In the second model, we used optimal paths that are cracked sequentialy providing the collapse of the system, producing a percolating fracture. In the two-dimensional case, we considered artificial uncorrelated landscapes in the weak and strong disorder. In both regimes, we obtained the same fractal exponent for the backbone fracture, $D=1.22pm0.01$. For artificial correlated landscapes, we found that the fractal dimension of the backbone decreases with increasing of the {it Hurst} exponent. In the three-dimensional case, we considered only artificial uncorrelated landscapes with strong disorder. In this case, we obtained a percolating surface with fractal dimension $D=2.47pm0.05$ that cracks the system in two parts.
publishDate 2012
dc.date.issued.fl_str_mv 2012
dc.date.accessioned.fl_str_mv 2014-11-03T20:11:42Z
dc.date.available.fl_str_mv 2014-11-03T20:11:42Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv OLIVEIRA, E. A. Linha divisórias de águas e fraturas de caminhos ótimos em meios desordenados. 2012. 123 f. Tese (Doutorado em Física) - Centro de Ciências, Universidade Federal do Ceará, Fortaleza, 2012.
dc.identifier.uri.fl_str_mv http://www.repositorio.ufc.br/handle/riufc/9656
identifier_str_mv OLIVEIRA, E. A. Linha divisórias de águas e fraturas de caminhos ótimos em meios desordenados. 2012. 123 f. Tese (Doutorado em Física) - Centro de Ciências, Universidade Federal do Ceará, Fortaleza, 2012.
url http://www.repositorio.ufc.br/handle/riufc/9656
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv reponame:Repositório Institucional da Universidade Federal do Ceará (UFC)
instname:Universidade Federal do Ceará (UFC)
instacron:UFC
instname_str Universidade Federal do Ceará (UFC)
instacron_str UFC
institution UFC
reponame_str Repositório Institucional da Universidade Federal do Ceará (UFC)
collection Repositório Institucional da Universidade Federal do Ceará (UFC)
bitstream.url.fl_str_mv http://repositorio.ufc.br/bitstream/riufc/9656/1/2012_tese_eaoliveira.pdf
http://repositorio.ufc.br/bitstream/riufc/9656/2/license.txt
bitstream.checksum.fl_str_mv 4955bd8140f2c8bca266f8de55700a24
8c4401d3d14722a7ca2d07c782a1aab3
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)
repository.mail.fl_str_mv bu@ufc.br || repositorio@ufc.br
_version_ 1847793331344506880