Uso de imagens Sentinel para estimativa do estoque de carbono e biomassa acima do solo no bioma Caatinga

Detalhes bibliográficos
Ano de defesa: 2021
Autor(a) principal: Lima, Maria Maiany Paiva
Orientador(a): Costa, Carlos Alexandre Gomes
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.repositorio.ufc.br/handle/riufc/58011
Resumo: Biomass is a vital natural resource for the functioning of the biosphere, its quantification and monitoring are necessary for better planning and management of use. The methods based on remote sensing (SR) data to quantify it provide a synoptic view and they are applicable into large and inaccessible areas, of which performance depends on the characteristics of the sensor and target. Therefore, the objective was to evaluate the carbon stock and aboveground biomass in the strata of the Caatinga, a Seasonally Dry Tropical Forest (FTSS), using SR data and data obtained in the field. The methodology was divided into three stages: i) determination of biomass and carbon stock in situ; (ii) analysis based on remote sensing data from the MSI/Sentinel-2 sensor and the SAR-C/Sentinel-1; (iii) and analysis of the relationship between field and SR data. The relationship was accessed by means of multiple linear regression generating empirical models for obtaining biomass and carbon stock, and based on these models, the mapping of these parameters was carried out. The biomass showed a strong relationship with the diameter of the tree stems and as for the SR data, the best predictors were the red-edge bands and their derived indexes. As for the models for estimating woody biomass, the one based on images of the rainy season showed a better performance than the one using images of the dry season, whose adjusted coefficients were 0.78 and 0.53 respectively. But both resulted in an adequate spatialization of the biomass of according to the use of the soil and the different physiognomies of vegetation found in the area. As for herbaceous biomass, the best model presented an adjusted determination coefficient equal to 0.54 with homogeneous spatialization and generic identification of preserved and anthropized areas. Therefore, the generated models were able to predict the herbaceous and woody biomass for any season in the FTSS area.
id UFC-7_23441afc2f9a798e623fe96f48d6e8e6
oai_identifier_str oai:repositorio.ufc.br:riufc/58011
network_acronym_str UFC-7
network_name_str Repositório Institucional da Universidade Federal do Ceará (UFC)
repository_id_str
spelling Lima, Maria Maiany PaivaAraújo, Isabel Cristina da SilvaCosta, Carlos Alexandre Gomes2021-04-27T17:48:55Z2021-04-27T17:48:55Z2021Lima, Maria Maiany Paiva. Uso de imagens Sentinel para estimativa do estoque de carbono e biomassa acima do solo no bioma Caatinga. 107 f. Dissertação (Mestrado em Engenharia Agrícola) - Universidade Federal do Ceará, Fortaleza, 2021.http://www.repositorio.ufc.br/handle/riufc/58011Biomass is a vital natural resource for the functioning of the biosphere, its quantification and monitoring are necessary for better planning and management of use. The methods based on remote sensing (SR) data to quantify it provide a synoptic view and they are applicable into large and inaccessible areas, of which performance depends on the characteristics of the sensor and target. Therefore, the objective was to evaluate the carbon stock and aboveground biomass in the strata of the Caatinga, a Seasonally Dry Tropical Forest (FTSS), using SR data and data obtained in the field. The methodology was divided into three stages: i) determination of biomass and carbon stock in situ; (ii) analysis based on remote sensing data from the MSI/Sentinel-2 sensor and the SAR-C/Sentinel-1; (iii) and analysis of the relationship between field and SR data. The relationship was accessed by means of multiple linear regression generating empirical models for obtaining biomass and carbon stock, and based on these models, the mapping of these parameters was carried out. The biomass showed a strong relationship with the diameter of the tree stems and as for the SR data, the best predictors were the red-edge bands and their derived indexes. As for the models for estimating woody biomass, the one based on images of the rainy season showed a better performance than the one using images of the dry season, whose adjusted coefficients were 0.78 and 0.53 respectively. But both resulted in an adequate spatialization of the biomass of according to the use of the soil and the different physiognomies of vegetation found in the area. As for herbaceous biomass, the best model presented an adjusted determination coefficient equal to 0.54 with homogeneous spatialization and generic identification of preserved and anthropized areas. Therefore, the generated models were able to predict the herbaceous and woody biomass for any season in the FTSS area.A biomassa é um recurso natural vital para funcionamento da biosfera, a quantificação e monitoramento desta é necessária para o melhor planejamento e gestão do seu uso. Os métodos baseados em dados de sensoriamento remoto (SR) para quantificá-la fornecem uma visão sinótica e são aplicáveis a áreas extensas e inacessíveis, cujo desempenho depende das características do sensor e alvo. Diante disso, objetivou-se avaliar o estoque de carbono e a biomassa acima do solo nos estratos da Caatinga, uma Floresta Tropical Sazonalmente Seca (FTSS), a partir de dados de SR e dados obtidos no campo. A metodologia dividiu-se em três etapas: i) determinação da biomassa e estoque de carbono in situ; (ii) análise baseada em dados de sensoriamento remoto do sensor multiespectral MSI/Sentinel-2 e do radar SAR-C/Sentinel-1; e (iii) análise da relação entre dados de campo e SR. A relação foi obtida por meio de regressão linear múltipla gerando modelos empíricos para obtenção de biomassa e estoque de carbono e, com base nesses modelos, foi realizado o mapeamento desses parâmetros. A biomassa lenhosa apresentou forte relação com o diâmetro do caule das árvores e, no que diz respeito aos dados de SR, os melhores preditores foram as bandas red-edge e seus índices derivados. Quanto aos modelos para estimar biomassa lenhosa, o baseado em imagens da estação chuvosa apresentou desempenho superior ao que utiliza imagens da estação seca, cujos coeficientes ajustados foram de 0,78 e 0,53 respectivamente. Porém, ambos resultaram em uma espacialização adequada da biomassa de acordo com o uso do solo e as diferentes fisionomias de vegetação encontradas na área. Quanto à biomassa herbácea, o melhor modelo apresentou coeficiente de determinação ajustado igual a 0,54 com espacialização homogênea e identificação genérica das áreas preservadas e antropizadas. Logo, os modelos gerados foram capazes de predizer a biomassa herbácea e lenhosa para qualquer estação do ano em área de FTSS.Produtividade primária líquidaFloresta tropical sazonalmente secaSentinel-1 e 2Sensoriamento remotoFitossociologiaPrimary net productivitySeasonally dry tropical forestSentinel 1 and 2Remote sensingPhytosociologyUso de imagens Sentinel para estimativa do estoque de carbono e biomassa acima do solo no bioma CaatingaUse of Sentinel images to estimate carbon stock and aboveground biomass in Caatinga biomeinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisporreponame:Repositório Institucional da Universidade Federal do Ceará (UFC)instname:Universidade Federal do Ceará (UFC)instacron:UFCinfo:eu-repo/semantics/openAccessLICENSElicense.txtlicense.txttext/plain; charset=utf-82125http://repositorio.ufc.br/bitstream/riufc/58011/2/license.txtce2f77d9db6511060b9277b356f86c2dMD52ORIGINAL2021_dis_mmplima.pdf2021_dis_mmplima.pdfapplication/pdf4072643http://repositorio.ufc.br/bitstream/riufc/58011/1/2021_dis_mmplima.pdf72749a1468d2b8cd6dcd9984e8a581f1MD51riufc/580112021-04-27 14:48:55.392oai:repositorio.ufc.br:riufc/58011TElDRU7Dh0EgREUgQVJNQVpFTkFNRU5UTyBFIERJU1RSSUJVScOHw4NPIE7Dg08tRVhDTFVTSVZBIA0KDQpBbyBjb25jb3JkYXIgY29tIGVzdGEgbGljZW7Dp2EsIHZvY8OqKHMpIGF1dG9yKGVzKSBvdSB0aXR1bGFyKGVzKSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGEgb2JyYSBhcXVpIGRlc2NyaXRhIGNvbmNlZGUobSkgw6AgVW5pdmVyc2lkYWRlIEZlZGVyYWwgZG8gQ2VhcsOhLCBnZXN0b3JhIGRvIFJlcG9zaXTDs3JpbyBJbnN0aXR1Y2lvbmFsIGRhIFVGQyAtIFJJL1VGQywgbyBkaXJlaXRvIG7Do28tZXhjbHVzaXZvIGRlIHJlcHJvZHV6aXIsIGNvbnZlcnRlciAoY29tbyBkZWZpbmlkbyBhYmFpeG8pIGUvb3UgZGlzdHJpYnVpciBvIGRvY3VtZW50byBkZXBvc2l0YWRvIGVtIGZvcm1hdG8gaW1wcmVzc28sIGVsZXRyw7RuaWNvIG91IGVtIHF1YWxxdWVyIG91dHJvIG1laW8uIFZvY8OqIGNvbmNvcmRhKG0pIHF1ZSBhIFVuaXZlcnNpZGFkZSBGZWRlcmFsIGRvIENlYXLDoSwgZ2VzdG9yYSBkbyBSZXBvc2l0w7NyaW8gSW5zdGl0dWNpb25hbCBkYSBVRkMgLSBSSS9VRkMsIHBvZGUsIHNlbSBhbHRlcmFyIG8gY29udGXDumRvLCBjb252ZXJ0ZXIgbyBhcnF1aXZvIGRlcG9zaXRhZG8gYSBxdWFscXVlciBtZWlvIG91IGZvcm1hdG8gY29tIGZpbnMgZGUgcHJlc2VydmHDp8Ojby4gVm9jw6oocykgdGFtYsOpbSBjb25jb3JkYShtKSBxdWUgYSBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkbyBDZWFyw6EsIGdlc3RvcmEgZG8gUmVwb3NpdMOzcmlvIEluc3RpdHVjaW9uYWwgZGEgVUZDIC0gUkkvVUZDLCBwb2RlIG1hbnRlciBtYWlzIGRlIHVtYSBjw7NwaWEgZGVzdGUgZGVww7NzaXRvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUvb3UgcHJlc2VydmHDp8Ojby4gVm9jw6ogZGVjbGFyYSBxdWUgYSBhcHJlc2VudGHDp8OjbyBkbyBzZXUgdHJhYmFsaG8gw6kgb3JpZ2luYWwgZSBxdWUgdm9jw6oocykgcG9kZShtKSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcyBuZXN0YSBsaWNlbsOnYS4gVm9jw6ogdGFtYsOpbSBkZWNsYXJhKG0pIHF1ZSBvIGVudmlvIMOpIGRlIHNldSBjb25oZWNpbWVudG8gZSBuw6NvIGluZnJpbmdlIG9zIGRpcmVpdG9zIGF1dG9yYWlzIGRlIG91dHJhIHBlc3NvYSBvdSBpbnN0aXR1acOnw6NvLiBDYXNvIG8gZG9jdW1lbnRvIGEgc2VyIGRlcG9zaXRhZG8gY29udGVuaGEgbWF0ZXJpYWwgcGFyYSBvIHF1YWwgdm9jw6oocykgbsOjbyBkZXTDqW0gYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGRlIGF1dG9yYWlzLCB2b2PDqihzKSBkZWNsYXJhKG0pIHF1ZSBvYnRldmUgYSBwZXJtaXNzw6NvIGlycmVzdHJpdGEgZG8gdGl0dWxhciBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGUgY29uY2VkZXIgw6AgVW5pdmVyc2lkYWRlIEZlZGVyYWwgZG8gQ2VhcsOhLCBnZXN0b3JhIGRvIFJlcG9zaXTDs3JpbyBJbnN0aXR1Y2lvbmFsIGRhIFVGQyAtIFJJL1VGQywgb3MgZGlyZWl0b3MgcmVxdWVyaWRvcyBwb3IgZXN0YSBsaWNlbsOnYSBlIHF1ZSBvcyBtYXRlcmlhaXMgZGUgcHJvcHJpZWRhZGUgZGUgdGVyY2Vpcm9zLCBlc3TDo28gZGV2aWRhbWVudGUgaWRlbnRpZmljYWRvcyBlIHJlY29uaGVjaWRvcyBubyB0ZXh0byBvdSBjb250ZcO6ZG8gZGEgYXByZXNlbnRhw6fDo28uDQoNCkNBU08gTyBUUkFCQUxITyBERVBPU0lUQURPIFRFTkhBIFNJRE8gRklOQU5DSUFETyBPVSBBUE9JQURPIFBPUiBVTSDDk1JHw4NPLCBRVUUgTsODTyBBIElOU1RJVFVJw4fDg08gREVTVEUgUkVQT1NJVMOTUklPOiBWT0PDiiBERUNMQVJBIFRFUiBDVU1QUklETyBUT0RPUyBPUyBESVJFSVRPUyBERSBSRVZJU8ODTyBFIFFVQUlTUVVFUiBPVVRSQVMgT0JSSUdBw4fDlUVTIFJFUVVFUklEQVMgUEVMTyBDT05UUkFUTyBPVSBBQ09SRE8uIA0KDQpPIHJlcG9zaXTDs3JpbyBpZGVudGlmaWNhcsOhIGNsYXJhbWVudGUgbyBzZXUocykgbm9tZShzKSBjb21vIGF1dG9yKGVzKSBvdSB0aXR1bGFyKGVzKSBkbyBkaXJlaXRvIGRlIGF1dG9yKGVzKSBkbyBkb2N1bWVudG8gc3VibWV0aWRvIGUgZGVjbGFyYSBxdWUgbsOjbyBmYXLDoSBxdWFscXVlciBhbHRlcmHDp8OjbyBhbMOpbSBkYXMgcGVybWl0aWRhcyBwb3IgZXN0YSBsaWNlbsOnYS4NCg==Repositório InstitucionalPUBhttp://www.repositorio.ufc.br/ri-oai/requestbu@ufc.br || repositorio@ufc.bropendoar:2021-04-27T17:48:55Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)false
dc.title.pt_BR.fl_str_mv Uso de imagens Sentinel para estimativa do estoque de carbono e biomassa acima do solo no bioma Caatinga
dc.title.en.pt_BR.fl_str_mv Use of Sentinel images to estimate carbon stock and aboveground biomass in Caatinga biome
title Uso de imagens Sentinel para estimativa do estoque de carbono e biomassa acima do solo no bioma Caatinga
spellingShingle Uso de imagens Sentinel para estimativa do estoque de carbono e biomassa acima do solo no bioma Caatinga
Lima, Maria Maiany Paiva
Produtividade primária líquida
Floresta tropical sazonalmente seca
Sentinel-1 e 2
Sensoriamento remoto
Fitossociologia
Primary net productivity
Seasonally dry tropical forest
Sentinel 1 and 2
Remote sensing
Phytosociology
title_short Uso de imagens Sentinel para estimativa do estoque de carbono e biomassa acima do solo no bioma Caatinga
title_full Uso de imagens Sentinel para estimativa do estoque de carbono e biomassa acima do solo no bioma Caatinga
title_fullStr Uso de imagens Sentinel para estimativa do estoque de carbono e biomassa acima do solo no bioma Caatinga
title_full_unstemmed Uso de imagens Sentinel para estimativa do estoque de carbono e biomassa acima do solo no bioma Caatinga
title_sort Uso de imagens Sentinel para estimativa do estoque de carbono e biomassa acima do solo no bioma Caatinga
author Lima, Maria Maiany Paiva
author_facet Lima, Maria Maiany Paiva
author_role author
dc.contributor.co-advisor.none.fl_str_mv Araújo, Isabel Cristina da Silva
dc.contributor.author.fl_str_mv Lima, Maria Maiany Paiva
dc.contributor.advisor1.fl_str_mv Costa, Carlos Alexandre Gomes
contributor_str_mv Costa, Carlos Alexandre Gomes
dc.subject.por.fl_str_mv Produtividade primária líquida
Floresta tropical sazonalmente seca
Sentinel-1 e 2
Sensoriamento remoto
Fitossociologia
Primary net productivity
Seasonally dry tropical forest
Sentinel 1 and 2
Remote sensing
Phytosociology
topic Produtividade primária líquida
Floresta tropical sazonalmente seca
Sentinel-1 e 2
Sensoriamento remoto
Fitossociologia
Primary net productivity
Seasonally dry tropical forest
Sentinel 1 and 2
Remote sensing
Phytosociology
description Biomass is a vital natural resource for the functioning of the biosphere, its quantification and monitoring are necessary for better planning and management of use. The methods based on remote sensing (SR) data to quantify it provide a synoptic view and they are applicable into large and inaccessible areas, of which performance depends on the characteristics of the sensor and target. Therefore, the objective was to evaluate the carbon stock and aboveground biomass in the strata of the Caatinga, a Seasonally Dry Tropical Forest (FTSS), using SR data and data obtained in the field. The methodology was divided into three stages: i) determination of biomass and carbon stock in situ; (ii) analysis based on remote sensing data from the MSI/Sentinel-2 sensor and the SAR-C/Sentinel-1; (iii) and analysis of the relationship between field and SR data. The relationship was accessed by means of multiple linear regression generating empirical models for obtaining biomass and carbon stock, and based on these models, the mapping of these parameters was carried out. The biomass showed a strong relationship with the diameter of the tree stems and as for the SR data, the best predictors were the red-edge bands and their derived indexes. As for the models for estimating woody biomass, the one based on images of the rainy season showed a better performance than the one using images of the dry season, whose adjusted coefficients were 0.78 and 0.53 respectively. But both resulted in an adequate spatialization of the biomass of according to the use of the soil and the different physiognomies of vegetation found in the area. As for herbaceous biomass, the best model presented an adjusted determination coefficient equal to 0.54 with homogeneous spatialization and generic identification of preserved and anthropized areas. Therefore, the generated models were able to predict the herbaceous and woody biomass for any season in the FTSS area.
publishDate 2021
dc.date.accessioned.fl_str_mv 2021-04-27T17:48:55Z
dc.date.available.fl_str_mv 2021-04-27T17:48:55Z
dc.date.issued.fl_str_mv 2021
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv Lima, Maria Maiany Paiva. Uso de imagens Sentinel para estimativa do estoque de carbono e biomassa acima do solo no bioma Caatinga. 107 f. Dissertação (Mestrado em Engenharia Agrícola) - Universidade Federal do Ceará, Fortaleza, 2021.
dc.identifier.uri.fl_str_mv http://www.repositorio.ufc.br/handle/riufc/58011
identifier_str_mv Lima, Maria Maiany Paiva. Uso de imagens Sentinel para estimativa do estoque de carbono e biomassa acima do solo no bioma Caatinga. 107 f. Dissertação (Mestrado em Engenharia Agrícola) - Universidade Federal do Ceará, Fortaleza, 2021.
url http://www.repositorio.ufc.br/handle/riufc/58011
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv reponame:Repositório Institucional da Universidade Federal do Ceará (UFC)
instname:Universidade Federal do Ceará (UFC)
instacron:UFC
instname_str Universidade Federal do Ceará (UFC)
instacron_str UFC
institution UFC
reponame_str Repositório Institucional da Universidade Federal do Ceará (UFC)
collection Repositório Institucional da Universidade Federal do Ceará (UFC)
bitstream.url.fl_str_mv http://repositorio.ufc.br/bitstream/riufc/58011/2/license.txt
http://repositorio.ufc.br/bitstream/riufc/58011/1/2021_dis_mmplima.pdf
bitstream.checksum.fl_str_mv ce2f77d9db6511060b9277b356f86c2d
72749a1468d2b8cd6dcd9984e8a581f1
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)
repository.mail.fl_str_mv bu@ufc.br || repositorio@ufc.br
_version_ 1847793114351140864