PopRing: a popularity-aware replica placement for reducing latency on distributed key-value stores

Detalhes bibliográficos
Ano de defesa: 2018
Autor(a) principal: Cavalcante, Denis Morais
Orientador(a): Souza, José Neuman de
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.repositorio.ufc.br/handle/riufc/38852
Resumo: Distributed key-value stores (KVS) are a well-established approach for cloud data-intensive applications, but they were not designed to consider workloads with data access skew, mainly caused by popular data. In this work, we analyze the problem of replica placement on KVS for workloads with data access skew. We formally define our problem as a multi-objective optimization problem because not only load imbalance cost, but replica maintenance and reconfiguration costs affect system performance as well. To solve the replica placement problem, we present the PopRing replica placement component based on Genetic algorithms to find new replica placements efficiently. Next, we extend PopRing framework with a hyper-parameter optimization component based on Bayesian optimization in order to efficiently find the proper importance of load imbalance, replica maintenance, and reconfiguration objectives according to the system latency. To validate our PopRing engine in practice, we implemented a full prototype of PopRing to generate new replica placement schemes in the format of the distributed hash table (DHT) interface of the popular object store OpenStack-Swift. Then, in our lab environment, we deployed a distributed cluster of the OpenStack-Swift, a benchmark node and the PopRing prototype to run some experiments. From results evaluation, we verified that our solution was able to reduce system latency for different levels of data access skew without human intervention, i.e., PopRing auto-tuned its parameters to find a proper replica placement scheme to a given scenario.
id UFC-7_2da1b35f928d2e648a37e77869c8a955
oai_identifier_str oai:repositorio.ufc.br:riufc/38852
network_acronym_str UFC-7
network_name_str Repositório Institucional da Universidade Federal do Ceará (UFC)
repository_id_str
spelling Cavalcante, Denis MoraisMachado, Javam de CastroSouza, José Neuman de2019-01-17T17:04:30Z2019-01-17T17:04:30Z2018CAVALCANTE, Denis Morais. PopRing: a popularity-aware replica placement for reducing latency on distributed key-value stores. 2018. 71 f. Dissertação (Mestrado em Ciência da Computação)-Universidade Federal do Ceará, 2018.http://www.repositorio.ufc.br/handle/riufc/38852Distributed key-value stores (KVS) are a well-established approach for cloud data-intensive applications, but they were not designed to consider workloads with data access skew, mainly caused by popular data. In this work, we analyze the problem of replica placement on KVS for workloads with data access skew. We formally define our problem as a multi-objective optimization problem because not only load imbalance cost, but replica maintenance and reconfiguration costs affect system performance as well. To solve the replica placement problem, we present the PopRing replica placement component based on Genetic algorithms to find new replica placements efficiently. Next, we extend PopRing framework with a hyper-parameter optimization component based on Bayesian optimization in order to efficiently find the proper importance of load imbalance, replica maintenance, and reconfiguration objectives according to the system latency. To validate our PopRing engine in practice, we implemented a full prototype of PopRing to generate new replica placement schemes in the format of the distributed hash table (DHT) interface of the popular object store OpenStack-Swift. Then, in our lab environment, we deployed a distributed cluster of the OpenStack-Swift, a benchmark node and the PopRing prototype to run some experiments. From results evaluation, we verified that our solution was able to reduce system latency for different levels of data access skew without human intervention, i.e., PopRing auto-tuned its parameters to find a proper replica placement scheme to a given scenario.O armazenamento distribuído em chave-valor (KVS) é uma abordagem bem estabelecida para aplicações com uso intensivo de dados na nuvem. Contudo, este tipo armazenamento não foi projetado para considerar cargas de trabalho com acesso desbalanceado aos dados devido principalmente a dados populares. Na presente pesquisa, foi feita uma análise do problema de alocação de réplicas no KVS para cargas de trabalho com acesso desbalanceado aos dados. O problema é definido formalmente como um problema de otimização multiobjetivo, pois além do custo de desequilíbrio de carga, também existem os custos de manutenção e reconfiguração de réplicas, que afetam o desempenho do sistema. Para resolver o problema de alocação da réplica, nós propomos o componente de alocação de réplicas PopRing. Esse componente, baseado em algoritmos genéticos, busca de forma eficiente novas alocações de réplica. Em seguida, a estrutura PopRing foi estendida com um componente de otimização de hiper-parâmetros baseado em otimização bayesiana, de modo a encontrar com eficiência a importância adequada das funções objetivas de desbalanceamento de carga, manutenção de réplica e reconfiguração de acordo com a latência do sistema. Para validar o PopRing, foi implementado um protótipo completo a fim de gerar novos esquemas de alocação de réplica no formato da interface distributed hash table (DHT) de armazenamento de objetos OpenStack-Swift. Em seguida, em nosso ambiente de experimentação, foi configurado um cluster distribuído do OpenStack-Swift, um nó de referência do benchmark e o protótipo PopRing para executar alguns experimentos. A partir da avaliação dos resultados, verificou-se que a solução conseguiu reduzir a latência do sistema para diferentes níveis de desbalanceamento de acesso a dados sem intervenção humana, ou seja, ajustou seus parâmetros automaticamente para encontrar um esquema de alocação de réplica apropriado para um dado cenário.Distributed key-value storeReplica placementLoad balancingGenetic algorithmBayesian optimizationPopRing: a popularity-aware replica placement for reducing latency on distributed key-value storesinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisengreponame:Repositório Institucional da Universidade Federal do Ceará (UFC)instname:Universidade Federal do Ceará (UFC)instacron:UFCinfo:eu-repo/semantics/openAccessLICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://repositorio.ufc.br/bitstream/riufc/38852/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52ORIGINAL2018_tese_dmc.pdf2018_tese_dmc.pdfapplication/pdf1078516http://repositorio.ufc.br/bitstream/riufc/38852/3/2018_tese_dmc.pdfddc2eb1a89d637305a354ea00b46ec47MD53riufc/388522019-01-17 14:09:20.906oai:repositorio.ufc.br:riufc/38852Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório InstitucionalPUBhttp://www.repositorio.ufc.br/ri-oai/requestbu@ufc.br || repositorio@ufc.bropendoar:2019-01-17T17:09:20Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)false
dc.title.pt_BR.fl_str_mv PopRing: a popularity-aware replica placement for reducing latency on distributed key-value stores
title PopRing: a popularity-aware replica placement for reducing latency on distributed key-value stores
spellingShingle PopRing: a popularity-aware replica placement for reducing latency on distributed key-value stores
Cavalcante, Denis Morais
Distributed key-value store
Replica placement
Load balancing
Genetic algorithm
Bayesian optimization
title_short PopRing: a popularity-aware replica placement for reducing latency on distributed key-value stores
title_full PopRing: a popularity-aware replica placement for reducing latency on distributed key-value stores
title_fullStr PopRing: a popularity-aware replica placement for reducing latency on distributed key-value stores
title_full_unstemmed PopRing: a popularity-aware replica placement for reducing latency on distributed key-value stores
title_sort PopRing: a popularity-aware replica placement for reducing latency on distributed key-value stores
author Cavalcante, Denis Morais
author_facet Cavalcante, Denis Morais
author_role author
dc.contributor.co-advisor.none.fl_str_mv Machado, Javam de Castro
dc.contributor.author.fl_str_mv Cavalcante, Denis Morais
dc.contributor.advisor1.fl_str_mv Souza, José Neuman de
contributor_str_mv Souza, José Neuman de
dc.subject.por.fl_str_mv Distributed key-value store
Replica placement
Load balancing
Genetic algorithm
Bayesian optimization
topic Distributed key-value store
Replica placement
Load balancing
Genetic algorithm
Bayesian optimization
description Distributed key-value stores (KVS) are a well-established approach for cloud data-intensive applications, but they were not designed to consider workloads with data access skew, mainly caused by popular data. In this work, we analyze the problem of replica placement on KVS for workloads with data access skew. We formally define our problem as a multi-objective optimization problem because not only load imbalance cost, but replica maintenance and reconfiguration costs affect system performance as well. To solve the replica placement problem, we present the PopRing replica placement component based on Genetic algorithms to find new replica placements efficiently. Next, we extend PopRing framework with a hyper-parameter optimization component based on Bayesian optimization in order to efficiently find the proper importance of load imbalance, replica maintenance, and reconfiguration objectives according to the system latency. To validate our PopRing engine in practice, we implemented a full prototype of PopRing to generate new replica placement schemes in the format of the distributed hash table (DHT) interface of the popular object store OpenStack-Swift. Then, in our lab environment, we deployed a distributed cluster of the OpenStack-Swift, a benchmark node and the PopRing prototype to run some experiments. From results evaluation, we verified that our solution was able to reduce system latency for different levels of data access skew without human intervention, i.e., PopRing auto-tuned its parameters to find a proper replica placement scheme to a given scenario.
publishDate 2018
dc.date.issued.fl_str_mv 2018
dc.date.accessioned.fl_str_mv 2019-01-17T17:04:30Z
dc.date.available.fl_str_mv 2019-01-17T17:04:30Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv CAVALCANTE, Denis Morais. PopRing: a popularity-aware replica placement for reducing latency on distributed key-value stores. 2018. 71 f. Dissertação (Mestrado em Ciência da Computação)-Universidade Federal do Ceará, 2018.
dc.identifier.uri.fl_str_mv http://www.repositorio.ufc.br/handle/riufc/38852
identifier_str_mv CAVALCANTE, Denis Morais. PopRing: a popularity-aware replica placement for reducing latency on distributed key-value stores. 2018. 71 f. Dissertação (Mestrado em Ciência da Computação)-Universidade Federal do Ceará, 2018.
url http://www.repositorio.ufc.br/handle/riufc/38852
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv reponame:Repositório Institucional da Universidade Federal do Ceará (UFC)
instname:Universidade Federal do Ceará (UFC)
instacron:UFC
instname_str Universidade Federal do Ceará (UFC)
instacron_str UFC
institution UFC
reponame_str Repositório Institucional da Universidade Federal do Ceará (UFC)
collection Repositório Institucional da Universidade Federal do Ceará (UFC)
bitstream.url.fl_str_mv http://repositorio.ufc.br/bitstream/riufc/38852/2/license.txt
http://repositorio.ufc.br/bitstream/riufc/38852/3/2018_tese_dmc.pdf
bitstream.checksum.fl_str_mv 8a4605be74aa9ea9d79846c1fba20a33
ddc2eb1a89d637305a354ea00b46ec47
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)
repository.mail.fl_str_mv bu@ufc.br || repositorio@ufc.br
_version_ 1847793337821560832