Sólitons de Ricci gradiente shrinking
| Ano de defesa: | 2020 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | |
| Tipo de documento: | Dissertação |
| Tipo de acesso: | Acesso aberto |
| Idioma: | por |
| Instituição de defesa: |
Não Informado pela instituição
|
| Programa de Pós-Graduação: |
Não Informado pela instituição
|
| Departamento: |
Não Informado pela instituição
|
| País: |
Não Informado pela instituição
|
| Palavras-chave em Português: | |
| Link de acesso: | http://www.repositorio.ufc.br/handle/riufc/62542 |
Resumo: | The main purpose of this work is to study the geometry of noncompact gradient shrinking Ricci solitons. Ricci solitons are self-similar solutions of the Ricci flow, which appear as singularities of the Ricci flow. We present a proof to the growth estimate of the potential function of a complete noncompact gradient shrinking Ricci soliton. In addition, we present that such solitons have at most polynomial volume growth. Both results were proved originally by Huai-Dong Cao and Detang Zhou in 2010. |
| id |
UFC-7_10df55a41681407bb0daa588493b2e43 |
|---|---|
| oai_identifier_str |
oai:repositorio.ufc.br:riufc/62542 |
| network_acronym_str |
UFC-7 |
| network_name_str |
Repositório Institucional da Universidade Federal do Ceará (UFC) |
| repository_id_str |
|
| spelling |
Gondim, Antônio Mateus BarretoRibeiro Júnior, Ernani de Sousa2021-11-26T21:11:00Z2021-11-26T21:11:00Z2020-07-28GONDIM, Antônio Mateus Barreto. Sólitons de Ricci gradiente shrinking. 2020. 49 f. Dissertação (Mestrado Acadêmico em Matemática) – Centro de Ciências, Universidade Federal do Ceará, Fortaleza, 2020.http://www.repositorio.ufc.br/handle/riufc/62542The main purpose of this work is to study the geometry of noncompact gradient shrinking Ricci solitons. Ricci solitons are self-similar solutions of the Ricci flow, which appear as singularities of the Ricci flow. We present a proof to the growth estimate of the potential function of a complete noncompact gradient shrinking Ricci soliton. In addition, we present that such solitons have at most polynomial volume growth. Both results were proved originally by Huai-Dong Cao and Detang Zhou in 2010.Neste trabalho, temos como objetivo principal estudar a geometria dos sólitons de Ricci gradiente shrinking completos e não compactos. Sólitons de Ricci gradiente são soluções auto-similares do fluxo de Ricci e aparecem como singularidades do fluxo. Apresentaremos uma prova para a estimativa de crescimento da função potencial de um sóliton de Ricci gradiente shrinking completo e não compacto. Além disso, mostraremos que tais sólitons têm crescimento de volume no máximo polinomial. Ambos os resultados foram provados originalmente por Huai-Dong Cao e Detang Zhou em 2010.Sóliton de RicciFluxo de RicciEstimativa de volumeRicci's solitonRicci flowVolume estimationSólitons de Ricci gradiente shrinkingRicci solitons gradient shrinkinginfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisporreponame:Repositório Institucional da Universidade Federal do Ceará (UFC)instname:Universidade Federal do Ceará (UFC)instacron:UFCinfo:eu-repo/semantics/openAccessLICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://repositorio.ufc.br/bitstream/riufc/62542/4/license.txt8a4605be74aa9ea9d79846c1fba20a33MD54ORIGINAL2020_dis_ambgondim.pdf2020_dis_ambgondim.pdfdissertaçao antonio mateusapplication/pdf706519http://repositorio.ufc.br/bitstream/riufc/62542/3/2020_dis_ambgondim.pdfc5bd1eb886f194e390a0bc4dce551e59MD53riufc/625422021-11-26 18:11:00.727oai:repositorio.ufc.br:riufc/62542Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório InstitucionalPUBhttp://www.repositorio.ufc.br/ri-oai/requestbu@ufc.br || repositorio@ufc.bropendoar:2021-11-26T21:11Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)false |
| dc.title.pt_BR.fl_str_mv |
Sólitons de Ricci gradiente shrinking |
| dc.title.en.pt_BR.fl_str_mv |
Ricci solitons gradient shrinking |
| title |
Sólitons de Ricci gradiente shrinking |
| spellingShingle |
Sólitons de Ricci gradiente shrinking Gondim, Antônio Mateus Barreto Sóliton de Ricci Fluxo de Ricci Estimativa de volume Ricci's soliton Ricci flow Volume estimation |
| title_short |
Sólitons de Ricci gradiente shrinking |
| title_full |
Sólitons de Ricci gradiente shrinking |
| title_fullStr |
Sólitons de Ricci gradiente shrinking |
| title_full_unstemmed |
Sólitons de Ricci gradiente shrinking |
| title_sort |
Sólitons de Ricci gradiente shrinking |
| author |
Gondim, Antônio Mateus Barreto |
| author_facet |
Gondim, Antônio Mateus Barreto |
| author_role |
author |
| dc.contributor.author.fl_str_mv |
Gondim, Antônio Mateus Barreto |
| dc.contributor.advisor1.fl_str_mv |
Ribeiro Júnior, Ernani de Sousa |
| contributor_str_mv |
Ribeiro Júnior, Ernani de Sousa |
| dc.subject.por.fl_str_mv |
Sóliton de Ricci Fluxo de Ricci Estimativa de volume Ricci's soliton Ricci flow Volume estimation |
| topic |
Sóliton de Ricci Fluxo de Ricci Estimativa de volume Ricci's soliton Ricci flow Volume estimation |
| description |
The main purpose of this work is to study the geometry of noncompact gradient shrinking Ricci solitons. Ricci solitons are self-similar solutions of the Ricci flow, which appear as singularities of the Ricci flow. We present a proof to the growth estimate of the potential function of a complete noncompact gradient shrinking Ricci soliton. In addition, we present that such solitons have at most polynomial volume growth. Both results were proved originally by Huai-Dong Cao and Detang Zhou in 2010. |
| publishDate |
2020 |
| dc.date.issued.fl_str_mv |
2020-07-28 |
| dc.date.accessioned.fl_str_mv |
2021-11-26T21:11:00Z |
| dc.date.available.fl_str_mv |
2021-11-26T21:11:00Z |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
| format |
masterThesis |
| status_str |
publishedVersion |
| dc.identifier.citation.fl_str_mv |
GONDIM, Antônio Mateus Barreto. Sólitons de Ricci gradiente shrinking. 2020. 49 f. Dissertação (Mestrado Acadêmico em Matemática) – Centro de Ciências, Universidade Federal do Ceará, Fortaleza, 2020. |
| dc.identifier.uri.fl_str_mv |
http://www.repositorio.ufc.br/handle/riufc/62542 |
| identifier_str_mv |
GONDIM, Antônio Mateus Barreto. Sólitons de Ricci gradiente shrinking. 2020. 49 f. Dissertação (Mestrado Acadêmico em Matemática) – Centro de Ciências, Universidade Federal do Ceará, Fortaleza, 2020. |
| url |
http://www.repositorio.ufc.br/handle/riufc/62542 |
| dc.language.iso.fl_str_mv |
por |
| language |
por |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.source.none.fl_str_mv |
reponame:Repositório Institucional da Universidade Federal do Ceará (UFC) instname:Universidade Federal do Ceará (UFC) instacron:UFC |
| instname_str |
Universidade Federal do Ceará (UFC) |
| instacron_str |
UFC |
| institution |
UFC |
| reponame_str |
Repositório Institucional da Universidade Federal do Ceará (UFC) |
| collection |
Repositório Institucional da Universidade Federal do Ceará (UFC) |
| bitstream.url.fl_str_mv |
http://repositorio.ufc.br/bitstream/riufc/62542/4/license.txt http://repositorio.ufc.br/bitstream/riufc/62542/3/2020_dis_ambgondim.pdf |
| bitstream.checksum.fl_str_mv |
8a4605be74aa9ea9d79846c1fba20a33 c5bd1eb886f194e390a0bc4dce551e59 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
| repository.name.fl_str_mv |
Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC) |
| repository.mail.fl_str_mv |
bu@ufc.br || repositorio@ufc.br |
| _version_ |
1847793038399635456 |