Exportação concluída — 

Sólitons de Ricci gradiente shrinking

Detalhes bibliográficos
Ano de defesa: 2020
Autor(a) principal: Gondim, Antônio Mateus Barreto
Orientador(a): Ribeiro Júnior, Ernani de Sousa
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.repositorio.ufc.br/handle/riufc/62542
Resumo: The main purpose of this work is to study the geometry of noncompact gradient shrinking Ricci solitons. Ricci solitons are self-similar solutions of the Ricci flow, which appear as singularities of the Ricci flow. We present a proof to the growth estimate of the potential function of a complete noncompact gradient shrinking Ricci soliton. In addition, we present that such solitons have at most polynomial volume growth. Both results were proved originally by Huai-Dong Cao and Detang Zhou in 2010.
id UFC-7_10df55a41681407bb0daa588493b2e43
oai_identifier_str oai:repositorio.ufc.br:riufc/62542
network_acronym_str UFC-7
network_name_str Repositório Institucional da Universidade Federal do Ceará (UFC)
repository_id_str
spelling Gondim, Antônio Mateus BarretoRibeiro Júnior, Ernani de Sousa2021-11-26T21:11:00Z2021-11-26T21:11:00Z2020-07-28GONDIM, Antônio Mateus Barreto. Sólitons de Ricci gradiente shrinking. 2020. 49 f. Dissertação (Mestrado Acadêmico em Matemática) – Centro de Ciências, Universidade Federal do Ceará, Fortaleza, 2020.http://www.repositorio.ufc.br/handle/riufc/62542The main purpose of this work is to study the geometry of noncompact gradient shrinking Ricci solitons. Ricci solitons are self-similar solutions of the Ricci flow, which appear as singularities of the Ricci flow. We present a proof to the growth estimate of the potential function of a complete noncompact gradient shrinking Ricci soliton. In addition, we present that such solitons have at most polynomial volume growth. Both results were proved originally by Huai-Dong Cao and Detang Zhou in 2010.Neste trabalho, temos como objetivo principal estudar a geometria dos sólitons de Ricci gradiente shrinking completos e não compactos. Sólitons de Ricci gradiente são soluções auto-similares do fluxo de Ricci e aparecem como singularidades do fluxo. Apresentaremos uma prova para a estimativa de crescimento da função potencial de um sóliton de Ricci gradiente shrinking completo e não compacto. Além disso, mostraremos que tais sólitons têm crescimento de volume no máximo polinomial. Ambos os resultados foram provados originalmente por Huai-Dong Cao e Detang Zhou em 2010.Sóliton de RicciFluxo de RicciEstimativa de volumeRicci's solitonRicci flowVolume estimationSólitons de Ricci gradiente shrinkingRicci solitons gradient shrinkinginfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisporreponame:Repositório Institucional da Universidade Federal do Ceará (UFC)instname:Universidade Federal do Ceará (UFC)instacron:UFCinfo:eu-repo/semantics/openAccessLICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://repositorio.ufc.br/bitstream/riufc/62542/4/license.txt8a4605be74aa9ea9d79846c1fba20a33MD54ORIGINAL2020_dis_ambgondim.pdf2020_dis_ambgondim.pdfdissertaçao antonio mateusapplication/pdf706519http://repositorio.ufc.br/bitstream/riufc/62542/3/2020_dis_ambgondim.pdfc5bd1eb886f194e390a0bc4dce551e59MD53riufc/625422021-11-26 18:11:00.727oai:repositorio.ufc.br:riufc/62542Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório InstitucionalPUBhttp://www.repositorio.ufc.br/ri-oai/requestbu@ufc.br || repositorio@ufc.bropendoar:2021-11-26T21:11Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)false
dc.title.pt_BR.fl_str_mv Sólitons de Ricci gradiente shrinking
dc.title.en.pt_BR.fl_str_mv Ricci solitons gradient shrinking
title Sólitons de Ricci gradiente shrinking
spellingShingle Sólitons de Ricci gradiente shrinking
Gondim, Antônio Mateus Barreto
Sóliton de Ricci
Fluxo de Ricci
Estimativa de volume
Ricci's soliton
Ricci flow
Volume estimation
title_short Sólitons de Ricci gradiente shrinking
title_full Sólitons de Ricci gradiente shrinking
title_fullStr Sólitons de Ricci gradiente shrinking
title_full_unstemmed Sólitons de Ricci gradiente shrinking
title_sort Sólitons de Ricci gradiente shrinking
author Gondim, Antônio Mateus Barreto
author_facet Gondim, Antônio Mateus Barreto
author_role author
dc.contributor.author.fl_str_mv Gondim, Antônio Mateus Barreto
dc.contributor.advisor1.fl_str_mv Ribeiro Júnior, Ernani de Sousa
contributor_str_mv Ribeiro Júnior, Ernani de Sousa
dc.subject.por.fl_str_mv Sóliton de Ricci
Fluxo de Ricci
Estimativa de volume
Ricci's soliton
Ricci flow
Volume estimation
topic Sóliton de Ricci
Fluxo de Ricci
Estimativa de volume
Ricci's soliton
Ricci flow
Volume estimation
description The main purpose of this work is to study the geometry of noncompact gradient shrinking Ricci solitons. Ricci solitons are self-similar solutions of the Ricci flow, which appear as singularities of the Ricci flow. We present a proof to the growth estimate of the potential function of a complete noncompact gradient shrinking Ricci soliton. In addition, we present that such solitons have at most polynomial volume growth. Both results were proved originally by Huai-Dong Cao and Detang Zhou in 2010.
publishDate 2020
dc.date.issued.fl_str_mv 2020-07-28
dc.date.accessioned.fl_str_mv 2021-11-26T21:11:00Z
dc.date.available.fl_str_mv 2021-11-26T21:11:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv GONDIM, Antônio Mateus Barreto. Sólitons de Ricci gradiente shrinking. 2020. 49 f. Dissertação (Mestrado Acadêmico em Matemática) – Centro de Ciências, Universidade Federal do Ceará, Fortaleza, 2020.
dc.identifier.uri.fl_str_mv http://www.repositorio.ufc.br/handle/riufc/62542
identifier_str_mv GONDIM, Antônio Mateus Barreto. Sólitons de Ricci gradiente shrinking. 2020. 49 f. Dissertação (Mestrado Acadêmico em Matemática) – Centro de Ciências, Universidade Federal do Ceará, Fortaleza, 2020.
url http://www.repositorio.ufc.br/handle/riufc/62542
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv reponame:Repositório Institucional da Universidade Federal do Ceará (UFC)
instname:Universidade Federal do Ceará (UFC)
instacron:UFC
instname_str Universidade Federal do Ceará (UFC)
instacron_str UFC
institution UFC
reponame_str Repositório Institucional da Universidade Federal do Ceará (UFC)
collection Repositório Institucional da Universidade Federal do Ceará (UFC)
bitstream.url.fl_str_mv http://repositorio.ufc.br/bitstream/riufc/62542/4/license.txt
http://repositorio.ufc.br/bitstream/riufc/62542/3/2020_dis_ambgondim.pdf
bitstream.checksum.fl_str_mv 8a4605be74aa9ea9d79846c1fba20a33
c5bd1eb886f194e390a0bc4dce551e59
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)
repository.mail.fl_str_mv bu@ufc.br || repositorio@ufc.br
_version_ 1847793038399635456