Uma abordagem distribuída para preservação de privacidade na publicação de dados de trajetória

Detalhes bibliográficos
Ano de defesa: 2016
Autor(a) principal: Brito, Felipe Timbó
Orientador(a): Machado, Javam de Castro
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.repositorio.ufc.br/handle/riufc/16375
Resumo: Advancements in mobile computing techniques along with the pervasiveness of location-based services have generated a great amount of trajectory data. These data can be used for various data analysis purposes such as traffic flow analysis, infrastructure planning, understanding of human behavior, etc. However, publishing this amount of trajectory data may lead to serious risks of privacy breach. Quasi-identifiers are trajectory points that can be linked to external information and be used to identify individuals associated with trajectories. Therefore, by analyzing quasi-identifiers, a malicious user may be able to trace anonymous trajectories back to individuals with the aid of location-aware social networking applications, for example. Most existing trajectory data anonymization approaches were proposed for centralized computing environments, so they usually present poor performance to anonymize large trajectory data sets. In this work we propose a distributed and efficient strategy that adopts the $k^m$-anonymity privacy model and uses the scalable MapReduce paradigm, which allows finding quasi-identifiers in larger amount of data. We also present a technique to minimize the loss of information by selecting key locations from the quasi-identifiers to be suppressed. Experimental evaluation results demonstrate that our proposed approach for trajectory data anonymization is more scalable and efficient than existing works in the literature.
id UFC-7_2b8d46ff9393422a555eca0ab990207f
oai_identifier_str oai:repositorio.ufc.br:riufc/16375
network_acronym_str UFC-7
network_name_str Repositório Institucional da Universidade Federal do Ceará (UFC)
repository_id_str
spelling Brito, Felipe TimbóMachado, Javam de Castro2016-04-25T12:34:13Z2016-04-25T12:34:13Z2016BRITO, Felipe Timbó. Uma abordagem distribuída para preservação de privacidade na publicação de dados de trajetória. 2016. 66 f. Dissertação (mestrado em computação)- Universidade Federal do Ceará, Fortaleza-CE, 2016.http://www.repositorio.ufc.br/handle/riufc/16375Advancements in mobile computing techniques along with the pervasiveness of location-based services have generated a great amount of trajectory data. These data can be used for various data analysis purposes such as traffic flow analysis, infrastructure planning, understanding of human behavior, etc. However, publishing this amount of trajectory data may lead to serious risks of privacy breach. Quasi-identifiers are trajectory points that can be linked to external information and be used to identify individuals associated with trajectories. Therefore, by analyzing quasi-identifiers, a malicious user may be able to trace anonymous trajectories back to individuals with the aid of location-aware social networking applications, for example. Most existing trajectory data anonymization approaches were proposed for centralized computing environments, so they usually present poor performance to anonymize large trajectory data sets. In this work we propose a distributed and efficient strategy that adopts the $k^m$-anonymity privacy model and uses the scalable MapReduce paradigm, which allows finding quasi-identifiers in larger amount of data. We also present a technique to minimize the loss of information by selecting key locations from the quasi-identifiers to be suppressed. Experimental evaluation results demonstrate that our proposed approach for trajectory data anonymization is more scalable and efficient than existing works in the literature.Avanços em técnicas de computação móvel aliados à difusão de serviços baseados em localização têm gerado uma grande quantidade de dados de trajetória. Tais dados podem ser utilizados para diversas finalidades, tais como análise de fluxo de tráfego, planejamento de infraestrutura, entendimento do comportamento humano, etc. No entanto, a publicação destes dados pode levar a sérios riscos de violação de privacidade. Semi-identificadores são pontos de trajetória que podem ser combinados com informações externas e utilizados para identificar indivíduos associados à sua trajetória. Por esse motivo, analisando semi-identificadores, um usuário malicioso pode ser capaz de restaurar trajetórias anonimizadas de indivíduos por meio de aplicações de redes sociais baseadas em localização, por exemplo. Muitas das abordagens já existentes envolvendo anonimização de dados foram propostas para ambientes de computação centralizados, assim elas geralmente apresentam um baixo desempenho para anonimizar grandes conjuntos de dados de trajetória. Neste trabalho propomos uma estratégia distribuída e eficiente que adota o modelo de privacidade km-anonimato e utiliza o escalável paradigma MapReduce, o qual permite encontrar semi-identificadores em um grande volume de dados. Nós também apresentamos uma técnica que minimiza a perda de informação selecionando localizações chaves a serem removidas a partir do conjunto de semi-identificadores. Resultados de avaliação experimental demonstram que nossa solução de anonimização é mais escalável e eficiente que trabalhos já existentes na literatura.Banco de dadosPreservação de privacidadeDados de trajetóriaAnonimizaçãoMapReducePrivacy-PreservingUma abordagem distribuída para preservação de privacidade na publicação de dados de trajetóriaA distributed approach for privacy preservation in the publication of trajectory datainfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisporreponame:Repositório Institucional da Universidade Federal do Ceará (UFC)instname:Universidade Federal do Ceará (UFC)instacron:UFCinfo:eu-repo/semantics/openAccessORIGINAL2016_dis_ftbrito.pdf2016_dis_ftbrito.pdfapplication/pdf3114981http://repositorio.ufc.br/bitstream/riufc/16375/1/2016_dis_ftbrito.pdf501bbf667d876e76c74a7911fc7b2c3bMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81786http://repositorio.ufc.br/bitstream/riufc/16375/2/license.txt8c4401d3d14722a7ca2d07c782a1aab3MD52riufc/163752020-06-23 10:47:35.624oai:repositorio.ufc.br:riufc/16375w4kgbmVjZXNzw6FyaW8gY29uY29yZGFyIGNvbSBhIGxpY2Vuw6dhIGRlIGRpc3RyaWJ1acOnw6NvIG7Do28tZXhjbHVzaXZhLAphbnRlcyBxdWUgbyBkb2N1bWVudG8gcG9zc2EgYXBhcmVjZXIgbm8gUmVwb3NpdMOzcmlvLiBQb3IgZmF2b3IsIGxlaWEgYQpsaWNlbsOnYSBhdGVudGFtZW50ZS4gQ2FzbyBuZWNlc3NpdGUgZGUgYWxndW0gZXNjbGFyZWNpbWVudG8gZW50cmUgZW0KY29udGF0byBhdHJhdsOpcyBkZTogcmVwb3NpdG9yaW9AdWZjLmJyIG91ICg4NSkzMzY2LTk1MDguCgpMSUNFTsOHQSBERSBESVNUUklCVUnDh8ODTyBOw4NPLUVYQ0xVU0lWQQoKQW8gYXNzaW5hciBlIGVudHJlZ2FyIGVzdGEgbGljZW7Dp2EsIG8vYSBTci4vU3JhLiAoYXV0b3Igb3UgZGV0ZW50b3IgZG9zIGRpcmVpdG9zIGRlIGF1dG9yKToKCmEpIENvbmNlZGUgw6AgVW5pdmVyc2lkYWRlIEZlZGVyYWwgZG8gQ2VhcsOhIG8gZGlyZWl0byBuw6NvLWV4Y2x1c2l2byBkZQpyZXByb2R1emlyLCBjb252ZXJ0ZXIgKGNvbW8gZGVmaW5pZG8gYWJhaXhvKSwgY29tdW5pY2FyIGUvb3UKZGlzdHJpYnVpciBvIGRvY3VtZW50byBlbnRyZWd1ZSAoaW5jbHVpbmRvIG8gcmVzdW1vL2Fic3RyYWN0KSBlbQpmb3JtYXRvIGRpZ2l0YWwgb3UgaW1wcmVzc28gZSBlbSBxdWFscXVlciBtZWlvLgoKYikgRGVjbGFyYSBxdWUgbyBkb2N1bWVudG8gZW50cmVndWUgw6kgc2V1IHRyYWJhbGhvIG9yaWdpbmFsLCBlIHF1ZQpkZXTDqW0gbyBkaXJlaXRvIGRlIGNvbmNlZGVyIG9zIGRpcmVpdG9zIGNvbnRpZG9zIG5lc3RhIGxpY2Vuw6dhLiBEZWNsYXJhIHRhbWLDqW0gcXVlIGEgZW50cmVnYSBkbyBkb2N1bWVudG8gbsOjbyBpbmZyaW5nZSwgdGFudG8gcXVhbnRvIGxoZSDDqSBwb3Nzw612ZWwgc2FiZXIsIG9zIGRpcmVpdG9zIGRlIHF1YWxxdWVyIG91dHJhIHBlc3NvYSBvdSBlbnRpZGFkZS4KCmMpIFNlIG8gZG9jdW1lbnRvIGVudHJlZ3VlIGNvbnTDqW0gbWF0ZXJpYWwgZG8gcXVhbCBuw6NvIGRldMOpbSBvcwpkaXJlaXRvcyBkZSBhdXRvciwgZGVjbGFyYSBxdWUgb2J0ZXZlIGF1dG9yaXphw6fDo28gZG8gZGV0ZW50b3IgZG9zCmRpcmVpdG9zIGRlIGF1dG9yIHBhcmEgY29uY2VkZXIgw6AgVW5pdmVyc2lkYWRlIEZlZGVyYWwgZG8gQ2VhcsOhIG9zIGRpcmVpdG9zIHJlcXVlcmlkb3MgcG9yIGVzdGEgbGljZW7Dp2EsIGUgcXVlIGVzc2UgbWF0ZXJpYWwgY3Vqb3MgZGlyZWl0b3Mgc8OjbyBkZSB0ZXJjZWlyb3MgZXN0w6EgY2xhcmFtZW50ZSBpZGVudGlmaWNhZG8gZSByZWNvbmhlY2lkbyBubyB0ZXh0byBvdSBjb250ZcO6ZG8gZG8gZG9jdW1lbnRvIGVudHJlZ3VlLgoKU2UgbyBkb2N1bWVudG8gZW50cmVndWUgw6kgYmFzZWFkbyBlbSB0cmFiYWxobyBmaW5hbmNpYWRvIG91IGFwb2lhZG8KcG9yIG91dHJhIGluc3RpdHVpw6fDo28gcXVlIG7Do28gYSBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkbyBDZWFyw6EsIGRlY2xhcmEgcXVlIGN1bXByaXUgcXVhaXNxdWVyIG9icmlnYcOnw7VlcyBleGlnaWRhcyBwZWxvIHJlc3BlY3Rpdm8gY29udHJhdG8gb3UKYWNvcmRvLgoKQSBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkbyBDZWFyw6EgaWRlbnRpZmljYXLDoSBjbGFyYW1lbnRlIG8ocykgc2V1IChzKSBub21lIChzKSBjb21vIG8gKHMpIGF1dG9yIChlcykgb3UgZGV0ZW50b3IgKGVzKSBkb3MgZGlyZWl0b3MgZG8gZG9jdW1lbnRvIGVudHJlZ3VlLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIHBhcmEgYWzDqW0gZGFzIHBlcm1pdGlkYXMgcG9yIGVzdGEgbGljZW7Dp2EuCg==Repositório InstitucionalPUBhttp://www.repositorio.ufc.br/ri-oai/requestbu@ufc.br || repositorio@ufc.bropendoar:2020-06-23T13:47:35Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)false
dc.title.pt_BR.fl_str_mv Uma abordagem distribuída para preservação de privacidade na publicação de dados de trajetória
dc.title.en.pt_BR.fl_str_mv A distributed approach for privacy preservation in the publication of trajectory data
title Uma abordagem distribuída para preservação de privacidade na publicação de dados de trajetória
spellingShingle Uma abordagem distribuída para preservação de privacidade na publicação de dados de trajetória
Brito, Felipe Timbó
Banco de dados
Preservação de privacidade
Dados de trajetória
Anonimização
MapReduce
Privacy-Preserving
title_short Uma abordagem distribuída para preservação de privacidade na publicação de dados de trajetória
title_full Uma abordagem distribuída para preservação de privacidade na publicação de dados de trajetória
title_fullStr Uma abordagem distribuída para preservação de privacidade na publicação de dados de trajetória
title_full_unstemmed Uma abordagem distribuída para preservação de privacidade na publicação de dados de trajetória
title_sort Uma abordagem distribuída para preservação de privacidade na publicação de dados de trajetória
author Brito, Felipe Timbó
author_facet Brito, Felipe Timbó
author_role author
dc.contributor.author.fl_str_mv Brito, Felipe Timbó
dc.contributor.advisor1.fl_str_mv Machado, Javam de Castro
contributor_str_mv Machado, Javam de Castro
dc.subject.por.fl_str_mv Banco de dados
Preservação de privacidade
Dados de trajetória
Anonimização
MapReduce
Privacy-Preserving
topic Banco de dados
Preservação de privacidade
Dados de trajetória
Anonimização
MapReduce
Privacy-Preserving
description Advancements in mobile computing techniques along with the pervasiveness of location-based services have generated a great amount of trajectory data. These data can be used for various data analysis purposes such as traffic flow analysis, infrastructure planning, understanding of human behavior, etc. However, publishing this amount of trajectory data may lead to serious risks of privacy breach. Quasi-identifiers are trajectory points that can be linked to external information and be used to identify individuals associated with trajectories. Therefore, by analyzing quasi-identifiers, a malicious user may be able to trace anonymous trajectories back to individuals with the aid of location-aware social networking applications, for example. Most existing trajectory data anonymization approaches were proposed for centralized computing environments, so they usually present poor performance to anonymize large trajectory data sets. In this work we propose a distributed and efficient strategy that adopts the $k^m$-anonymity privacy model and uses the scalable MapReduce paradigm, which allows finding quasi-identifiers in larger amount of data. We also present a technique to minimize the loss of information by selecting key locations from the quasi-identifiers to be suppressed. Experimental evaluation results demonstrate that our proposed approach for trajectory data anonymization is more scalable and efficient than existing works in the literature.
publishDate 2016
dc.date.accessioned.fl_str_mv 2016-04-25T12:34:13Z
dc.date.available.fl_str_mv 2016-04-25T12:34:13Z
dc.date.issued.fl_str_mv 2016
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv BRITO, Felipe Timbó. Uma abordagem distribuída para preservação de privacidade na publicação de dados de trajetória. 2016. 66 f. Dissertação (mestrado em computação)- Universidade Federal do Ceará, Fortaleza-CE, 2016.
dc.identifier.uri.fl_str_mv http://www.repositorio.ufc.br/handle/riufc/16375
identifier_str_mv BRITO, Felipe Timbó. Uma abordagem distribuída para preservação de privacidade na publicação de dados de trajetória. 2016. 66 f. Dissertação (mestrado em computação)- Universidade Federal do Ceará, Fortaleza-CE, 2016.
url http://www.repositorio.ufc.br/handle/riufc/16375
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv reponame:Repositório Institucional da Universidade Federal do Ceará (UFC)
instname:Universidade Federal do Ceará (UFC)
instacron:UFC
instname_str Universidade Federal do Ceará (UFC)
instacron_str UFC
institution UFC
reponame_str Repositório Institucional da Universidade Federal do Ceará (UFC)
collection Repositório Institucional da Universidade Federal do Ceará (UFC)
bitstream.url.fl_str_mv http://repositorio.ufc.br/bitstream/riufc/16375/1/2016_dis_ftbrito.pdf
http://repositorio.ufc.br/bitstream/riufc/16375/2/license.txt
bitstream.checksum.fl_str_mv 501bbf667d876e76c74a7911fc7b2c3b
8c4401d3d14722a7ca2d07c782a1aab3
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)
repository.mail.fl_str_mv bu@ufc.br || repositorio@ufc.br
_version_ 1847793377286815744