PopRing: a popularity-aware replica placement for reducing latency on distributed key-value stores
| Ano de defesa: | 2018 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | |
| Tipo de documento: | Dissertação |
| Tipo de acesso: | Acesso aberto |
| Idioma: | eng |
| Instituição de defesa: |
Não Informado pela instituição
|
| Programa de Pós-Graduação: |
Não Informado pela instituição
|
| Departamento: |
Não Informado pela instituição
|
| País: |
Não Informado pela instituição
|
| Palavras-chave em Português: | |
| Link de acesso: | http://www.repositorio.ufc.br/handle/riufc/38852 |
Resumo: | Distributed key-value stores (KVS) are a well-established approach for cloud data-intensive applications, but they were not designed to consider workloads with data access skew, mainly caused by popular data. In this work, we analyze the problem of replica placement on KVS for workloads with data access skew. We formally define our problem as a multi-objective optimization problem because not only load imbalance cost, but replica maintenance and reconfiguration costs affect system performance as well. To solve the replica placement problem, we present the PopRing replica placement component based on Genetic algorithms to find new replica placements efficiently. Next, we extend PopRing framework with a hyper-parameter optimization component based on Bayesian optimization in order to efficiently find the proper importance of load imbalance, replica maintenance, and reconfiguration objectives according to the system latency. To validate our PopRing engine in practice, we implemented a full prototype of PopRing to generate new replica placement schemes in the format of the distributed hash table (DHT) interface of the popular object store OpenStack-Swift. Then, in our lab environment, we deployed a distributed cluster of the OpenStack-Swift, a benchmark node and the PopRing prototype to run some experiments. From results evaluation, we verified that our solution was able to reduce system latency for different levels of data access skew without human intervention, i.e., PopRing auto-tuned its parameters to find a proper replica placement scheme to a given scenario. |
| id |
UFC-7_2da1b35f928d2e648a37e77869c8a955 |
|---|---|
| oai_identifier_str |
oai:repositorio.ufc.br:riufc/38852 |
| network_acronym_str |
UFC-7 |
| network_name_str |
Repositório Institucional da Universidade Federal do Ceará (UFC) |
| repository_id_str |
|
| spelling |
Cavalcante, Denis MoraisMachado, Javam de CastroSouza, José Neuman de2019-01-17T17:04:30Z2019-01-17T17:04:30Z2018CAVALCANTE, Denis Morais. PopRing: a popularity-aware replica placement for reducing latency on distributed key-value stores. 2018. 71 f. Dissertação (Mestrado em Ciência da Computação)-Universidade Federal do Ceará, 2018.http://www.repositorio.ufc.br/handle/riufc/38852Distributed key-value stores (KVS) are a well-established approach for cloud data-intensive applications, but they were not designed to consider workloads with data access skew, mainly caused by popular data. In this work, we analyze the problem of replica placement on KVS for workloads with data access skew. We formally define our problem as a multi-objective optimization problem because not only load imbalance cost, but replica maintenance and reconfiguration costs affect system performance as well. To solve the replica placement problem, we present the PopRing replica placement component based on Genetic algorithms to find new replica placements efficiently. Next, we extend PopRing framework with a hyper-parameter optimization component based on Bayesian optimization in order to efficiently find the proper importance of load imbalance, replica maintenance, and reconfiguration objectives according to the system latency. To validate our PopRing engine in practice, we implemented a full prototype of PopRing to generate new replica placement schemes in the format of the distributed hash table (DHT) interface of the popular object store OpenStack-Swift. Then, in our lab environment, we deployed a distributed cluster of the OpenStack-Swift, a benchmark node and the PopRing prototype to run some experiments. From results evaluation, we verified that our solution was able to reduce system latency for different levels of data access skew without human intervention, i.e., PopRing auto-tuned its parameters to find a proper replica placement scheme to a given scenario.O armazenamento distribuído em chave-valor (KVS) é uma abordagem bem estabelecida para aplicações com uso intensivo de dados na nuvem. Contudo, este tipo armazenamento não foi projetado para considerar cargas de trabalho com acesso desbalanceado aos dados devido principalmente a dados populares. Na presente pesquisa, foi feita uma análise do problema de alocação de réplicas no KVS para cargas de trabalho com acesso desbalanceado aos dados. O problema é definido formalmente como um problema de otimização multiobjetivo, pois além do custo de desequilíbrio de carga, também existem os custos de manutenção e reconfiguração de réplicas, que afetam o desempenho do sistema. Para resolver o problema de alocação da réplica, nós propomos o componente de alocação de réplicas PopRing. Esse componente, baseado em algoritmos genéticos, busca de forma eficiente novas alocações de réplica. Em seguida, a estrutura PopRing foi estendida com um componente de otimização de hiper-parâmetros baseado em otimização bayesiana, de modo a encontrar com eficiência a importância adequada das funções objetivas de desbalanceamento de carga, manutenção de réplica e reconfiguração de acordo com a latência do sistema. Para validar o PopRing, foi implementado um protótipo completo a fim de gerar novos esquemas de alocação de réplica no formato da interface distributed hash table (DHT) de armazenamento de objetos OpenStack-Swift. Em seguida, em nosso ambiente de experimentação, foi configurado um cluster distribuído do OpenStack-Swift, um nó de referência do benchmark e o protótipo PopRing para executar alguns experimentos. A partir da avaliação dos resultados, verificou-se que a solução conseguiu reduzir a latência do sistema para diferentes níveis de desbalanceamento de acesso a dados sem intervenção humana, ou seja, ajustou seus parâmetros automaticamente para encontrar um esquema de alocação de réplica apropriado para um dado cenário.Distributed key-value storeReplica placementLoad balancingGenetic algorithmBayesian optimizationPopRing: a popularity-aware replica placement for reducing latency on distributed key-value storesinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisengreponame:Repositório Institucional da Universidade Federal do Ceará (UFC)instname:Universidade Federal do Ceará (UFC)instacron:UFCinfo:eu-repo/semantics/openAccessLICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://repositorio.ufc.br/bitstream/riufc/38852/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52ORIGINAL2018_tese_dmc.pdf2018_tese_dmc.pdfapplication/pdf1078516http://repositorio.ufc.br/bitstream/riufc/38852/3/2018_tese_dmc.pdfddc2eb1a89d637305a354ea00b46ec47MD53riufc/388522019-01-17 14:09:20.906oai:repositorio.ufc.br:riufc/38852Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório InstitucionalPUBhttp://www.repositorio.ufc.br/ri-oai/requestbu@ufc.br || repositorio@ufc.bropendoar:2019-01-17T17:09:20Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)false |
| dc.title.pt_BR.fl_str_mv |
PopRing: a popularity-aware replica placement for reducing latency on distributed key-value stores |
| title |
PopRing: a popularity-aware replica placement for reducing latency on distributed key-value stores |
| spellingShingle |
PopRing: a popularity-aware replica placement for reducing latency on distributed key-value stores Cavalcante, Denis Morais Distributed key-value store Replica placement Load balancing Genetic algorithm Bayesian optimization |
| title_short |
PopRing: a popularity-aware replica placement for reducing latency on distributed key-value stores |
| title_full |
PopRing: a popularity-aware replica placement for reducing latency on distributed key-value stores |
| title_fullStr |
PopRing: a popularity-aware replica placement for reducing latency on distributed key-value stores |
| title_full_unstemmed |
PopRing: a popularity-aware replica placement for reducing latency on distributed key-value stores |
| title_sort |
PopRing: a popularity-aware replica placement for reducing latency on distributed key-value stores |
| author |
Cavalcante, Denis Morais |
| author_facet |
Cavalcante, Denis Morais |
| author_role |
author |
| dc.contributor.co-advisor.none.fl_str_mv |
Machado, Javam de Castro |
| dc.contributor.author.fl_str_mv |
Cavalcante, Denis Morais |
| dc.contributor.advisor1.fl_str_mv |
Souza, José Neuman de |
| contributor_str_mv |
Souza, José Neuman de |
| dc.subject.por.fl_str_mv |
Distributed key-value store Replica placement Load balancing Genetic algorithm Bayesian optimization |
| topic |
Distributed key-value store Replica placement Load balancing Genetic algorithm Bayesian optimization |
| description |
Distributed key-value stores (KVS) are a well-established approach for cloud data-intensive applications, but they were not designed to consider workloads with data access skew, mainly caused by popular data. In this work, we analyze the problem of replica placement on KVS for workloads with data access skew. We formally define our problem as a multi-objective optimization problem because not only load imbalance cost, but replica maintenance and reconfiguration costs affect system performance as well. To solve the replica placement problem, we present the PopRing replica placement component based on Genetic algorithms to find new replica placements efficiently. Next, we extend PopRing framework with a hyper-parameter optimization component based on Bayesian optimization in order to efficiently find the proper importance of load imbalance, replica maintenance, and reconfiguration objectives according to the system latency. To validate our PopRing engine in practice, we implemented a full prototype of PopRing to generate new replica placement schemes in the format of the distributed hash table (DHT) interface of the popular object store OpenStack-Swift. Then, in our lab environment, we deployed a distributed cluster of the OpenStack-Swift, a benchmark node and the PopRing prototype to run some experiments. From results evaluation, we verified that our solution was able to reduce system latency for different levels of data access skew without human intervention, i.e., PopRing auto-tuned its parameters to find a proper replica placement scheme to a given scenario. |
| publishDate |
2018 |
| dc.date.issued.fl_str_mv |
2018 |
| dc.date.accessioned.fl_str_mv |
2019-01-17T17:04:30Z |
| dc.date.available.fl_str_mv |
2019-01-17T17:04:30Z |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
| format |
masterThesis |
| status_str |
publishedVersion |
| dc.identifier.citation.fl_str_mv |
CAVALCANTE, Denis Morais. PopRing: a popularity-aware replica placement for reducing latency on distributed key-value stores. 2018. 71 f. Dissertação (Mestrado em Ciência da Computação)-Universidade Federal do Ceará, 2018. |
| dc.identifier.uri.fl_str_mv |
http://www.repositorio.ufc.br/handle/riufc/38852 |
| identifier_str_mv |
CAVALCANTE, Denis Morais. PopRing: a popularity-aware replica placement for reducing latency on distributed key-value stores. 2018. 71 f. Dissertação (Mestrado em Ciência da Computação)-Universidade Federal do Ceará, 2018. |
| url |
http://www.repositorio.ufc.br/handle/riufc/38852 |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.source.none.fl_str_mv |
reponame:Repositório Institucional da Universidade Federal do Ceará (UFC) instname:Universidade Federal do Ceará (UFC) instacron:UFC |
| instname_str |
Universidade Federal do Ceará (UFC) |
| instacron_str |
UFC |
| institution |
UFC |
| reponame_str |
Repositório Institucional da Universidade Federal do Ceará (UFC) |
| collection |
Repositório Institucional da Universidade Federal do Ceará (UFC) |
| bitstream.url.fl_str_mv |
http://repositorio.ufc.br/bitstream/riufc/38852/2/license.txt http://repositorio.ufc.br/bitstream/riufc/38852/3/2018_tese_dmc.pdf |
| bitstream.checksum.fl_str_mv |
8a4605be74aa9ea9d79846c1fba20a33 ddc2eb1a89d637305a354ea00b46ec47 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
| repository.name.fl_str_mv |
Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC) |
| repository.mail.fl_str_mv |
bu@ufc.br || repositorio@ufc.br |
| _version_ |
1847793337821560832 |